

Sharif University of Technology

Scientia Iranica Transactions B: Mechanical Engineering http://scientiairanica.sharif.edu

Evaluation of vehicle braking parameters by multiple regression method

A. Demir^{a,*} and A. $\ddot{O}z^{b}$

a. Department of Automotive, Faculty of Technology, Marmara University, Goztepe Campus, Istanbul, Turkey.
b. Department of Motor Vehicles and Transportation Technologies, TBMYO, Mehmet Akif Ersoy University, Burdur, Turkey.

Received 16 August 2018; received in revised form 6 May 2019; accepted 26 June 2019

KEYWORDS

Braking parameters; Braking performance; Friction coefficient; Brake disc-pad pair; Multiple regression method. Abstract. This study uses two pairs of OEM brake disc-pads. One of these discs belongs to a passenger car and the other one to a light commercial vehicle. The disc-pad pair of the passenger car is subject to the global brake effectiveness test by a full-scale inertia dynamometer according to SAE J2522 test standard; the other one is subject to the tests by a full-scale inertia dynamometer according to Fiat 7-H4020 and 7-H2000 standards. During these tests, 13 variables for the passenger car disc-pad pair and 11 variables for light commercial vehicle disc-pad pair were measured and recorded. The interrelation of the parameters was analyzed by the multiple regression method, and importance levels were determined. In this study, dependent variables in the multiple regression method including braking time, friction coefficient, disc final temperature, brake speed, and brake pressure were selected for each braking pair. In multiple regression analysis concerning the passenger car, for each unit of increase in deceleration and friction coefficient, braking time decreases with 7.3 and 60.9 units, respectively. Moreover, for each unit of increase in brake pressure and friction coefficient for the light commercial vehicle, braking time increases with 1.267 and 91.887 units, respectively.

© 2019 Sharif University of Technology. All rights reserved.

1. Introduction

A braking system is one of the most important safety systems of a vehicle [1]. It enables controlled dissipation of energy to slow down, stop, or control the speed of a vehicle [2-4]. The kinetic energy of the vehicle is converted into mechanical energy, while braking leads to heat dissipation and temperature rise of the disc and pads pairs [1]. Friction disc brakes are commonly used in vehicles as wheel brakes. With braking, the temperature of disc-pad interface and a change in speed have

*. Corresponding author. Tel.: +90 216 336 57 70 / 1366; Fax: +90 216 337 89 87 E-mail address: ademir@marmara.edu.tr (A. Demir) effect on friction coefficient (μ). μ drops with increasing temperature and sliding speed; therefore, brake fade (brake fading) and speed fade take place [2]. Brake fade is an occurrence that takes place in every vehicle with a friction brake system when μ significantly drops based on the temperature [3,5,6]. High temperature values during braking cause brake fade, premature wear, brake fluid vaporization, bearing failure, thermal cracking, and thermally-excited vibrations [7]. Ideal brake pads must ensure uniform and stable friction in every working condition without developing brake fade at any temperature. Brake friction materials comprise more than 10 ingredients required to achieve the desirable braking performance including stable friction coefficients, low wear, and low noise generation in a wide range of braking conditions [8]. They are classified as organic, semi-metallic, metallic, synthetic,

and ceramic [9]. In another study, they were classified into semi-metallic, low-steel low-metallic, no-steel lowmetallic (also known as non-asbestos organic-NAO), and European metallic depending on ferrous and nonferrous metal content [10]. It was shown that μ value for braking ranged 0.30-0.35 for automobiles [6], 0.45 for automobiles, over 0.50 for sports cars, and around 0.35 for rail vehicles [11]. Another study detected that a couple of ventilated discs based on gray cast iron and semi-metallic pad had μ values of 0.246 and 0.412 between the temperatures of 98°C and 632°C [3].

Braking performance can be defined as the ability of a vehicle to stop as soon as possible while maintaining its driving stability [12]. It is basically evaluated according to braking distance, braking torque, or braking efficiency (Carlos & Ferro, 2005). For this purpose, dynamometers are frequently used. Performance, durability, and noise tests are the most common tests for dynamometers. Most of the inertia dynamometer procedures (SAE, JASO, ISO, AK, FMVSS, and JIS) used by OEMs, pad suppliers, and component manufacturers are carried out with singleended dynamometers [13].

Deterministic mathematical models that are devoted to analyzing braking parameters of vehicles are frequently used [14]. However, the values of deceleration and braking distance parameters are random values in practice. A number of studies have investigated the results of the evaluation of vehicle braking parameters, which are considered as random values with known possibility properties [15].

Tribological conditions of the braking components during operation have a dominant effect on brake Tribological analysis is one of the most fade [6]. important mechanical fields in the industry. The tribological properties of two contact surfaces of engines and machines generally depend on factors such as load, speed, temperature, sliding time, lubricant, and additive formulation [16]. Individual mechanisms of friction are dependent upon temperature, normal load, and sliding velocity; thus, it seems reasonable to assume that μ is dependent upon these parameters [17]. In many studies [17-21], μ is found to be dependent on temperature. In many studies [17,21-24], μ is found to be dependent on *braking force and velocity*. In most of these studies, μ shows a decreasing trend with increasing velocity, while it shows a mixed trend with the increasing load [25].

