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Abstract. An eigen fuzzy set of a fuzzy relation is often invariant under di�erent
computational aspects. The present research introduces a novel concept of eigen spherical
fuzzy set of spherical fuzzy relations along with various composition operators for the
�rst time. This study proposed two algorithms to determine the greatest eigen spherical
fuzzy sets and least eigen spherical fuzzy sets using the max � min and min � max
composition operators, respectively, and illustrated the steps through 
ow charts. Further,
two numerical examples related to di�erent �elds of decision-making problems were taken
into account for illustrating the proposed methodology. The scope of future work in the
�eld of image information retrieval, genetic algorithm for image reconstruction, and notion
of eigen spherical fuzzy soft sets/matrices was duly outlined. The comparative remarks
and advantages of the proposed eigen spherical fuzzy sets were also included for better
readability.

© 2021 Sharif University of Technology. All rights reserved.

1. Introduction

Researchers in the �eld of fuzzy sets and information
are well aware that various generalizations of the
notions of fuzzy sets [1] and Intuitionistic Fuzzy Sets
(IFS) [2] play roles in modeling the uncertainties and
hesitancy inherent in many practical circumstances
with a broader range of various applications, particu-
larly in the study of patterns and information systems.
Essentially, such generalizations provide a formal ap-
proach to dealing with real-life problems in which the
source of impreciseness is the lack of sharply de�ned
criteria of class membership instead of having random
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variables. Yager [3] revealed that the existing struc-
tures of fuzzy set and intuitionistic fuzzy set were not
capable enough to depict the human opinion in a more
practical/broader sense and, therefore, they introduced
the notion of Pythagorean Fuzzy Sets (PyFSs) which
e�ectively enlarged the span of information by in-
troducing the new conditional constraint. Various
other operations over inter-valued PyFSs were given by
Peng [4]. The concepts of membership/belongingness
(yes), non-membership/non-belongingness (no), and
indeterminacy/neutral (abstention) have been well de-
scribed by the de�nition of intuitionistic fuzzy sets
as well as by the PyFSs. Consider an example of a
voting system where voters can be categorized into four
di�erent classes: one who votes for (yes), one who votes
against (no), one who neither votes for nor against
(abstention), and one who refuses to vote (refusal).
It may be noted that the concept of `refusal' is not
being taken into account by any of the sets stated
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above. In order to deal with such circumstances and
develop a concept that would be su�ciently close to
human's nature of 
exibility, Cuong [5,6] introduced
the concept of Picture Fuzzy Set (PFS) in which all
the four parameters, i.e., degree of membership, degree
of indeterminacy (neutral), degree of nonmembership,
and the degree of refusal were taken into account.

Recently, Mahmood et al. [7] introduced the
notion of Spherical Fuzzy Set (SFS) and T-Spherical
Fuzzy Set (TSFS) that gave additional strength to the
idea of PFSs by broadening/enlarging the space for the
grades of all the four parameters. Next, Kifayat et
al. [8] studied the geometrical comparison of fuzzy sets,
intuitionistic fuzzy sets, PyFSs, and picture fuzzy sets
with spherical and TSFS. Also, they studied various
existing similarity measures for intuitionistic fuzzy sets
and found that PFSs had some limitations and could
not be applied to the broader setup of the spherical
fuzzy environment. Further, they proposed various
types of similarity measures for TSFS with their useful
applications in various �elds. The evolution process
of the generalizations and extensions of a fuzzy set is
summarized in Figure 1.

In the �eld of pure and applied sciences, the
mathematical notion of relation plays a key role in
establishing the connections between objects, states,
and events. Fuzzy relations are the generalizations
of the concept of binary relations. The notion of

fuzzy relation was �rst introduced by Zadeh [9] with
fuzzy equivalence (similarity) relation and provided
the concept of fuzzy ordering along with some basic
properties.

Sanchez [10,11] described the role of invariant
fuzzy sets linked with a given fuzzy relation using
the composition of fuzzy relations and introduced the
notion of eigen fuzzy set of a fuzzy relation. Further,
Sanchez used max - min composition to determine
the Greatest Eigen Fuzzy Set (GEFS) associated with
fuzzy relation by providing three major algorithms.
Several practical and successful applications of eigen
fuzzy sets in the �eld of image analysis (image re-
construction, image information retrieval, image de-
composition) [12{14], genetic algorithm [15], medicine
(drug e�ectiveness levels) [16], fuzzy Markov chain and
decision-making [17,18], etc.

To span the 
exibility of human opinions with
revised conditional constraints, we propose an ex-
tension as a new paradigm called Eigen Spherical
Fuzzy Sets (ESFS) of spherical fuzzy relations. For
application purposes, two new methods for determining
the Greatest Eigen Spherical Fuzzy Sets (GESFS) and
Least Eigen Spherical Fuzzy Sets (LESFS) by using
the max�min and min�max composition have been
proposed.

The rest of the paper is organized as follows: A
brief literature review related to the eigen fuzzy sets

Figure 1. Extensions and generalizations of fuzzy set.
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and their applications is presented in Section 2. Some
fundamental background and de�nitions are studied in
Section 3. The notion of spherical fuzzy relations and
functioning of their composition operators are intro-
duced in Section 4. In Section 5 shows the proposed
novel concept of ESFS of spherical fuzzy relation along
with the algorithms to determine the GESFS and
LESFS using the well-de�ned composition operators.
This has been well illustrated using examples. Section
6 presents the implementation of the proposed algo-
rithms by solving two examples related to decision-
making. In Section 7, some potential directions and
guidelines for future works in di�erent application �elds
are provided in brief. The comparative remarks and
the advantages of the proposed ESFS are discussed in
Section 8. Finally, the paper is concluded in Section 9.

2. Literature review

In literature, various researchers have studied fuzzy
relational calculus as an application of fuzzy relation
to obtain possible solutions to fuzzy relation equations
[19{21] and proposed the notion of eigen fuzzy set
being invariant in the associated fuzzy relation. Con-
sequently, the problem of �nding the GEFS associated
with a relation has been dealt. This has generated
a considerable amount of interest for researchers for
further investigations. Goetschel and Voxman [22]
extended the concept and results of eigen fuzzy set with
the eigen fuzzy numbers by making slight modi�cations
to the de�nition of fuzzy number given by Dubois
and Prade [23]. Fernandez et al. [24] generalized
the results of Sanchez [19] to determine the greatest
T -eigen fuzzy set of fuzzy relations and studied some
algebraic properties.

The applications of eigen fuzzy sets have success-
fully been carried out by researchers in the second
half of the 1970s which boosted the reader's interest
signi�cantly in this area. Amagaza and Tazaki and
Amagasa [25] studied heuristic structure synthesis us-
ing eigen fuzzy sets. Cao [26] presented an algorithm
for �nding eigen fuzzy sets of a fuzzy matrix. The
concept of general �nite state fuzzy Markov chains in
connection with the GEFS of the transition matrix
was introduced by Avrachenkov and Sanchez [17] and
was �nally linked to fuzzy Markov decision-making
processes.

