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Abstract. An e�cient technique is proposed for calculation of coupled modes of 
uid-
structure interaction systems. The algorithm was developed with the symmetric matrix
operation mentality such that apparently a symmetric eigen-problem was being solved. It
was proven that each left eigen-vector was related to the corresponding right eigen-vector
through a simple relation. Therefore, the subsequent transient analysis could readily be
performed. Overall, the method seemed very e�cient and was ideal to employ in general-
purpose �nite element programs for solving the above-mentioned eigen-problems.
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1. Introduction

There are many di�erent approaches to formulating

uid-structure interaction problems. In all of them, the
structure is always formulated in terms of displacement
degrees of freedom. However, several alternatives
are available for the 
uid domain. Some researches
that have preferred to work with displacement degrees
of freedom for the 
uid domain include Wilson and
Khalvati [1], Bathe and Hahn [2], and Hamdi et al. [3].
In a di�erent approach, velocity potential has been
introduced as the unknown variable for the 
uid region.
This can be followed in the work of Everstine [4] or
Olson and Bathe [5]. Finally, formulation based on
pressure variable was initially given by Zienkiewicz and
Bettess [6] and Zienkiewicz et al. [7], and followed by
many recent studies [8-12]. All the above-mentioned
methods have their own advantages and disadvantages.
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However, let us assume that the problem is formulated
based on displacement and pressure degrees of freedom
for the solid and 
uid domains, respectively. Then, it
is well known that one is encountered with an eigen-
value problem having asymmetric matrices. Therefore,
standard eigen-value computation methods are not
directly applicable. This can be overcome by intro-
ducing additional variables, which help us to arrive at
a symmetric generalized eigen-problem [13-15]. In this
case, one can apply di�erent alternatives such as the
subspace iteration method to extract eigen-values and
eigen-vectors [16]. However, this is not very e�cient
due to an increase in the number of degrees of freedom.

In the present study, an e�cient technique is
proposed for the calculation of coupled modes of 
uid-
structure systems. It is referred to as pseudo symmetric
subspace iteration method. The method is explained
in full details in the next section. It can be employed
to obtain the eigen-values and the corresponding right
eigen-vectors. Furthermore, it will be proven that
each left eigen-vector is related to the corresponding
right eigen-vector through a simple relation. Finally, a
numerical example is considered and a brief discussion
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of the e�ciency of the method is presented in the latter
part of this paper.

2. Theoretical concepts

The eigen-value problem corresponding to a typical

uid-structure interaction system can be written as:

�K ( XR)j = ��j �M (XR)j ; (1)

with the following de�nitions:

�K =
�

K �BT

0 H

�
; (2a)

�M =
�

M 0
B G

�
; (2b)

(XR)j =
�

r
p

�
j
; (2c)

where M and K represent the mass and sti�ness ma-
trices of the structure, respectively, and G and H are
assembled matrices of 
uid domain. Furthermore, B
in the above relations is often referred to as interaction
matrix. The right eigen-vector is composed of r, which
is the vector of nodal relative displacements, and the
vector p, which includes nodal pressures. Physically,
it is clear that the eigen-values of these systems are
real and free vibration modes exist. However, it is
noted from the forms of matrices �K; �M (Eqs. (2a) and
(2b)) that the eigen-problem does not have symmetric
matrices and the subspace iteration method is not
directly applicable.

Let us now de�ne matrix K̂ as follows:

K̂ =
�

K 0
0 G

�
: (3)

Then, one can obtain an equivalent symmetric eigen-
value problem through multiplying Eq. (1) by K̂ �K�1:

K̂ (XR)j = ��j M̂ (XR)j ; (4)

with the following de�nition being employed:

M̂ = K̂ �K�1 �M : (5)

It is clear that matrix K̂ is symmetric by its de�nition
(i.e., Eq. (3)). This is not so obvious for matrix M̂.
However, let us carry out the matrix multiplication (5)
to investigate this fact, which yields:

M̂ =
�

(M + BTH�1B) BTH�1G
GTH�1B GTH�1G

�
: (6)

It is now apparent that matrix M̂ is also symmetric.
It is worthwhile to add that the following identity is

employed in the above expansion, which can easily be
veri�ed:

�K�1 =
�

K�1 K�1BTH�1

0 H�1

�
: (7)

It should be mentioned that the above symmetric
eigen-value problem (i.e., Eq. (4)) could have been
obtained by introducing additional variables and then,
using static condensation to eliminate those variables.
It is also very interesting to note that matrix M̂ can
be written in di�erent forms such as:

M̂ =
�

M 0
0 0

�
+
�

BT

GT

� �
H�1� � B G

�
; (8)

or alternatively as:

M̂ =
�

IT BT

0 GT

� �
M 0
0 H�1

� �
I 0
B G

�
; (9)

where I is an identity matrix. The latter form will be
quite useful.