During the last decades, ever more sophisticated models have been developed. The techniques in the literature include static and dynamic models, neural networks, and state observers. The most commonly used model is the static model [26]. An *analytical* formulation considering only the friction dependence on the speed was proposed [27]. A very simple analytical formulation based on steady-state experimental tests that correlate pressure, speed, and temperature dependences to friction and wear was assessed [28]. An alternative formulation was put forth that, in addition to the sliding speed, involved thermal effects due to an increase in the temperature of the friction materials [29].

In this study, two pairs of an original brake disc-pad are used. One of these discs belongs to a Passenger Car (PC), and the other one belongs to a Light Commercial Vehicle (LCV). The PC disc-pad pair is subject to the global brake effectiveness test by a full-scale inertia dynamometer according to SAE J2522 test standard; the other one is subject to the tests by the full-scale inertia dynamometer according to FIAT 7-H4020 and 7-H2000 standards. For the PC disc-pad pair tests, 276 braking tests from 21 different categories were performed including features such as green effectiveness, speed sensitivity, fade resistance, friction recovery, and friction stability; for the LCV disc-pad pair tests, a total of 130 braking tests were performed in 2 different categories including burnish and hot judder I-II procedures. During these tests, braking parameters such as the number of brakes performed, cycle time, brake speed, release speed, braking duration, deceleration, braking torque (min, avg, max), pad actuator pressure (min, avg, max), friction coefficient (min, avg, max), and initial and final temperatures (disc, inner and outer pads) were measured and recorded. Bv using all the data collected from these tests, braking parameters were evaluated according to a multiple regression method. This study is divided into four parts. The first section includes an introduction and a short literature abstract. The second section includes the selection of the discs, braking test unit, test standards, multiple regression model, and dependent and independent variables examined by the model. The third section includes the equations of dependent braking parameters estimated according to multiple regression method such as braking time, friction coefficient, disc final temperature, brake speed, and braking pressure. Conclusions are presented in the final section.

2. Materials and method

2.1. Selection of the discs

In this study, two pairs of front ventilated disc-pad pairs are used. Basic characteristics and material components of the disc-pad pairs are shown in Table 1.

2.2. Testing standard and brake test mechanism

SAE-recommended practice defines an inertiadynamometer test procedure to assess the effective behavior of friction material with respect to pressure, temperature, and speed for motor vehicles fitting with hydraulic brake actuation [30,31]. The efficiency

	P	C	LCV			
	Disc	Pad	\mathbf{Disc}	\mathbf{Pad}		
Thickness (mm)	22	12	21.805	17.663		
Disc diameter (mm)	255	-	257	-		
$\mathbf{Mass}~(\mathbf{g})$	5,004	292.2	5,328.73	335.43		
Disc and pad materials	3.58C2.28Si0.572Mn 0.02P	PN529H-FF NAC	83.2Fe4.9Si0.4Mn2. 8P0.9S0.2Cr1.8Al2. 4Cu2.5Zn0.1Sn0.2Zr	11.6Fe4Si2.7P2S11Cr 31.3Ni6Sn7.3Zr0.3Bi 8.9W13.8Hf0.6Ti		
			0			

Table 1. Properties of the disc and pad.

of brake systems is measured by braking distance depending on vehicle speed or deceleration and running-up time. This efficiency can be determined by various experiments. Certain parameters are required for brake disc characteristics. SAE J2522 is a universal effectiveness test that is useful only when target friction levels in specific sections or a baseline material is available for comparison. The SAE J2522 has become the baseline for several test versions with cold temperature, wet effectiveness, parking brake evaluation, and ramp applications. It is a useful friction behavior evaluation regarding green effectiveness, speed sensitivity, fade resistance, friction recovery, and friction stability [30]. PC disc-pad pair is subject to the J2522 global brake effectiveness test of SAE with a full-scale inertia dynamometer (Table 2). In tests, such parameters as braking number, cycle time, brake speed, release speed, stop time, deceleration, braking torque, pad actuator pressure, coefficient of friction, rotor, and input/output temperature were saved for 276-braking. While the total test time of disc was 41,400 s (11.5 h), averagely, 1,770 seconds (~ 0.5 h) of this time was determined as the effective braking time. The test of the LCV disc-pad pair was carried out by a full-scale inertia dynamometer according to FIAT 7-H4020 and/or 7H2000 standard, as shown in Table 3. The braking tests were performed using an inertia dynamometer with a maximum resolution rate of 2400 rpm, a maximum moment of 166 kgm^2 , a maximum power rate of 140 kW, and a maximum torque rate of 5000 Nm. The temperature of the rubbing interface was measured using K-type thermocouple on the disc surface. The inertia dynamometers used in the tests are shown in Appendix – Figure A.1; their technical specifications and measurement parameters are provided in Tables A.1 and A.2.