Nobuhara and Hirota [14] studied the GEFS of
max � min composition and an adjoint concept of
GEFS, i.e., the smallest eigen fuzzy set of adjoint
max � min composition of a fuzzy relation using the
principal component analysis of images. Di Martino
et al. [13] introduced the Least Eigen Fuzzy Set
(LEFS) based on the min � max composition and
established that both GEFS and LEFS were useful in
image information retrieval. Further, they compared

the original image with retrieved images by introducing
a similarity measure based on GEFS and LEFS. Next,
Nobuhara et al. [12] proposed two algorithms for the
image reconstruction process based on the convex
combination of eigen fuzzy sets of max � min and
min�max compositions and using the eigen fuzzy sets
generated by a permutation matrix, where the images
are treated as fuzzy relations. Based on the eigen
fuzzy set of fuzzy relations, Di Martino and Sessa [15]
proposed a genetic algorithm for image reconstruction
in which GEFS and LEFS were used to calculate the
highest value of the �tness.

In pharmaceutical applications, the evaluation of
medicine action levels has been studied using the eigen
FS [27]. Further, establishing fuzzy relations between
the possible symptoms, Andersson [16] utilized the
greatest and LEFS to measure the drug e�ectiveness
levels.

3. Preliminaries

In this section, we recall and present some fundamental
concepts in connection with SFS and fuzzy relations,
which are well known in literature. The following
notions explain the generalization process from intu-
itionistic fuzzy sets to SFS:

Let U be the universe of discourse with �A :
U ! [0; 1] and �A : U ! [0; 1] being the degrees of
membership and non-membership, respectively. The
set A = f< x; �A(x); �A(x) >j x 2 Ug is called:

� Intuitionistic fuzzy set [2]. A in U if it satis�es
the condition 0 � �A(x)+�A(x) � 1 with the degree
of indeterminacy given by:

�I(x) = 1� �I(x)� �I(x):

� Pythagorean Fuzzy Set (PyFS) [3] or intu-
itionistic fuzzy set of the second type [28]. A
in U if it satis�es the condition 0 � �2

A(x)+�2
A(x) �

1 with the degree of indeterminacy given by �A(x) =p
1� �2

A(x)� �2
A(x):

In order to have further generalization, we con-
sider the universe of discourse U with �A : U ! [0; 1],
�A : U ! [0; 1], and �A : U ! [0; 1] being the degree
of membership, degree of neutral membership (absten-
tion), and degree of non-membership, respectively. The
set A = f< x; �A(x); �A(x); �A(x) >j x 2 Ug is called:

� Picture fuzzy set [5]. A in U if it satis�es the
condition �A(x)+�A(x)+�I(x) � 1 with the degree
of refusal given by:

rA(x) = 1� (�A(x) + �A(x) + �A(x)):

� SFS [7]. A in U if it satis�es the condition �2
A(x)+

�2
A(x) + �2

A(x) � 1 with the degree of refusal given
by:
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rA(x) = 1� (�A(x) + �A(x) + �A(x)):

Throughout this paper, SFS(U) denotes a set of all
the SFS on U .

De�nition 1 (fuzzy relation) [9]. A fuzzy relation
R on a fuzzy set X is a fuzzy subset of X �X, i.e.:

R = f(x1; x2); �R(x1; x2) j x1; x2 2 Xg;
such that 0 � �R + �R � 1 and �R; �R 2 [0; 1]: We
denote FR(X � X) as a collection of all the fuzzy
relations on X.

De�nition 2 (eigen fuzzy set) [10]. Let R be a fuzzy
relation on the elements of a FS X, i.e., R 2 FR(X �
X). Consider A � X. Then, A is said to be an eigen
FS associated with the relation R if A = fx; �A(x)g
satis�es the condition A ~ R = A with �A(x) 2 [0; 1],
where ~ is any composition operator.

4. Spherical fuzzy relation and composition
operators

In this section, we are proposing various composition
operators for spherical fuzzy relations. Here, we �rst
de�ne the spherical fuzzy relation [7] as follows.

A spherical fuzzy relation R between two SFS X
and Y is a spherical fuzzy subset of X � Y , given by:

R=f(x; y); �R(x; y); �R(x; y); �R(x; y) jx2X; y2Y g;
such that 0 � �2

R+�2
R+�2

R � 1 and �R; �R; �R 2 [0; 1]:
In this paper, SFR(X � Y ) denotes the set of all the
spherical fuzzy relations between X and Y .

Let R1 2 SFR(X � Y ) and R2 2 SFR(Y � Z)
be two spherical fuzzy relations. We de�ne various
composition operators for the spherical fuzzy relations
R1 and R2 as follows:

- Max-Min composition of spherical fuzzy re-
lations. The max � min composition relation of
R1 and R2, denoted by R1 � R2 2 SFR(X � Z), is
de�ned as:
R1 �R2 = f(x; z); �R1�R2(x; z); �R1�R2(x; z);

�R1�R2(x; z) j x 2 X; z 2 Zg;
where:
�R1�R2 = maxfmin(�R1(x; y); �R2(y; z))g;
�R1�R2 = minfmin(�R1(x; y); �R2(y; z))g;
�R1�R2 = minfmax(�R1(x; y); �R2(y; z))g:

- Min-Max composition of spherical fuzzy rela-
tions:
The min�max composition relation of R1 and R2,
denoted by R1 � R2 2 SFR(X � Z), is de�ned as
follows:

R1 �R2 = f(x; z); �R1�R2(x; z); �R1�R2(x; z);

�R1�R2(x; z) j x 2 X; z 2 Zg;
where:

�R1�R2 = minfmax(�R1(x; y); �R2(y; z))g;
�R1�R2 = minfmin(�R1(x; y); �R2(y; z))g;
�R1�R2 = maxfmin(�R1(x; y); �R2(y; z))g:

- Max-Min average composition of spherical
fuzzy relations. The max �min average compo-
sition relation of R1 and R2, denoted by R1�R2 2
SFR(X � Z), is de�ned as follows:

R1�R2 = f(x; z); �R1�R2(x; z); �R1�R2(x; z);

�R1�R2(x; z) j x 2 X; z 2 Zg;

�R1�R2 = max
�
�R1(x; y) + �R2(y; z)

2

�
;

�R1�R2 = min
�
�R1(x; y) + �R2(y; z)

2

�
;

�R1�R2 = min
�
�R1(x; y) + �R2(y; z)

2

�
:

- Min-Max average composition of spherical
fuzzy relations. The min �max average compo-
sition relation of R1 and R2, denoted by R1	R2 2
SFR(X � Z), is de�ned as follows:

R1	R2 = f(x; z); �R1	R2(x; z); �R1	R2(x; z);

�R1	R2(x; z) j x 2 X; z 2 Zg;

�R1	R2 = min
�
�R1(x; y) + �R2(y; z)

2

�
;

�R1	R2 = min
�
�R1(x; y) + �R2(y; z)

2

�
;

�R1	R2 = max
�
�R1(x; y) + �R2(y; z)

2

�
:

Remark: Klement et al. [29,30] studied some basic
triangular norm (t-norm) & triangular conorm (t-
conorm), their types, and various properties. Various
other operators may also be de�ned over spherical fuzzy
relations. In the present work, the combination of
maximum operator (t-conorm) and minimum operator
(t-norm) has been taken into account. Various other
combinations using other types of t-norm and t-conorm
may can also be utilized in future.
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5. ESFS and algorithms for GESFS and LESFS

This section introduces the notion of ESFS and
provides necessary steps of appropriate methods for
�nding the GESFS and the LESFS using numerical
examples.