2.1. The initial explanation
The method is described in its initial form in this
section for simpli�cation purposes. However, It will
be subsequently presented in an e�cient format, which
is referred to as pseudo symmetric technique.

Consider the asymmetric eigen-value problem
related to 
uid-structure interaction systems (i.e.,
Eq. (1)). The method commences by de�ning an
estimate of the right modal matrix, XR. Then, Eq. (10)
is used for matrix ~X:

�K ~X = �M XR: (10)

At this stage, a new smaller eigen-value problem should
be de�ned the matrices of which are obtained by pro-
jecting matrices �K; �M onto ~X. However, the resulting
eigen-problem will have asymmetric matrices. Thus,
a problem with smaller dimensions is alternatively
de�ned by projecting matrices K̂; X̂ onto ~X. This is
like the case that one is trying to solve the equivalent
symmetric eigen-value problem (4). Therefore, the
projected matrices will be as follows:

K� = ~XT K̂ ~X; (11a)

M� = ~XT M̂ ~X: (11b)

The modal matrix of this new system is denoted by Q
and its eigen-values are stored in a diagonal matrix ��.
Obviously, this will satisfy Eq. (12):

K�Q = M�Q ��: (12)

Subsequently, a better estimate of modal matrix, XR,
is obtained through the following relation:

XR = ~X Q: (13)
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This iterative process continues up to the point of
convergence. Finally, matrices ��; and XR will have
the smallest eigen-values of the original asymmetric
problem (1) and its corresponding right eigen-vectors.

2.2. Intermediate description
The explanation presented in the previous section is
not readily suitable for the pseudo symmetric approach.
Therefore, some of the relations should be expanded
and prepared for the �nal formulation.

Assume that matrix ~X is partitioned such that
the upper and lower parts correspond to solid and 
uid
degrees of freedom, respectively.

~X =
� ~X1

~X2

�
: (14)

Then, one can rewrite Eq. (11a) as follows:

K� = ~XT
1 K ~X1 + ~XT

2 G ~X2: (15)

Similarly, Eq. (11b) can be written in an expanded form
by employing Eq. (9):

M� =
� ~XT

1
~XT

2
� � IT BT

0 GT

� �
M 0
0 H�1

�
�

I 0
B G

� � ~X1
~X2

�
: (16)

Clearly, this can also be calculated as follows:

M� = YT Z; (17)

with the following de�nitions:

Y =
�

I 0
B G

� � ~X1
~X2

�
; (18)

Z =
�

M 0
0 H�1

�
Y: (19)

Let us now assume that matrix Y is partitioned simi-
larly to ~X. Thus, Eq. (18) is written in the following
form, which is more suitable from programming point
of view:�

Y1
Y2

�
=
� ~X1

0

�
+
�

0 0
B G

� � ~X1
~X2

�
: (20)

Moreover, to avoid a normally large matrix inversion
(i.e., H�1 calculation), Eq. (19) is also written as:

Z =
�

0
Z2

�
+
�

M 0
0 0

� � ~X1
~X2

�
; (21)

where Z2 is calculated by solving the following equation:�
0 0
0 H

� �
0
Z2

�
=
�

0
Y2

�
: (22)

Certainly, the upper part of this equation is trivial
and it has to be disregarded in the actual calculation
process.