2.3. Regression analysis

Detecting if there is a relation between two variables and, if so, determining the degree of this relation is a common problem in statistical analysis. Regression is the first technique that comes to mind when analyzing the relation between variables. Regression analysis is to explain the relations between a dependent variable and an independent variable (simple regression) or more than one independent variable (multiple regression) by a mathematical equation. In regression analysis, the relationship between independent variables X_i and dependent variables Y_i is expressed as a mathematical function. For example, if a linear relationship such as $Y_i = +X_i + \varepsilon_i \ (i = 1, 2, 3, ..., n)$ is foreseen between Y and X, the first step is to predict the unknown parameters of the model. When the unknown parameters of the model are predicted, to predict the value of the dependent variable for different values of the independent variables is another objective of regression analysis. In the multiple linear regression model, $Y_i =$ $\beta_0 + \beta_1 X_{i1} + \beta_2 X_{i2} + \dots + \beta_p X_{ip} + \varepsilon_i \ (i = 1, 2, \dots, n)$ can be written for p number of explanatory variables and n number of observations [33,34]. In order to make reliable parameter predictions for the regression model that will be obtained after the results of both simple and multiple linear regression analysis, some of the assumptions about the model must be ensured.

Dependent and Independent Variables (DV and IV) in multiple regression method

In this study, braking time, friction coefficient, disc final temperature, brake speed, and brake pressure for each braking pair are examined with the multiple regression method. In the analysis of PC disc-pad pair, 13 variables are used as friction coefficient (μ_{avg}) ,

	-	-		
Section	Number of stops/snubs	Braking release speed (km/h)	Control	Initial brake temperatures (°C)
Green effectiveness	30	80-30	30 bar	100
Burnish (or bedding)	64	80-30	various pressures	100
Characteristic check I	6	80-30	30 bar	100
Speed/pressure sensitivity I	8	40-<5	$10, 20, \dots 80$ bar	100
Speed/pressure sensitivity II	8	80-40	$10, 20, \dots 80$ bar	100
Speed/pressure sensitivity III	8	120-80	$10, 20, \dots 80$ bar	100
Speed/pressure sensitivity IV	8	160-130	$10, 20, \dots 80$ bar	100
Speed/pressure sensitivity V	8	200-170	$10, 20, \dots 80$ bar	100
Characteristic check II	6	80-30	$30 \mathrm{bar}$	100
Cold braking check	1	40-<5	30 bar	40
Motorway braking check I	1	100-5	0.6 g	50
Motorway braking check II	1	180-100	0.6 g	50
Characteristic check III	18	80-30	30 bar	100
1st fade (maximum 160 bar)	15	100-<5	0.4 g	100-500
Recovery	18	80-30	$30 \mathrm{bar}$	100
Pressure sensitivity $(100^{\circ}C)$	8	80-30	$10, 20, \dots 80$ bar	100
Increasing temperature sensitivity (500 $^{\circ}$ C)	9	80-30	30 bar	$100, 150, \dots 500$
Pressure sensitivity $(500^{\circ}C)$	8	80-30	$10, 20, \dots 80$ bar	500
Characteristic check IV	18	80-30	30 bar	100
2nd fade (maximum 160 bar)	15	100-<5	0.4 g	100-500
Characteristic check V	18	80-30	30 bar	100

Table 2. SAE J2522 dynamometer global brake effectiveness [30].

Table 3. Test parameters of a light commercial vehicle disc-pad pair [32].

Section	Number of	Initial speed	Release speed	Initial brake	Deceleration
Section	brakes	$({ m km/h})$	$({\rm km/h})$	temperatures ($^{\circ}C$)	(m/s^2)
Burnish	100	80	0	100	_
Hot Judder-I	15	152	0	100	1, 2, and 3
Hot Judder-II	15	152	0	300	1, 2, and 3

braking time (t), braking torque (M_{avg}) , brake pressure (p_{avg}) , brake speed (ν_{BS}) , brake release speeds (ν_{BR}) , deceleration (a), disc initial and final temperatures $(T_{DI} \text{ and } T_{DF})$, inpad initial and final temperatures $(T_{OPI} \text{ and } T_{OPF})$; for LCV disc-pad pair, 11 variables are used as friction coefficients (μ_{avg}) , braking time (t), braking torque (M_{avg}) , brake pressure (p_{avg}) , brake speed (ν_{BS}) , brake release speeds (ν_{BR}) , deceleration (a), inertia (I), fluid absorption (FB), and disc initial and final temperatures $(T_{DI} \text{ and } T_{DF})$. Dependent

variables in the multiple regression method such as braking time, friction coefficient, disc final temperature, brake speed, and brake pressure are selected for each braking pair. The reasons for choosing dependent variables are given in Table 4.