Let R be a spherical fuzzy relation between two
SFS X and Y , i.e., R 2 SFR(X � Y ) and S 2
SFS(U) be SFS. The composition of R and S using
a composition operator would generate a new SFS, say
T 2 SFS(U), denoted by:

S ~R = T ; where � is any composition operator:

Consequently, we propose the de�nition of ESFS as
follows:

De�nition 3 (ESFS). Let R be a spherical fuzzy
relation on a spherical fuzzy set X 2 SFS(U), i.e.,
R 2 SFR(X � X). A SFS S 2 SFS(U) is said
to be an ESFS associated with the relation R if S =
fx; �S(x); �S(x); �S(x) j x 2 Xg satis�es the condition
S ~R = S with �S(x); �S(x); �S(x) 2 [0; 1]:

Further, the methods for �nding the GESFS and
the LESFS associated with the spherical fuzzy relation
R are outlined.

5.1. Algorithms for �nding GESFS
To obtain the GESFS associated with the spherical
fuzzy relation R, we apply the max�min composition
operator to spherical fuzzy relations.

Let S1 be the SFS, i.e., S1 2 SFS(U), in which
the membership value is the greatest of all the elements
of the column of relation R and the neutral membership
and the non-membership values are the smallest of all
the elements of the columns of R, i.e.,

�S1(x0) = max
x2X �R(x; x0); for all x0 2 Y;

�S1(x0) = min
x2X �R(x; x0); for all x0 2 Y;

�S1(x0) = min
x2X �R(x; x0); for all x0 2 Y: (1)

The process is initiated by taking S0 as a constant SFS
with a value equal to the minimum element of the set
S1. It is easy to verify that S0 is an ESFS, but not the
GESFS always. To overcome this di�culty, we de�ne
the following sequence of SFS Sn such that:

S1 �R = S2

S2 �R = S1 �R2 = S3

...
...

Sn �R = S1 �Rn = Sn+1

It may be observed that the obtained sequence Sn is

a decreasing sequence and bounded by S0 and S1, i.e.,
S0 � : : : � Sn+1 � Sn � : : : � S3 � S2 � S1. Next,
we present two fundamental algorithms along with a
numerical example to determine GESFS as follows:

Algorithm I (GESFS):

- Step 1. Find the set S1 from R as directed by
Eq. (1);

- Step 2. Set the index n = 1 and calculate Sn+1 =
Sn �R;

- Step 3. If Sn+1 6= Sn, then return to Step 2;
- Step 4. If Sn+1 = Sn, then Sn is the GESFS

associated with R.

The proposed algorithm is presented using the

ow chart given in Figure 2.

Example 1. Let X = fx1; x2; x3; x4g be a SFS and
R be the spherical fuzzy relation on X represented by
equation shown in Box I.

The computational steps to �nd the GESFS are
as follows:

- Step 1. The set S1 is given by:

S1 = [(0:9; 0:1; 0:1); (0:8; 0:1; 0:2);

(0:9; 0:1; 0:1); (0:8; 0:1; 0:1)]:

- Step 2. For n = 1, we have the relation shown in
Box II.

- Step 3. Since S2 6= S1, we set n = 2 in Step 2
and compose S2 with R to get S3; this is shown in
Box III.

Figure 2. Flow chart for Algorithm I (GESFS).
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x1 x2 x3 x4

R =

x1
x2
x3
x4

0BB@(0:7; 0:1; 0:2) (0:8; 0:1; 0:2) (0:5; 0:3; 0:4) (0:8; 0:1; 0:1)
(0:9; 0:1; 0:2) (0:5; 0:4; 0:2) (0:8; 0:2; 0:2) (0:6; 0:6; 0:1)
(0:5; 0:4; 0:3) (0:6; 0:2; 0:3) (0:9; 0:1; 0:3) (0:5; 0:4; 0:2)
(0:7; 0:5; 0:1) (0:4; 0:5; 0:2) (0:6; 0:4; 0:1) (0:2; 0:6; 0:4)

1CCA :

Box I

S2 = S1 �R
= [(0:9; 0:1; 0:1) (0:8; 0:1; 0:2) (0:9; 0:1; 0:1) (0:8; 0:1; 0:1)] �

�
(0:7; 0:1; 0:2) (0:8; 0:1; 0:2) (0:5; 0:3; 0:4) (0:8; 0:1; 0:1)
(0:9; 0:1; 0:2) (0:5; 0:4; 0:2) (0:8; 0:2; 0:2) (0:6; 0:6; 0:1)
(0:5; 0:4; 0:3) (0:6; 0:2; 0:3) (0:9; 0:1; 0:3) (0:5; 0:4; 0:2)
(0:7; 0:5; 0:1) (0:4; 0:5; 0:2) (0:6; 0:4; 0:1) (0:2; 0:6; 0:4)

�
i.e., S2 = [(0:8; 0:1; 0:1); (0:8; 0:1; 0:2); (0:9; 0:1; 0:1); (0:8; 0:1; 0:1)]:

Box II

- Step 4. Since S3 = S2, S2 is the GESFS associated
with R.

Algorithm II (GESFS):

- Step 1. Find the set S1 from R as directed by
Eq. (1),

- Step 2. Using the successive composition of R, say,
Rn+1 = R �R �R : : : �R| {z }

n+1

, compute Sn+1 from Rn+1

using Eq. (1),
- Step 3. If Sn+1 6= Sn, then return to Step 2,
- Step 4. If Sn+1 = Sn, then Sn is the GESFS

associated with the relation R.

We consider the same example, i.e., Example 1,
for the illustration of the computational steps of Algo-
rithm II as below:

- Step 1. Using Eq. (1), the set S1 is given by:

S1 = [(0:9; 0:1; 0:1); (0:8; 0:1; 0:2);

(0:9; 0:1; 0:1); (0:8; 0:1; 0:1)]

- Step 2. To �nd S2, we compose R with itself; the
relations are shown in Box IV. Therefore,

S2 = [(0:7; 0:1; 0:1); (0:8; 0:1; 0:2); (0:9; 0:1; 0:1);

(0:8; 0:1; 0:1)]:

S3 = S2 �R
= [(0:8; 0:1; 0:1) (0:8; 0:1; 0:1) (0:9; 0:1; 0:1) (0:8; 0:1; 0:1)] �

�
(0:7; 0:1; 0:2) (0:8; 0:1; 0:2) (0:5; 0:3; 0:4) (0:8; 0:1; 0:1)
(0:9; 0:1; 0:2) (0:5; 0:4; 0:2) (0:8; 0:2; 0:2) (0:6; 0:6; 0:1)
(0:5; 0:4; 0:3) (0:6; 0:2; 0:3) (0:9; 0:1; 0:3) (0:5; 0:4; 0:2)
(0:7; 0:5; 0:1) (0:4; 0:5; 0:2) (0:6; 0:4; 0:1) (0:2; 0:6; 0:4)

�
i.e., S3 = [(0:8; 0:1; 0:1); (0:8; 0:1; 0:2); (0:9; 0:1; 0:1); (0:8; 0:1; 0:1)]:

Box III

R2 = R �R

=
�

(0:7; 0:1; 0:2) (0:8; 0:1; 0:2) (0:5; 0:3; 0:4) (0:8; 0:1; 0:1)
(0:9; 0:1; 0:2) (0:5; 0:4; 0:2) (0:8; 0:2; 0:2) (0:6; 0:6; 0:1)
(0:5; 0:4; 0:3) (0:6; 0:2; 0:3) (0:9; 0:1; 0:3) (0:5; 0:4; 0:2)
(0:7; 0:5; 0:1) (0:4; 0:5; 0:2) (0:6; 0:4; 0:1) (0:2; 0:6; 0:4)

�
�
�

(0:7; 0:1; 0:2) (0:8; 0:1; 0:2) (0:5; 0:3; 0:4) (0:8; 0:1; 0:1)
(0:9; 0:1; 0:2) (0:5; 0:4; 0:2) (0:8; 0:2; 0:2) (0:6; 0:6; 0:1)
(0:5; 0:4; 0:3) (0:6; 0:2; 0:3) (0:9; 0:1; 0:3) (0:5; 0:4; 0:2)
(0:7; 0:5; 0:1) (0:4; 0:5; 0:2) (0:6; 0:4; 0:1) (0:2; 0:6; 0:4)

�
R2 =

"(0:8; 0:1; 0:1) (0:7; 0:1; 0:2) (0:8; 0:1; 0:1) (0:7; 0:1; 0:2)
(0:7; 0:1; 0:1) (0:8; 0:1; 0:2) (0:8; 0:1; 0:1) (0:8; 0:1; 0:2)
(0:6; 0:1; 0:2) (0:6; 0:1; 0:2) (0:9; 0:1; 0:2) (0:6; 0:1; 0:3)
(0:7; 0:1; 0:2) (0:7; 0:1; 0:2) (0:6; 0:1; 0:2) (0:7; 0:1; 0:1)

#
:

Box IV
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R3 = R2 �R
=
�

(0:8; 0:1; 0:1) (0:7; 0:1; 0:2) (0:8; 0:1; 0:1) (0:7; 0:1; 0:2)
(0:7; 0:1; 0:1) (0:8; 0:1; 0:2) (0:8; 0:1; 0:1) (0:8; 0:1; 0:2)
(0:6; 0:1; 0:2) (0:6; 0:1; 0:2) (0:9; 0:1; 0:2) (0:6; 0:1; 0:3)
(0:7; 0:1; 0:2) (0:7; 0:1; 0:2) (0:6; 0:1; 0:2) (0:7; 0:1; 0:1)

�
�
�

(0:7; 0:1; 0:2) (0:8; 0:1; 0:2) (0:5; 0:3; 0:4) (0:8; 0:1; 0:1)
(0:9; 0:1; 0:2) (0:5; 0:4; 0:2) (0:8; 0:2; 0:2) (0:6; 0:6; 0:1)
(0:5; 0:4; 0:3) (0:6; 0:2; 0:3) (0:9; 0:1; 0:3) (0:5; 0:4; 0:2)
(0:7; 0:5; 0:1) (0:4; 0:5; 0:2) (0:6; 0:4; 0:1) (0:2; 0:6; 0:4)

�
R3 =

"(0:7; 0:1; 0:2) (0:8; 0:1; 0:2) (0:8; 0:1; 0:2) (0:8; 0:1; 0:1)
(0:8; 0:1; 0:2) (0:7; 0:1; 0:2) (0:8; 0:1; 0:2) (0:7; 0:1; 0:1)
(0:6; 0:1; 0:2) (0:6; 0:1; 0:2) (0:9; 0:1; 0:2) (0:6; 0:1; 0:2)
(0:7; 0:1; 0:1) (0:7; 0:1; 0:2) (0:7; 0:1; 0:1) (0:7; 0:1; 0:2)

#
:

Box V

- Step 3. Since S2 6= S1, we �nd S3 by further
composing R2 with R; the relations are shown in
Box V. Therefore,

S3 = [(0:8; 0:1; 0:1); (0:8; 0:1; 0:2); (0:9; 0:1; 0:1);

(0:8; 0:1; 0:1)]:

- Step 4. Since S3 = S2, S2 is the GESFS associated
with R.

5.2. Algorithms for �nding LESFS
To obtain the LESFS associated with the spherical
fuzzy relation R, we apply the min�max composition
operator to spherical fuzzy relations.

Let S1 be the SFS, i.e., S1 2 SFS(U) in which
the membership and neutral membership values are the
smallest of all the elements of the column of relation
R and the non-membership value is the greatest of all
the elements of the columns of R, i.e.,

�S1(x0) = min
x2X �R(x; x0); for all x0 2 Y;

�S1(x0) = min
x2X �R(x; x0); for all x0 2 Y;

�S1(x0) = max
x2X �R(x; x0); for all x0 2 Y: (2)

Here, we initiate the process by taking S0 as a constant
SFS with a value equal to the minimum element of the
set S1. It is easy to verify that S0 is an ESFS, but
not the LESFS always. To overcome this di�culty, we
de�ne the following sequence of SFS Sn such that:

S1 �R = S2

S2 �R = S1 �R2 = S3

...
...

Sn �R = S1 �Rn = Sn+1

Next, we present two fundamental algorithms along
with a numerical example for the determination of the
LESFS as follows:

Algorithm I (LESFS):

- Step 1. Find the set S1 as directed by Eq. (2);

- Step 2. Set the index n = 1 and calculate Sn+1 =
Sn �R;

- Step 3. If Sn+1 6= Sn, then return to Step 2;

- Step 4. If Sn+1 = Sn, then Sn is the LESFS
associated with R.

We consider the same example again, i.e., Exam-
ple 1, for the illustration of the computational steps of
Algorithm I (LESFS) as follows:

- Step 1. The set S1 is given by:

S1 = [(0:5; 0:1; 0:3); (0:4; 0:1; 0:3);

(0:5; 0:1; 0:4); (0:2; 0:1; 0:4)]:

- Step 2. For n = 1, we have the equations shown in
Box VI.

S2 = S1 �R
= [(0:5; 0:1; 0:3); (0:4; 0:1; 0:3); (0:5; 0:1; 0:4); (0:2; 0:1; 0:4)] �

�
(0:7; 0:1; 0:2) (0:8; 0:1; 0:2) (0:5; 0:3; 0:4) (0:8; 0:1; 0:1)
(0:9; 0:1; 0:2) (0:5; 0:4; 0:2) (0:8; 0:2; 0:2) (0:6; 0:6; 0:1)
(0:5; 0:4; 0:3) (0:6; 0:2; 0:3) (0:9; 0:1; 0:3) (0:5; 0:4; 0:2)
(0:7; 0:5; 0:1) (0:4; 0:5; 0:2) (0:6; 0:4; 0:1) (0:2; 0:6; 0:4)

�
i.e., S2 =

�
(0:5; 0:1; 0:3); (0:4; 0:1; 0:3); (0:5; 0:1; 0:3); (0:2; 0:1; 0:4)

�
:

Box VI
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S3 = S2 �R

= [(0:5; 0:1; 0:3); (0:4; 0:1; 0:3); (0:5; 0:1; 0:3); (0:2; 0:1; 0:4)] �
�

(0:7; 0:1; 0:2) (0:8; 0:1; 0:2) (0:5; 0:3; 0:4) (0:8; 0:1; 0:1)
(0:9; 0:1; 0:2) (0:5; 0:4; 0:2) (0:8; 0:2; 0:2) (0:6; 0:6; 0:1)
(0:5; 0:4; 0:3) (0:6; 0:2; 0:3) (0:9; 0:1; 0:3) (0:5; 0:4; 0:2)
(0:7; 0:5; 0:1) (0:4; 0:5; 0:2) (0:6; 0:4; 0:1) (0:2; 0:6; 0:4)

�
i.e., S3 =

�
(0:5; 0:1; 0:3); (0:4; 0:1; 0:3); (0:5; 0:1; 0:3); (0:2; 0:1; 0:4)

�
:

Box VII

- Step 3. Since S2 6= S1, we set n = 2 in Step 2
and compose S2 with R to get S3; the relations are
shown in Box VII.