2.3. Pseudo symmetric technique
The method is explained now in an e�cient form, which
is referred to as pseudo symmetric subspace iteration
approach. In this process, it is assumed that one is
working with ��K; and ��M matrices rather than �K; and
�M. The former matrices are symmetric forms of the
latter asymmetric matrices. These can be explicitly
de�ned as follows:

��K =
�

K �BT

�B H

�
; (23a)

��M =
�

M BT

B G

�
: (23b)

It should be mentioned that these matrices are assumed
to be stored in a symmetric upper skyline form and
one is working with those forms throughout the whole
actual calculation process. Nevertheless, equations are
still written such that the full matrices are employed.
This is done merely to write equations conveniently.
In the remaining part of this section, a special matrix
multiplication notation is used, which is de�ned in the
Appendix. There are 6 di�erent types of this matrix
multiplication. In each case, one or several parts of
the �rst matrix do not participate in the multiplication
process. Obviously, a programming subroutine can
easily be designed for each special type of matrix
multiplication. We can also take into account that the
�rst matrix is stored in a symmetric skyline form to
perform the operation more e�ciently. Having in mind
the above-mentioned notation, Eq. (10) can now be
readily written as:

��K
1� ~X = ��M

2� XR: (24)

The right-hand-side operation of Eq. (24) is easily
carried out by a special e�cient subroutine written for
that purpose, which takes into account the skyline form
of matrix ��M as mentioned above. Moreover, the actual
equation solving of Eq. (24) should be slightly modi�ed
due to the special matrix multiplication of type 1,
which is used on the left-hand side. This would a�ect
the reduction process and its corresponding operation
on the right-hand side in the Gaussian elimination
method.

When matrix ~X is calculated, one can obtain the
projected sti�ness matrix by an alternative form of
Eq. (15) by utilizing special matrix multiplication of
types 3 and 4 as follows:

K� = ~XT ( ��K
3� ~X + ��M

4� ~X ): (25)

The projected mass matrix is written as before (Eq. (17)):

M� = YT Z:
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However, matrices Y; and Z are now de�ned by a
variation of Eqs. (20) and (21) based on the special
multiplication notation:

Y =
� ~X1

0

�
+ ��M

6� ~X; (26)

Z =
�

0
Z2

�
+ ��M

3� ~X: (27)

Furthermore, matrix Z2 is obtained by the following
relation, which is equivalent to Eq. (22):

��K
4�
�

0
Z2

�
=
�

0
Y2

�
: (28)

It is worthwhile to mention that in solving Eq. (28),
reduction in merely the lower part of matrix ��K is
required. Note that the calculation has already been
performed by carrying out the reduction process for
solving Eq. (24). However, changes in the right-hand
side corresponding to the reduction should still be
made. Certainly, the upper part of the matrix is
not really used in the back-substitution phase due to
trivial nature of the upper part of Eq. (28), which is
more apparent in its equivalent form (i.e., Eq. (22)).
Thus, this step can also be carried out very e�ciently
while we have avoided any inverse matrix calculation
as mentioned before.

When projected sti�ness and mass matrices are
calculated, the remaining steps are as explained pre-
viously. That is, the eigen-problem with smaller
dimension is solved (i.e., Eq. (12)). Subsequently,
Eq. (13) is utilized to obtain a better estimate of modal
matrix, XR.

2.4. Left eigen-vectors
The pseudo symmetric technique was discussed in the
previous section for the calculation of right eigen-
vectors. To complete the solution, one will also need
to calculate the left eigen-vectors. A technique is
presented in this section for this purpose.

Based on Eq. (1), it is clear that the modal matrix
corresponding to the right eigen-vectors satis�es the
following equation:

�K XR = �M XR ��; (29)

where �� is the diagonal matrix which stores eigen-
values. Let us now multiply both sides of this relation
by transposing the modal matrix corresponding to the
left eigen-vectors, which yields:

(XL)T �K XR = (XL)T �M XR ��: (30)

Eq. (30) can also be written as:

K� = M� ��: (31)

Obviously, both matrices K�; and M� are diagonal
ones due to orthogonality condition of eigen-vectors.
On the other hand, modal matrix XR does also satisfy
the following equation based on Eq. (4):

K̂ XR = M̂ XR ��: (32)

However, modal matrix XR can also represent the left
modal matrix of K̂; and M̂. This is due to the fact
that they are symmetric matrices, as shown. Thus,
when Eq. (32) is multiplied by transpose of the right
modal matrix, we have:

(XR)T K̂ XR = (XR)T M̂ XR ��: (33)