3. Results and discussion

In this study, two pairs of OEM disc-pad were used. The PC disc-pad pair was subjected to the global brake effectiveness test by a full-scale inertia dynamometer

DV	Reasons
Braking time	It is a key indicator of braking performance.
Friction coefficient	Many studies in the literature are based on friction coefficient. The friction coefficient directly affects both the stopping distance and the temperature of the brake elements.
Disc final temperature	It is a factor that can directly affect braking performance.
Brake speed	It is one of the basic parameters affecting friction coefficient.
Brake pressure [*]	It has been considered as a braking parameter in some studies.

Table 4. Dependent variables and reasons for selection.

*Braking force has been considered in some studies/papers.

			Table o(a	J. Summary of multiple regression analysis for 1 C.	
DV	0	R square	IV (p<0.05)	$ ext{Equation}(s)$	The highest effect
Braking time	276	0.917	10	$\begin{split} t &= 29.16 + 0.59 v_{BS} - 0.06 v_{BR} - 7.307a + 0.057 M_{avg} - 0.454 p_{avg} \\ &- 60.868 \mu + 0.012 T_{DI} - 0.012 T_{DF} - 0.182 T_{OPI} + 0.181 T_{OPF} \end{split}$	$\mu(\downarrow), a(\downarrow)$
Friction coefficient	276	0.962	11	$\begin{split} \mu &= 0.338 + 0.0004 v_{BS} + 0.0003 v_{BS} - 0.004t + 0.0005 M_{avg} \\ &- 0.008 p_{avg} + 0.0004 T_{DI} - 0.0001 T_{DF} - 0.0009 T_{IPI} + 0.0004 T_{IPF} \\ &+ 0.001 T_{OPI} + 0.0009 T_{OPF} \end{split}$	$p_{avg}(\downarrow),t(\downarrow)$
Disc final temperature	276	0.990	11	$\begin{split} T_{DF} &= 149.972 + 1.549 v_{BS} - 0.602 v_{BR} - 4.105t + 0.260 M_{avg} \\ &- 4.011 p_{avg} - 514.2 \mu + 0.935 T_{DI} \\ &+ 4.699 T_{IPI} - 3.776 T_{IPF} - 7.038 T_{OPI} + 6.09 T_{OPF} \end{split}$	$\mu(\downarrow), T_{OPI}(\downarrow)$
Brake speed	276	0.973	11	$\begin{split} v_{BS} &= -78.11 + 0.730 v_{BR} + 2.199 t + 35.01 a - 0.264 M_{avg} + 1.914 p_{avg} \\ &+ 225.76 \mu - 0.255 T_{DI} + 0.167 T_{DF} - 1.724 T_{IPI} \\ &+ 1.275 T_{IPF} + 0.473 T_{OPI} \end{split}$	$\mu(\uparrow), a(\uparrow)$
Brake pressure	276	0.997	9	$p_{avg} = 38.016 + 0.0517v_{BS} - 0.034v_{BR} - 0.452t + 0.062M_{avg}$ $-112.26\mu + 0.034T_{DI} - 0.0117T_{DF} + 0.102T_{OPI} - 0.081T_{OPF}$	$\mu(\downarrow), t(\downarrow)$

Table 5((a).	Summary	of	multiple	regression	analysis f	for	PC.

|--|

D	V	0	R square	IV (p<0.05)	Equation(s)	The highest effect
Brakin	g time	130	0.964	8	$\begin{split} t &= -32.688 + 0.395I + 0.107 v_{BS} + 1.267 p_{avg} \\ &- 0.148 M_{avg} + 0.204a + 0.003 FA + 91.887 \mu - 0.012 T_{DI} \end{split}$	$\mu(\uparrow), p_{avg}(\uparrow)$
Friction o	oefficient	130	0.984	8	$ \mu = 0.289 - 0.00099I + 0.0044t + 0.0012 M_{avg} - 0.016 p_{avg} - 0.0011a - 0.00001 FA + 0.0005 T_{DI} - 0.00045 T_{DF} $	$p_{avg}(\downarrow)$
Disc final t	emperature	130	0.989	8	$\begin{split} T_{DF} &= -119.027 + 2.051I + 1.651 v_{BS} + 0.423 M_{avg} \\ &- 5.219 p_{avg} - 0.951a + 0.0195 FA - 388.18 \mu + 0.865 T_{DI} \end{split}$	$\mu(\downarrow), p_{avg}(\downarrow)$
Brake	speed	130	0.977	7	$\begin{split} v_{BS} &= 130.12 - 1.276I - 2.392 v_{BR} + 0.977t \\ &+ 0.190a - 0.0198 FA - 0.266 T_{DI} - 0.362 T_{DF} \end{split}$	$\nu_{BR}(\downarrow)$
Brake p	ressure	130	0.986	8	$p_{avg} = 16.186 - 0.0925I + 0.192t + 0.0656 M_{avg}$ $-0.0543a + 0.001FA - 50.75\mu + 0.022T_{DI} - 0.019T_{DF}$	$\mu(\downarrow)$

according to SAE J2522 test standard; the other pair was subjected to the tests by a full-scale inertia dynamometer according to FIAT 7-H4020 and 7-H2000 standards. For the PC disc-pad pair tests, 276 braking tests from 21 different categories were performed; for the LCV tests, a total of 130 braking cases in 2 different categories consisting of burnishing and judder I-II procedures were performed. During these tests, 13 variables for the PC disc-pad pair and 11 variables for the LCV disc-pad pair were measured and recorded. The interrelation of these parameters was analyzed with the multiple regression method, and effects of the explanatory variable(s) were determined. A summary of all regression analyses is given in Tables 5(a) and 5(b).