- Step 4. Since S3 = S2, S2 is the LESFS associated
with R.

Algorithm II (LESFS):

- Step 1. Find the set S1 from R as directed by
Eq. (2).

- Step 2. Using the successive composition of R, say,
Rn+1 = R �R �R : : : �R| {z }

n+1

, compute Sn+1 from Rn+1

using Eq. (2).

- Step 3. If Sn+1 6= Sn, then return to Step 2.

- Step 4. If Sn+1 = Sn, then Sn is the LESFS
associated with the relation R.

The proposed algorithm is presented using the

ow chart given in Figure 3.

We consider the same example, i.e., Example 1,
for the illustration of the computational steps of Algo-
rithm II (LESFS) as follows:

Figure 3. Flow chart for Algorithm II (LESFS).

- Step 1. Using Eq. (2), the set S1 is given by:

S1 = [(0:5; 0:1; 0:3); (0:4; 0:1; 0:3);

(0:5; 0:1; 0:4); (0:2; 0:1; 0:4)]:

- Step 2. To �nd S2, we compose R with itself; the
relations are shown in Box VIII. Therefore:

S2 = [(0:5; 0:1; 0:3); (0:4; 0:1; 0:3); (0:5; 0:1; 0:3);

(0:2; 0:1; 0:4)]:

- Step 3. Since S2 6= S1, we �nd S3 by further
composing R2 with R; the relations are shown in
Box IX. Therefore,

S3 = [(0:5; 0:1; 0:3); (0:4; 0:1; 0:3);

(0:5; 0:1; 0:3); (0:2; 0:1; 0:4)]:

- Step 4. Since S3 = S2, S2 is the LESFS associated
with R.

6. Multi-criteria decision-making using GESFS
and LESFS

In a decision-making problem, because of fuzziness in
human thinking, there is always a kind of complexity
and uncertainty which is inherent in the available
alternatives and laid down criteria. Therefore, it is
di�cult to evaluate the parameters of the decision
process with the desired preciseness. Therefore, the
problem of multicriteria decision-making has been
widely dealt with and utilized in various applications
[17,18,31{33]. On the basis of GESFS and LESFS, sim-
ilar applications in the above-stated �eld of decision-
making may also be studied. However, to illustrate
the proposed methodology, the following examples are
considered.

6.1. Example related to insurance company
We consider an insurance company where the
satisfaction/abstention/non-satisfaction levels of the
customers are taken into account for formulating the
multiple-criteria decision-making problem.
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R2 = R �R
=
�

(0:7; 0:1; 0:2) (0:8; 0:1; 0:2) (0:5; 0:3; 0:4) (0:8; 0:1; 0:1)
(0:9; 0:1; 0:2) (0:5; 0:4; 0:2) (0:8; 0:2; 0:2) (0:6; 0:6; 0:1)
(0:5; 0:4; 0:3) (0:6; 0:2; 0:3) (0:9; 0:1; 0:3) (0:5; 0:4; 0:2)
(0:7; 0:5; 0:1) (0:4; 0:5; 0:2) (0:6; 0:4; 0:1) (0:2; 0:6; 0:4)

�
�
�

(0:7; 0:1; 0:2) (0:8; 0:1; 0:2) (0:5; 0:3; 0:4) (0:8; 0:1; 0:1)
(0:9; 0:1; 0:2) (0:5; 0:4; 0:2) (0:8; 0:2; 0:2) (0:6; 0:6; 0:1)
(0:5; 0:4; 0:3) (0:6; 0:2; 0:3) (0:9; 0:1; 0:3) (0:5; 0:4; 0:2)
(0:7; 0:5; 0:1) (0:4; 0:5; 0:2) (0:6; 0:4; 0:1) (0:2; 0:6; 0:4)

�
R2 =

"(0:5; 0:1; 0:3) (0:6; 0:1; 0:3) (0:7; 0:1; 0:3) (0:5; 0:1; 0:2)
(0:7; 0:1; 0:2) (0:5; 0:1; 0:2) (0:6; 0:1; 0:2) (0:6; 0:1; 0:2)
(0:7; 0:1; 0:3) (0:5; 0:1; 0:3) (0:5; 0:1; 0:3) (0:5; 0:1; 0:2)
(0:6; 0:1; 0:2) (0:4; 0:1; 0:2) (0:6; 0:1; 0:2) (0:2; 0:1; 0:4)

#
:

Box VIII

R3 = R2 �R

=
�

(0:5; 0:1; 0:3) (0:6; 0:1; 0:3) (0:7; 0:1; 0:3) (0:5; 0:1; 0:2)
(0:7; 0:1; 0:2) (0:5; 0:1; 0:2) (0:6; 0:1; 0:2) (0:6; 0:1; 0:2)
(0:7; 0:1; 0:3) (0:5; 0:1; 0:3) (0:5; 0:1; 0:3) (0:5; 0:1; 0:2)
(0:6; 0:1; 0:2) (0:4; 0:1; 0:2) (0:6; 0:1; 0:2) (0:2; 0:1; 0:4)

�
�
�

(0:7; 0:1; 0:2) (0:8; 0:1; 0:2) (0:5; 0:3; 0:4) (0:8; 0:1; 0:1)
(0:9; 0:1; 0:2) (0:5; 0:4; 0:2) (0:8; 0:2; 0:2) (0:6; 0:6; 0:1)
(0:5; 0:4; 0:3) (0:6; 0:2; 0:3) (0:9; 0:1; 0:3) (0:5; 0:4; 0:2)
(0:7; 0:5; 0:1) (0:4; 0:5; 0:2) (0:6; 0:4; 0:1) (0:2; 0:6; 0:4)

�
R3 =

"(0:7; 0:1; 0:3) (0:5; 0:1; 0:3) (0:5; 0:1; 0:3) (0:5; 0:1; 0:2)
(0:6; 0:1; 0:2) (0:5; 0:1; 0:2) (0:6; 0:1; 0:2) (0:6; 0:1; 0:2)
(0:5; 0:1; 0:3) (0:5; 0:1; 0:3) (0:6; 0:1; 0:3) (0:5; 0:1; 0:2)
(0:6; 0:1; 0:2) (0:4; 0:1; 0:2) (0:6; 0:1; 0:2) (0:2; 0:1; 0:4)

#
:

Box IX

Example 2 Suppose that an insurance company
collects the information from 10 of its prime cus-
tomers/experts about the important features of the
company. Let the features be listed as:

� F1 : Customer friendly policies;
� F2 : Amplitude of �nancial bene�ts;
� F3 : Post insurance services.