This will also result in diagonal matrices on both sides
due to orthogonality relation of eigen-vectors. Eq. (33)
may also be written as Eq. (31) with the same K�,
and M�. Certainly, this requires proper scaling of left
eigen-vectors, which form the columns of the left modal
matrix, XL. Since both Eqs. (30) and (33) can lead to
Eq. (31), one can conclude the following equation:

(XL)T �M = (XR)T M̂: (34)

Or alternatively:

(XL)T = (XR)T D; (35)

with the following de�nition:

D = M̂ �M�1: (36)

By substituting Eq. (5) in Eq. (36), we have:

D = K̂ �K�1: (37)

Although a simple relation (i.e., Eq. (35)) is obtained
between left and right modal matrices, let us try to
simplify it even further. For this purpose, one can
expand the right-hand side of Eq. (37) by employing
Eqs. (3) and (7), which yields:

D =
�

I BTH�1

0 GTH�1

�
: (38)

It is easy to verify that the above relation can also be
written as:

D =
�

I BT

0 GT

� �
I 0
0 H�1

�
: (39)

Substituting Eq. (39) in Eq. (35) and transposing both
sides results in:

XL =
�

I 0
0 H�1

� �
I 0
B G

�
XR: (40)

The following relation can also be easily veri�ed
through Eq. (40) by partitioning both left and right
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modal matrices into two parts, which correspond to the
structure and 
uid degrees of freedom, respectively:

XL
1 = XR

1 : (41)

Moreover, Eq. (40) may be written as:

XL =
�

M�1M 0
0 H�1

� �
I 0
B G

�
XR; (42)

or alternatively as:

XL =
�

M�1 0
0 H�1

� �
M 0
B G

�
XR: (43)

By noting the de�nition of �M (i.e., Eq. (2b)), Eq. (43)
may be written as:

XL =
�

M�1 0
0 H�1

�
�M XR: (44)

Utilizing Eq. (29), the above relation may also be
expressed as:

XL =
�

M�1 0
0 H�1

�
�K XR ���1; (45)

or alternatively as:

XL =
�

M�1K �M�1BT

0 I

� "
XR

1
���1

XR
2

���1

#
: (46)

Having in mind the partitioned form of XL as men-
tioned above, Eq. (46) reveals the following:

XL
2 = XR

2
���1: (47)

Finally, a simple relation is obtained between the left
and right modal matrices through utilizing Eqs. (41)
and (47), which is written as:�

XL
1

XL
2

�
=
�

XR
1

XR
2

���1

�
: (48)

3. Numerical example

An idealized symmetric model of Morrow Point arch
dam-reservoir system is considered as an example,
which is explained in this section.

3.1. Details of the model
The geometry of the dam can be found in [17]. The dam
is discretized by 40 isoparametric 20-node solid �nite
elements, while impounded water domain is modeled
by 360 isoparametric 20-node 
uid �nite elements
(Figure 1). It should be mentioned that the length
of reservoir is taken as two times the dam height or
maximum water depth (i.e., L=H = 2:0). The length
of the reservoir is measured in stream direction at dam
mid-crest point.

The dam concrete is assumed to be homogeneous
with isotropic linearly elastic behavior and the follow-
ing main characteristics:

Figure 1. Discretization of dam-reservoir system.

- Elastic modulus (Ed) = 27.5 GPa;

- Poisson's ratio = 0.2;

- Unit weight = 24.8 kN/m3.

Also, the impounded water is taken as inviscid
and compressible 
uid with unit weight equal to
9.81 kN/m3 and pressure wave velocity C=1440 m/sec.

3.2. Results
The �rst 10 smallest eigen-values and right and left
eigen-vectors of the dam-reservoir system are calcu-
lated by the pseudo symmetric subspace iteration
method. These eigen-values and the corresponding
natural frequencies are presented in Table 1.

Moreover, the �rst 2 right eigen-vectors are de-
picted in Figures 2 and 3. It should be mentioned
that the part of eigen-vectors related to displacement
degrees of freedom is shown as the deformed shape
of dam body, while pressure degrees of freedom are
presented with contour values in the reservoir domain.
Furthermore, the y-displacement values (i.e., stream

Table 1. Eigen-values and natural frequencies of the
dam-reservoir system.