3.1. Evaluating braking time

The correlation coefficients between Independent Variables (IV) and braking time (1) of the PC disc-pad pair are provided in Table A.3. The multiple regression output, prepared using Excel, is given in Table A.4. The R square for the braking time regression is 0.917, or 91.7% (R square, R^2 , varies from 0 to 1, and higher values indicate a better regression). One popular interpretation is that R^2 is the percent explained variability [33]. This means that 91.7% of the change in the dependent variable is explained by the independent variables in the model. In simple words, the model is 91.7% good). Each predictor has a coefficient, its standard error, a t-ratio, and the corresponding Pvalue. Ten of the coefficients in the regression statistics have P-values less than 5%. Each of the variables (ν_{BS} , ν_{BR} , a, M_{avg} , p_{avg} , μ_{avg} , T_{DI} , T_{DF} , T_{OPI} , and T_{OPF}) is a significant predictor of the braking time. The constant term (intercept) in the regression equation (1)is 29.16. For each unit of increase in ν_{BS} , M_{avg} , T_{DI} , and T_{OPF} , the braking time is predicted to increase by 0.059, 0.057, 0.012, and 0.181 units, respectively. For each unit of increase in ν_{BR} , a, p_{avg} , μ , T_{DF} , and T_{OPI} , braking time decreases with 0.06, 7.307, 0.454, 60.868, 0.012, and 0.182 units, respectively. The other independent variables, T_{IPI} and T_{IPF} , are not statistically significant (Table A.4).

The estimated regression equation for braking time of the PC is:

$$t = 29.16 + 0.59 v_{BS} - 0.06 v_{BR} - 7.307a$$

$$+ 0.057 M_{avg} - 0.454 p_{avg} - 60.868 \mu + 0.012 T_{DI}$$

$$-0.012T_{DF} - 0.182T_{OPI} + 0.181T_{OPF}.$$
 (1)

The correlation coefficients and the multiple regression output for the LCV disc-pad pair are given in Tables A.5 and A.6. R square equals 0.964, which is a very good fit. Then, 96.4% of the variations in braking time are explained by the independent variables. Eight of the coefficients in the regression statistics have Pvalues less than 5%. The constant term is -32.688. For each unit of increase in I, ν_{BS} , p_{avg} , a, FA, and μ_{avg} in Eq. (2), the braking time is predicted to increase by 0.395, 0.107, 1.267, 0.204, 0.003, and 91.887 units, respectively. For each unit of increase in M_{avg} and T_{DI} , braking time decreases with 0.148 and 0.024 units, respectively. The other independent variables, ν_{BR} and T_{DF} , are not statistically significant (Table A.6).

The estimated regression equation for the braking time of the LCV is as follows:

$$t = -32.688 + 0.395I + 0.107v_{BS} + 1.267p_{avg}$$
$$-0.148M_{avg} + 0.204a + 0.003FA + 91.887\mu$$
$$-0.012T_{DI}.$$
 (2)

3.2. Evaluating friction coefficient

The correlation coefficients and the multiple regression output for the PC disc-pad pair are given in Tables A.7 and A.8. R square equals 0.962, and 96.2% of the variations in μ_{avg} are explained by the independent variables. Eleven of the coefficients in the regression statistics have P-values less than 5%. Each of the variables (ν_{BS} , ν_{BR} , t, M_{avg} , p_{avg} , T_{DI} , T_{IPF} , T_{IPI} , $T_{DF}, T_{OPI}, \text{ and } T_{OPF}$ is a significant predictor of the friction coefficient. The constant term is 0.338. For each unit of increase in ν_{BS} , M_{avg} , T_{DI} , T_{IPF} , and T_{OPI} in Eq. (3), the friction coefficient is predicted to increase by 0.0004, 0.0005, 0.0004, 0.0004, and 0.001 units, respectively. For each unit of increase in ν_{BR} , t, p_{avg} , T_{DF} , T_{IPI} , and T_{OPF} , friction coefficient decreases with 0.0003, 0.004, 0.008, 0.0001, 0.0009, and 0.0009 units, respectively. The other independent variable, a, is not statistically significant (Table A.8).