We may �gure out the customer's feedback on
the basis of a survey. However, in order to illustrate
the proposed methodology, we assume a set of data
presented below without an exhaustive survey.

For evaluating some concluding remarks in view
of the insurance company, we assume each customer's
feedback as spherical fuzzy information in a relative
fashion among all the available/provided features and
tabulate them in Tables 1{3.

The estimation of the desired levels in the form
of the satisfaction/abstention/non-satisfaction levels is
possible by considering the spherical fuzzy relation.
Each pair of the relation R(Fj ;Fk) has the membership
value (satis�ed), the indeterminacy value (abstention),
and the non-membership value (not satis�ed) which
range from 0 to 1 as given below:
R(Fj ; Fk) =0BB@

p=m;q=nP
p=1;q=1

�pq

m
;

p=m;q=nP
p=1;q=1

�pq

m
;

p=m;q=nP
p=1;q=1

�pq

m

1CCA ;
(3)

Table 1. Relative feedback with F1 and F2.

Customers/experts F1 F2

E1 (0:5; 0:1; 0:6) (0:8; 0:3; 0:2)

E2 (0:6; 0:6; 0:1) (0:7; 0:6; 0:2)

E3 (0:7; 0:3; 0:2) (0:9; 0:2; 0:1)

E4 (0:8; 0:1; 0:2) (0:6; 0:6; 0:1)

E5 (0:4; 0:6; 0:1) (0:5; 0:4; 0:4)

E6 (0:3; 0:4; 0:4) (0:5; 0:5; 0:2)

E7 (0:2; 0:4; 0:6) (0:4; 0:2; 0:6)

E8 (0:8; 0:2; 0:1) (0:3; 0:2; 0:7)

E9 (0:3; 0:2; 0:7) (0:8; 0:3; 0:2)

E10 (0:9; 0:1; 0:2) (0:4; 0:4; 0:4)

Table 2. Relative feedback with F1 and F3.

Customers/experts F1 F3

E1 (0:7; 0:3; 0:2) (0:5; 0:5; 0:1)

E2 (0:4; 0:5; 0:4) (0:4; 0:2; 0:6)

E3 (0:6; 0:3; 0:2) (0:7; 0:3; 0:1)

E4 (0:8; 0:1; 0:2) (0:8; 0:4; 0:1)

E5 (0:4; 0:4; 0:3) (0:9; 0:1; 0:2)

E6 (0:9; 0:2; 0:1) (0:4; 0:2; 0:6)

E7 (0:6; 0:3; 0:2) (0:2; 0:1; 0:7)

E8 (0:7; 0:4; 0:1) (0:6; 0:2; 0:4)

E9 (0:4; 0:1; 0:6) (0:7; 0:1; 0:3)

E10 (0:7; 0:2; 0:2) (0:6; 0:3; 0:1)
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Table 3. Relative feedback with F2 and F3.

Customers/experts F2 F3

E1 (0:4; 0:5; 0:1) (0:9; 0:1; 0:2)

E2 (0:6; 0:2; 0:3) (0:8; 0:1; 0:1)

E3 (0:8; 0:1; 0:1) (0:7; 0:3; 0:1)

E4 (0:9; 0:1; 0:2) (0:6; 0:4; 0:1)

E5 (0:7; 0:4; 0:1) (0:5; 0:1; 0:5)

E6 (0:8; 0:1; 0:3) (0:4; 0:3; 0:1)

E7 (0:4; 0:4; 0:3) (0:6; 0:4; 0:1)

E8 (0:2; 0:7; 0:1) (0:4; 0:2; 0:4)

E9 (0:9; 0:1; 0:1) (0:5; 0:5; 0:2)

E10 (0:5; 0:1; 0:4) (0:6; 0:4; 0:2)

and:

R(Fi;Fi) =
R(Fi;Fj) +R(Fi;Fk)

2
; (4)

where j; k = 1; 2; : : : ; n:
Using Eq. (3) and Eq. (4), the membership,

indeterminacy, and non-membership values for the
di�erent pairs of features are computed as follows:

R(F1;F1) = (0:585; 0:29; 0:285);

R(F1;F2) = (0:55; 0:30; 0:32);

R(F1;F3) = (0:62; 0:28; 0:25);

R(F2;F1) = (0:59; 0:37; 0:31);

R(F2;F2) = (0:605; 0:32; 0:255);

R(F2;F3) = (0:62; 0:27; 0:20);

R(F3;F1) = (0:58; 0:24; 0:32);

R(F3;F2) = (0:60; 0:28; 0:20);

R(F3;F3) = (0:59; 0:26; 0:26):

Next, we construct the spherical fuzzy relation
R using the above-obtained inter-dependency of the
features as follows:

F1 F2 F3

R =
F1
F2
F3

0@R(F1;F1) R(F1;F2) R(F1;F3)
R(F2;F1) R(F2;F2) R(F2;F3)
R(F3;F1) R(F3;F2) R(F3;F3)

1A :

Setting all the values, we obtain the equation shown in
Box X.

Now, we use the �rst proposed algorithm for
�nding the GESFS, i.e., Algorithm I (GESFS), and get:

S1 = [(0:59; 0:24; 0:285); (0:605; 0:28; 0:2);

(0:62; 0:26; 0:2)]];

S2 = S1 �R = (0:59; 0:24; 0:285);

(0:605; 0:24; 0:2); (0:605; 0:24; 0:2)];

S3 = S2 �R = [(0:59; 0:24; 0:285);

(0:605; 0:24; 0:2); (0:605; 0:24; 0:2)]:

Since S2 = S3, we conclude that S2 is the GESFS.
Further, we use the �rst proposed algorithm for

�nding the LESFS, i.e., Algorithm I (LESFS), and get:

S1 = (0:58; 0:24; 0:32); (0:55; 0:28; 0:32);

(0:59; 0:26; 0:26)];

S2 = S1 �R = [(0:585; 0:24; 0:31);

(0:58; 0:24; 0:32); (0:59; 0:24; 0:26)];

S3 = S2 �R = [(0:585; 0:24; 0:31);

(0:585; 0:24; 0:31); (0:59; 0:24; 0:26)];

S4 = S3 �R = [(0:585; 0:24; 0:31);

(0:585; 0:24; 0:31); (0:59; 0:24; 0:26)]:

Since S3 = S4, we conclude that S3 is the LESFS.