Mode number (i) �i (Rad2/Sec2) fi (Hz)

1 300.9 2.76094

2 337.0 2.92179

3 438.3 3.33198

4 622.2 3.96993

5 898.9 4.77185

6 1145.7 5.38715

7 1362.3 5.87431

8 1655.8 6.47635

9 1668.4 6.50078

10 2117.4 7.32348
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Figure 2. The �rst right mode shape of the dam-reservoir
system: (a) Dam body and (b) impounded water domain.

Figure 3. The second right mode shape of the
dam-reservoir system: (a) Dam body and (b) impounded
water domain.

direction component) are shown as contours on the
deformed shape of dam body in each case.

It is worthwhile to mention that the mode shapes
of the system considered are either exactly symmetric

or anti-symmetric. This is due to the fact that the
problem is completely symmetric. This can easily be
noticed in the �rst 2 mode shapes through the deformed
shapes, y-displacement, and pressure contour patterns
and values illustrated.

The left eigen-vectors are not shown here, since
they are exactly same as right eigen-vectors with the
exception that the pressure values are multiplied by a
scaled value (i.e., ��1

i ), as it was proven.
Additionally, the above example is also solved by

an unsymmetric eigen-solution routine to make sure
about the validity of the results presented. However,
the results for this case are not given here, since
they are exactly same as the above-mentioned results.
Certainly, this is expected due to the fact that the
�nite element mesh, material properties, and boundary
conditions are the same. In other words, matrices
of the eigen-value problem are identical and the only
di�erence is the method employed.

4. E�ciency of the method

It is also interesting to get a general feeling of the
e�ciency of the pseudo symmetric subspace iteration
method. For this purpose, the Morrow Point arch
dam-reservoir system is considered once again with the
material properties, basic assumptions, and dam body
discretization mentioned above. However, 6 di�erent
cases are de�ned in this section among which the only
di�erence is the length of the reservoir and the �nite
element mesh utilized in the 
uid domain. The third
case (i.e., L=H=2:0) is same as that discussed in the
previous section. The �rst 10 eigen-values and the
corresponding right and left eigen-vectors are obtained
in each case. The execution times for these cases are
compared in Table 2 along with the total number of
degrees of freedom employed in each case. It should
be mentioned that all these cases are executed on
a Pentium-4 personal computer with CPU speed of
2.8 GHz.

It is noteworthy that Pseudo symmetric sub-
space iteration method is extremely e�cient and the
execution time for the lower numbers of degrees of
freedom (e.g., less than 2000) is less than 10 seconds.
Although it increases for the higher numbers of degrees
of freedom, it is still less than 60 seconds for the largest
problem considered in this study (i.e., case 6 with
NDOF = 3775).

5. Concluding remarks

This study proposed an e�cient technique for calcu-
lation of coupled modes of 
uid-structure interaction
systems, which was referred to as pseudo symmetric
subspace iteration method.

Although it was developed for achieving a so-
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Table 2. Total execution time in seconds for di�erent cases.

Case L=H Number of
solid elem.

Number of

uid elem.

Total NDOF Execution time
(sec.)

1 0.2 40 80 1165 2.4

2 1.0 40 200 1600 5.3

3 2.0 40 360 2180 11.3

4 3.0 40 520 2760 27.3

5 4.0 40 680 3340 37.5

6 5.0 40 800 3775 53.2

lution to an unsymmetrical eigen-value problem of

uid-structure systems, the algorithm was presented
with symmetric operations mentality. Therefore, the
problem seemed to be symmetric and additional calcu-
lations were minimal.

Furthermore, it was proven that each left eigen-
vector was related to the corresponding right eigen-
vector through a simple relation. Therefore, the subse-
quent transient analysis could readily be performed.

Overall, it is believed that the method is very
e�cient and it is ideal to employ in general-purpose �-
nite element programs for solving the above-mentioned
eigen-problems.
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Appendix

The following special matrix multiplication notation
are de�ned which were used in Section 2.3 extensively.
There are six di�erent types of this matrix multi-
plication. In each case, one or several parts of the
�rst matrix are not participating in the multiplication
process as observed:�

A11 A12
A21 A22

�
1�
�

X1
X2

�
=
�

A11 A12
0 A22

��
X1
X2

�
;(A.1)�

A11 A12
A21 A22

�
2�
�

X1
X2

�
=
�

A11 0
A21 A22

��
X1
X2

�
;(A.2)�

A11 A12
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