The estimated regression equation for μ_{avg} of the PC is as follows:

$$\mu = 0.338 + 0.0004 v_{BS} + 0.0003 v_{BS} - 0.004t$$

$$+ 0.0005 M_{avg} - 0.008 p_{avg} + 0.0004 T_{DI}$$

$$- 0.0001 T_{DF} - 0.0009 T_{IPI} + 0.0004 T_{IPF}$$

$$+ 0.001 T_{OPI} + 0.0009 T_{OPF}.$$
(3)

The correlation coefficients and the multiple regression output for the LCV disc-pad pair are given in Tables A.9 and A.10. R square equals 0.984, and 98.4% of the variations in μ_{avg} are explained by the independent variables. Eight of the coefficients in the regression statistics have P-values less than 5%. Each of the variables $(I, t, p_{avq}, M_{avq}, a, FA, T_{DI}, \text{ and } T_{DF})$ is a significant predictor of the friction coefficient. The constant term is 0.289. For each unit of increase in t, M_{ava} , and T_{DI} in Eq. (4), the friction coefficient is predicted to increase by 0.004, 0.0012, and 0.0005 units, respectively. For each unit of increase in I, p_{avq} , a, FA, and T_{DF} , friction coefficient decreases with 0.00099, 0.016, 0.0011, 0.00001, and 0.00045 units, respectively. The other independent variables ν_{BS} and ν_{BR} are not statistically significant (Table A.10).

The estimated regression equation for μ_{avg} of the LCV is as follows:

$$\mu = 0.289 - 0.00099I + 0.0044t + 0.0012M_{avg}$$
$$- 0.016p_{avg} - 0.0011a - 0.00001FA$$
$$+ 0.0005T_{DI} - 0.00045T_{DF}.$$
(4)

3.3. Evaluating disc final temperature

The correlation coefficients and the multiple regression

output of the PC disc-pad pair are given in Tables A.11 and A.12. R square equals 0.990, and 99% of the variations in T_{DF} are explained by the independent variables. Eleven of the coefficients in the regression statistics have P-values less than 5%. Each of the variables (ν_{BS} , ν_{BR} , t, M_{avg} , p_{avg} , μ_{avg} , T_{DI} , T_{IPF} , T_{IPI} , T_{OPI} , and T_{OPF}) is a significant predictor of T_{DF} . The constant term is 149.972. For each unit of increase in ν_{BS} , M_{avg} , T_{DI} , T_{IPI} , and T_{OPF} in Eq. (5), T_{DF} is predicted to increase by 1.549, 0.260, 0.935, 4.699, and 6.090 units, respectively. For each unit of increase in ν_{BR} , t, p_{avg} , T_{DF} , μ_{avg} , T_{IPF} , and T_{OPI} , the disc final temperature decreases with 0.602, 4.105, 4.011, 514.234, 3.776, and 7.038 units, respectively. The other independent variable, a, is not statistically significant (Table A.12).

$$T_{DF} = 149.972 + 1.549v_{BS} - 0.602v_{BR} - 4.105t$$

+ 0.260 $M_{avg} - 4.011p_{avg} - 514.2\mu$
+ 0.935 $T_{DI} + 4.699T_{IPI} - 3.776T_{IPF}$
- 7.038 $T_{OPI} + 6.09T_{OPF}$. (5)

The correlation coefficients and the multiple regression output for the LCV disc-pad pair are given in Tables A.13 and A.14. R square equals 0.989, and 98.9% of the variations in T_{DF} are explained by the independent variables. Eight of the coefficients in the regression statistics have P-values less than 5%. Each of the variables $(I, \nu_{BS}, a, M_{avg}, p_{avg}, FA, \mu_{avg}, and T_{DI})$ is a significant predictor of T_{DF} . The constant term is -119.027. For each unit of increase in I, ν_{BS} , M_{avg} , FA, and T_{DI} in Eq. (6), T_{DF} is predicted to increase by 2.051, 1.651, 0.423, 0.0195, and 0.865 units, respectively. For each unit of increase in p_{avg} , a, and μ_{avg} , the disc final temperature decreases with 5.219, 0.951, and 388.176 units, respectively. The other independent variables ν_{BR} and t are not statistically significant (Table A.14).

$$T_{DF} = -119.027 + 2.051I + 1.651v_{BS}$$
$$+ 0.423M_{avg} - 5.219p_{avg} - 0.951a$$
$$+ 0.0195FA - 388.18\mu + 0.865T_{DI}.$$
 (6)

3.4. Evaluating brake speed

The correlation coefficients and the multiple regression output for the PC disc-pad pair are given in Tables A.15 and A.16. R square equals 0.973, and 97.3% of the variations in ν_{BS} are explained by the independent variables. Eleven of the coefficients in the regression statistics have *P*-values less than 5%. Each of the variables (ν_{BR} , t, a, M_{avg} , p_{avg} , μ_{avg} , T_{DI} , T_{DF} , T_{IPI} , T_{IPF} , and T_{OPI}) is a significant predictor of ν_{BS} . The constant term is -78.110. For each unit of increase in ν_{BR} , t, a, p_{avg} , μ_{avg} , T_{DF} , T_{IPF} , and T_{OPI} in Eq. (7), ν_{BS} is predicted to increase by 0.730, 2.199, 35.013, 1.914, 225.763, 0.167, 1.275, and 0.473 units, respectively. For each unit of increase in M_{avg} , T_{DI} , and T_{IPI} , the brake speed decreases with 0.264, 0.255, and 1.724 units, respectively. The other independent variable T_{OPF} is not statistically significant (Table A.16).