Observations and results
On the basis of computations, we have found that the
GESFS and the LESFS are respectively given by:

F1 F2 F3

R =
F1
F2
F3

0@(0:585; 0:29; 0:285) (0:55; 0:30; 0:32) (0:62; 0:28; 0:25)
(0:59; 0:37; 0:31) (0:605; 0:32; 0:255) (0:62; 0:27; 0:20)
(0:58; 0:24; 0:32) (0:60; 0:28; 0:20) (0:59; 0:26; 0:26)

1A :

Box X
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GESFS = [(0:59; 0:24; 0:285); (0:605; 0:24; 0:2);

(0:605; 0:24; 0:2)];

and:

LESFS = [(0:585; 0:24; 0:31); (0:585; 0:24; 0:31);

(0:59; 0:24; 0:26)]:

The values obtained from these sets represent the
range of satisfaction/abstention/non-satisfaction levels
for the features under consideration for an insurance
company:

� Customers are satis�ed in the range of 58:5% to 59%,
abstain (24%), and unsatis�ed in the range of 28:5%
to 31% with respect to feature F1;

� Customers are satis�ed in the range of 58:5% to
60:5%, abstain (24%), and unsatis�ed in the range
of 20% to 31% with respect to feature F2;

� Customers are satis�ed in the range of 59% to 60:5%,
abstain (24%), and unsatis�ed in the range of 20%
to 26% with respect to feature F3.

It may be noted that the numerical values ob-
tained from the GESFS and LESFS are close to each
other. In fact, the illustration of the proposed algo-
rithms has been done through the particular example
(Example 2) which has a limited format and less
variability with respect to the dimensions and features
involved in it. If we will have a big data with higher
dimensionality of features, we may observe a signi�cant
variation in the values. However, the closeness in the
values is a sign of preciseness of the process of decision-
making.

6.2. Example related to E-learning websites
Recently, Garg et al. [34] proposed a decision support
system to educational organizations to develop and
access E-learning websites employing a hybrid multi-
attribute decision-making method for their evaluation
and ranking. Jain et al. [35] utilized the weighted
distance-based approximation for selection and ranking
of E-websites. Based on weighted Euclidean distance,
Garg [36] proposed a computational quantitative model
in order to evaluate, select, and rank E-learning web-
sites. Garg and Arora [37] evaluated fraud detection
model versus selection criteria as a Multi-Criteria
Decision-Making (MCDM) problem and obtained a
validated comprehensive ranking.

We consider three E-learning websites where
the satisfaction/abstention/non-satisfaction levels of
the users are taken into account for formulating the
decision-making problem. We assume each user's feed-
back as spherical fuzzy information and tabulate the
performance ratings of E-learning websites in Tables 4{
6.

Table 4. Relative feedback with W1 and W2.

Customers/experts W1 W2

U1 (0:7; 0:1; 0:6) (0:8; 0:2; 0:1)
U2 (0:8; 0:2; 0:1) (0:3; 0:2; 0:7)
U3 (0:7; 0:3; 0:2) (0:9; 0:2; 0:1)
U4 (0:9; 0:1; 0:2) (0:4; 0:2; 0:6)
U5 (0:4; 0:6; 0:1) (0:5; 0:4; 0:4)
U6 (0:6; 0:6; 0:1) (0:4; 0:6; 0:1)
U7 (0:7; 0:3; 0:2) (0:8; 0:3; 0:2)
U8 (0:6; 0:2; 0:5) (0:4; 0:5; 0:4)
U9 (0:2; 0:4; 0:6) (0:4; 0:2; 0:6)
U10 (0:9; 0:2; 0:3) (0:3; 0:2; 0:5)

Table 5. Relative feedback with W1 and W3.

Customers/experts W1 W3

U1 (0:6; 0:3; 0:2) (0:7; 0:3; 0:2)
U2 (0:7; 0:2; 0:3) (0:5; 0:5; 0:2)
U3 (0:9; 0:1; 0:1) (0:3; 0:6; 0:2)
U4 (0:6; 0:2; 0:3) (0:4; 0:3; 0:6)
U5 (0:4; 0:5; 0:4) (0:6; 0:2; 0:4)
U6 (0:7; 0:2; 0:2) (0:6; 0:3; 0:1)
U7 (0:9; 0:2; 0:1) (0:4; 0:2; 0:6)
U8 (0:4; 0:2; 0:5) (0:6; 0:3; 0:2)
U9 (0:8; 0:1; 0:2) (0:5; 0:2; 0:4)
U10 (0:2; 0:2; 0:6) (0:9; 0:1; 0:2)

Table 6. Relative feedback with W2 and W3.

Customers/experts W2 W3

U1 (0:9; 0:1; 0:2) (0:6; 0:2; 0:3)

U2 (0:8; 0:4; 0:1) (0:4; 0:5; 0:1)

U3 (0:8; 0:2; 0:3) (0:4; 0:3; 0:1)

U4 (0:2; 0:7; 0:1) (0:8; 0:2; 0:1)

U5 (0:5; 0:5; 0:2) (0:5; 0:4; 0:4)

U6 (0:6; 0:4; 0:2) (0:4; 0:4; 0:3)

U7 (0:2; 0:6; 0:5) (0:9; 0:2; 0:2)

U8 (0:8; 0:2; 0:1) (0:4; 0:5; 0:2)

U9 (0:5; 0:2; 0:4) (0:6; 0:4; 0:1)

U10 (0:9; 0:2; 0:1) (0:5; 0:5; 0:3)

Next, we construct the spherical fuzzy relation
R using the above obtained inter-dependency of the
features as follows:

W1 W2 W3

R =
W1
W2
W3

0@R(W1;W1) R(W1;W2) R(W1;W3)
R(W2;W1) R(W2;W2) R(W2;W3)
R(W3;W1) R(W3;W2) R(W3;W3)

1A :

Setting all the values, we obtain the equation
shown in Box XI.
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W1 W2 W3

R =
W1
W2
W3

0@(0:615; 0:255; 0:315) (0:63; 0:29; 0:33) (0:62; 0:24; 0:29)
(0:56; 0:30; 0:36) (0:59; 0:325; 0:29) (0:67; 0:35; 0:22)
(0:55; 0:30; 0:31) (0:26; 0:36; 0:21) (0:555; 0:33; 0:26)

1A :

Box XI

Next, on the basis of computations, we have found
that the GESFS and the LESFS are respectively given
by:

GESFS = [(0:615; 0:22; 0:31); (0:63; 0:24; 0:22);

(0:67; 0:24; 0:22)];

and:

LESFS = [(0:555; 0:22; 0:33); (0:56; 0:24; 0:33);

(0:555; 0:24; 0:29)]:

The values obtained in these sets represent the range
of satisfaction/abstention/non-satisfaction level among
the users for the websites under consideration:

� Users are satis�ed in the range of 55:5% to 61:5%,
abstain (22%), and unsatis�ed in the range of 31%
to 33% with respect to the features of website W1;

� Users are satis�ed in the range of 56% to 63%,
abstain (22%), and unsatis�ed in the range of 22%
to 33% with respect to the features of website W2;

� Users are satis�ed in the range of 55:5% to 67%,
abstain (24%), and unsatis�ed in the range of 22%
to 29% with respect to the features of website W3.

However, the closeness of the obtained values of the
range is not signi�cant as the data are hypothetical and
quite small in size; however, for a large sample data, the
values will certainly characterize the attainment level
clearly.

7. Scope for future work

7.1. Image information retrieval
In the �eld of fuzzy image information analysis, an
input original image is considered to be a fuzzy relation
by a process of image intensity normalization. We
may consider the idea of GESFS with respect to the
max�min composition operator and the LESFS with
respect to the min �max composition operator using
the spherical fuzzy relation for solving the problems
of retrieving the image information. A comparison
between the sample image and the retrieved images
can be done by using the similarity measure based on
the GESFS and LESFS as follows:

D(R1; R2) =
X
x2X

�
(S1(x)� S2(x))2 + (T1(x)

�T2(x))2
�
;

where Si &Ti 2 SFS(P ) are the GESFS and LESFS
of the relation Ri 2 SFR(P � P ); i = 1; 2 (P =
f1; 2; : : : ; 256g) with respect to the max � min and
min�max composition, respectively.