$$v_{BS} = -78.11 + 0.730v_{BR} + 2.199t + 35.01a$$

$$-0.264M_{avg} + 1.914p_{avg} + 225.76\mu$$

$$-0.255T_{DI} + 0.167T_{DF} - 1.724T_{IPI}$$

$$+ 1.275T_{IPF} + 0.473T_{OPI}.$$
 (7)

The correlation coefficients and the multiple regression output for the LCV disc-pad pair are given in Tables A.17 and A.18. R square equals 0.977, and 97.7%. of the variations in ν_{BS} are explained by the independent variables. Seven of the coefficients in the regression statistics have P-values less than 5%. Each of the variables $(I, \nu_{BR}, a, t, FA, T_{DI}, \text{ and } T_{DF})$ is a significant predictor of ν_{BS} . The constant term is 130.119. For each unit of increase in t and a in Eq. (8), ν_{BS} is predicted to increase by 0.977 and 0.190 units, respectively. For each unit of increase in I, ν_{BR}, FA, T_{DI} , and T_{DF} , brake speed decreases with 1.276, 2.392, 0.0198, 0.266, and 0.362 units, respectively. The other independent variables, p_{avg}, M_{avg} , and μ_{avg} , are not statistically significant (Table A.18).

$$v_{BS} = 130.12 - 1.276I - 2.392v_{BR} + 0.977t + 0.190a - 0.0198FA - 0.266T_{DI} - 0.362T_{DF}.$$
(8)

3.5. Evaluating average braking pressure

The correlation coefficients and the multiple regression output for the PC disc-pad pair are given in Tables A.19 and A.20. R square equals 0.997, and 99.7% of the variations in p_{avg} are explained by the independent variables. Nine of the coefficients in the regression statistics have P-values less than 5%. Each of the variables $(\nu_{BS}, \nu_{BR}, t, M_{avg}, \mu_{avg}, T_{DI}, T_{DF},$ T_{OPI} , and T_{OPF}) is a significant predictor of p_{avg} . The constant term is 38.016. For each unit of increase in $\nu_{BS}, M_{avg}, T_{DI}, \text{ and } T_{OPI} \text{ in Eq. } (9), p_{avg} \text{ is predicted}$ to increase by 0.0517, 0.062, 0.034, and 0.102 units, respectively. For each unit of increase in ν_{BR} , t, μ_{avg} , T_{DF} , and T_{OPF} , average braking pressure decreases with 0.034, 0.452, 112.26, 0.0117, and 0.0814 units, respectively. The other independent variables a, T_{IPI} , T_{IPF} are not statistically significant (Table A.20).

$$p_{avg} = 38.016 + 0.0517 v_{BS} - 0.034 v_{BR} - 0.452t + 0.062 M_{avg} - 112.26 \mu_{avg} + 0.034 T_{DI} - 0.0117 T_{DF} + 0.102 T_{OPI} - 0.081 T_{OPF}.$$
 (9)

The correlation coefficients and the multiple regression output for the LCV disc-pad pair are given in Tables A.21 and A.22. R square equals 0.986, and 98.6% of the variations in p_{avg} are explained by the independent variables. Eight of the coefficients in the regression statistics have P-values less than 5%. Each of the variables $(I, a, t, M_{avg}, FA, \mu_{avg}, T_{DI}, \text{ and } T_{DF})$ is a significant predictor of p_{avg} . The constant term is 16.186. For each unit of increase in t, M_{avg}, FA , and T_{DI} in Eq. (10), p_{ava} is predicted to increase by 0.192, 0.0656, 0.001, and 0.0221 units, respectively. For each unit of increase in I, a, μ_{avg} , and T_{DF} , the average braking pressure decreases with 0.0925, 0.0543, 50.750, and 0.0191 units, respectively. The other independent variables ν_{BS} and ν_{BR} are not statistically significant (Table A.22).

$$p_{avg} = 16.186 - 0.0925I + 0.192t + 0.0656M_{avg}$$
$$- 0.0543a + 0.001FA - 50.75\mu + 0.022T_{DI}$$
$$- 0.019T_{DF}.$$
(10)

3.6. Discussion

The friction and wear behaviors of brake's friction materials are mainly affected by factors such as material characteristics, *braking conditions*, surrounding conditions, surface conditions, and structural parameters [35]. Friction is highly dependent on brake linings' chemical composition, environmental conditions, and operating conditions. The braking pair's μ model is to correlate the friction coefficient to system inputs, such as *brake pressure*, and to system states such as *brake temperature and disc speed* [26].