In literature, it may be noted that the existing
conventional algorithms for obtaining the GEFS/LEFS
are not capable enough to deal with the image retrieval
problems to achieve a solution signi�cantly of good
quality. It has also been observed that the use
of the eigen fuzzy sets enhances the quality of the
reconstructed image more often.

Using the convex combination of max � min
and min�max composition operators for eigen fuzzy
sets equations, various eigen fuzzy sets may be gener-
ated. Many eigen fuzzy set equations can be obtained
through the above-stated convex combination, i.e.,
by changing the value of � present in the convex
combination. The eigen fuzzy set equation is given by:

� � (S �R) + (1� �) � (S �R) = S;

where � can be chosen as per the best �t. The detailed
and comprehensive study of the image information
retrieval can be carried out by implementing the pro-
posed algorithms and technique along with the above-
outlined directions.

7.2. Genetic algorithm for image
reconstruction

Fuzzy relational calculus for image compression is a
natural tool for a genetic algorithm depending on
the eigen fuzzy sets for image reconstruction. By
normalizing the values of the pixels of any image (of
size m�m ) with respect to the length of the gray scale
used, it can be interpreted as a square fuzzy relation
R. Here, the interpretation will be a spherical fuzzy
relation. Implementing the genetic algorithm method
would lead to a prospective solution to a particular
problem on basic data structure problems, e.g., chro-
mosome in reference to the image by applying the
recombination operators to these structures. Genetic
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Table 7. Need to address the problem in Intuitionistic Fuzzy Sets (IFSs), Pythagorean Fuzzy Sets (PyFSs), and Picture
Fuzzy Sets (PFSs).

R C1 C2 C3 C4

C1 (1:0 + 0:0 + 0:0 = 1) (0:40 + 0:20 + 0:69 > 1) (0:36 + 0:19 + 0:79 > 1) (0:56 + 0:17 + 0:62 > 1)

C2 (0:68 + 0:20 + 0:44 > 1) (1:0 + 0:0 + 0:0 > 1) (0:40 + 0:24 + 0:56 > 1) (0:51 + 0:29 + 0:61 > 1)

C3 (0:76 + 0:20 + 0:42 > 1) (0:54 + 0:24 + 0:42 > 1) (1:0 + 0:0 + 0:0 > 1) (0:48 + 0:14 + 0:77 > 1)

C4 (0:49 + 0:17 + 0:68 > 1) (0:59 + 0:29 + 0:53 > 1) (0:77 + 0:17 + 0:38 > 1) (1:0 + 0:0 + 0:0 > 1)

algorithms have been frequently seen as optimization
functions. However, the range of the problems to
which the genetic algorithms have been applied is
broad. The genetic algorithm approach may also be
used in reconstructing an image by using its GESFS
and LESFS of the spherical fuzzy relation in the �tness
function of a chromosome. The value of the �tness
function is given by:

F (R;Rk) =
1

MSEGESFS$LESFS(R;Rk)
;

where k = 1; 2; : : : ; N and the mean squared error is
given by:

MSEGESFS$LESFS(R;Rk) =

1
256

X
x2X

�
(S(x)� Sk(x))2 + (T (x)� Tk(x))2� ;

where S and T 2 SFS(P ) are the GESFS and LESFS
of the spherical fuzzy relation R, respectively, obtained
by normalizing the pixels of the input original image
(P = f1; 2; : : : ; 256g).

In particular, we denote Sk and Tk 2 SFS(P ) as
the GESFS and LESFS, of the spherical fuzzy relation
Rk, respectively, obtained by normalizing the pixels of
the kth image-chromosome of the population (N).

7.3. Notion of eigen spherical fuzzy soft
sets/soft matrices

In literature, a variety of extensions of soft sets [38]
to imprecise and incomplete information have been
proposed. In view of the generalizations and extensions
of fuzzy sets shown by Figure 1 in the introduction
section, we may further propose extending the notion
of ESFS to another new concept of ESFS and eigen
spherical complex fuzzy soft set (refer to [39{41]).
Naim and Serdar [42] introduced the concept of soft
matrices from the soft sets and on similar lines, one
can study eigen spherical fuzzy soft matrices and the
corresponding various properties in future. Since there
is a type of parametrization tool involved in the soft
sets and, consequently, in soft matrices, various related
applications, e.g., stock management [43], valuation
of assets [44], medical diagnosis [45], MCDM [46{49],
and dimensionality reduction [50] have been studied

recently. Hence, introducing the concept of eigen
spherical fuzzy soft sets/soft matrices can lead to a
new dimension in the extension of soft set theory and
related applications.

8. Comparative remarks and advantages of
ESFSs

The proposed notion of ESFS is a novel concept and
an advanced extension of the classical fuzzy set. The
ESFS have an added advantage to deal with a wider
sense of applicability in uncertain situations. In detail,
some important comparative remarks and advantages
of utilizing ESFS are listed below:

� The existing, IFS, and PFSs are subject to some
limitations which make them unable to capture the
full information speci�cation, i.e., there is a missing
additional component of degree of refusal which is
addressed by the SFS;

� When uncertain or imprecise information takes the
form of a fuzzy relation then to ensure a kind of
invariability in the relation after subsequent transi-
tions, we utilize the concept of eigen fuzzy sets in
natural sciences for therapeutic recommendations;

� The drawback in the existing literature of the
eigen fuzzy sets is that the condition does not
allow the experts/decision-makers to allocate the
membership values of their own choice (refer to
Table 7). Somehow, this makes decision-makers
bounded for providing their input in a particular
domain. However, the proposed ESFS provide a
generalization feature, which makes a strong impact;

� The discussion over implementing the ESFS and the
methodology proposed for insurance problem and E-
learning websites problem in Section 6 shows that
the proposed work handles the generalized frame-
work e�ective and consistently. In other words,
GESFSs and LESFSs of the spherical fuzzy relations
have been employed to approximate the optimal
level.

9. Conclusions

This study successfully introduced the concept of
spherical fuzzy relation and various composition opera-
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tors (max�min, min�max, max�min average, and
min�max average) based on the combination of trian-
gular norm and conorm. Further, the formal de�nition
of an eigen spherical fuzzy set of spherical fuzzy relation
was provided followed by two respective algorithms to
determine the greatest eigen spherical fuzzy sets and
least eigen spherical fuzzy sets using the max � min
andmin�max composition operators. Some numerical
examples were also included to illustrate the proposed
algorithms. Utilization of the greatest eigen spherical
fuzzy sets and least eigen spherical fuzzy sets in the
�eld of decision-making problem was also successfully
presented. The proposed algorithms could also be
applied to a dataset with more variability as well.
The directions for future work in the �eld of image
information retrieval as well as genetic algorithm for
image reconstruction and outlines to introduce the
notion of eigen spherical fuzzy soft sets/soft matrices
were brie
y stated for further research.
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