From the information in the literature, the following points were identified:

- In the analyses of both PC and LCV braking pairs, disc final temperature has been affected positively by brake speed and negatively by pressure and the μ value. These results partially validate the study results of Verma [36]. The average temperature rise in the contact region due to sliding is directly proportional to the dissipated frictional power, given by the product of the friction coefficient, the applied load, and the sliding velocity and is inversely proportional to the thermal conductivities of the mating materials [36];
- An increase in μ in the braking pair affects the braking time in the PC negatively and in LCV

positively. Generally, an increase in friction coefficient reduces braking time. This is probably due to a negative intercept coefficient in the LCVbraking time equation and the effects of all other independent variables;

- Luo and Yang [37] emphasized that the brake linings must be investigated at different *pressures*, *speeds*, and *temperatures*. In addition to the three parameters mentioned, motorway braking check I-II (0.6 g) and fade (maximum 160 bar) I-II (0.4 g) test procedures were carried out at different **decelerations** in this study;
- Ricciardi et al. [26] stated that the μ value correlates with braking pressure, brake temperature, and disc speed at brake linings' μ model. When the correlation tables (Table A.7) in the study are examined, brake pressure, disc initial and final temperatures, brake speed, and release speed coefficients of the PC brake pair are determined as 0.359, 0.460, 0.429, 0.0914, and -0.109, respectively. Coefficients of the same parameters for the LCV brake pair are determined as -0.484, -0.187, -0.153, -0.421, and 0.356, respectively (Table A.9). The correlation stated by Ricciardi et al. [26] was provided positively by the PC and negatively by the LCV;
- Rhee [17] stated that μ can be dependent upon temperature, load, and sliding velocity. In this study, three additional parameters including braking time, deceleration, and braking torque are added to the list of the other parameters. Further, in the studies [18-21], μ was found to be dependent on temperature. In this study, effect levels of 6 additional parameters for the PC and 8 additional parameters for the LCV on the friction coefficient were determined;
- Heussaff et al. [21], El-Tayeb and Liew [22], Saffar et al. [23], and Liew and Nirmal [24] individually stated that μ was found to be dependent on braking force and velocity. In this study, the effects of additional 9 parameters were investigated.

4. Conclusions

In this study, two pairs of OEM brake disc-pad were used. One of these pairs belongs to a Passenger Car (PC) and the other one to a Light Commercial Vehicle (LCV). The PC disc-pad pair was subject to the global brake effectiveness test according to SAE J2522 test standard; the other one was subject to the tests according to FIAT 7-H4020 and 7-H2000 standards. For the PC disc-pad pair, 276 braking tests from 21 different categories were performed; in addition, for the LCV, a total of 130 braking tests were performed in 2 different categories. The basic brake parameters in the tests were measured and recorded. The interrelation of the parameters was analyzed with a multiple regression method, and effect levels were determined. In this study, dependent variables in the multiple regression method including braking time, friction coefficient, disc final temperature, brake speed, and brake pressure for both PC and LCV were selected. In this analysis of PC disc-pad pair, 13 variables such as friction coefficient, avg. braking torque, avg. brake pressure, brake speed, brake release speeds, deceleration, disc initial and final temperatures, inpad initial and final temperatures, outpad initial and final temperatures, and braking time were used; in the regression model of LCV disc-pad pair, 11 variables such as brake speed, brake release speeds, deceleration, inertia, avg. braking torque, avg. brake pressure, fluid absorption, disc initial and final temperatures, friction coefficient, and braking time are used. From these analyses, the conclusions below were obtained:

- The *R* square in this study ranges from 0.917 to 0.997. The interpretation is that about 91.7% to 99.7% of the variability in the dependent variables can be explained by variations in the explanatory/independent variables;
- In the literature, 1, 2, or 3 variable approaches are generally used to examine the braking parameters. In this study, the *predictor coefficients* of at least 9 to 11 independent variables in the regression statistics for PC braking pair have *P*-values less than 5%. Furthermore, the coefficients of 7 to 8 independent variables in the regression statistics for LCV braking pair have *P*-values less than 5%. The statistical significance of each individual independent variable has been determined;
- According to the estimated regression equations for *PC*, for each unit of increase in deceleration and friction coefficient, braking time decreases with 7.3 and 60.9 units, respectively. For each unit of increase in braking time and brake pressure, friction coefficient decreases with 0.004 and 0.008 units, respectively. For each unit of increase in friction coefficient and outpad initial temperature, disc final temperature decreases with 514.2 and 7.03 units, respectively. For each unit of increase in friction coefficient and deceleration, brake speed increases with 225.8 and 35 units, respectively. For each unit of increase in friction coefficient and speed increases with 225.8 and 35 units, respectively. For each unit of increase in friction coefficient, braking pressure decreases with 112.3 units;
- According to the estimated regression equation for LCV, for each unit of increase in brake pressure and friction coefficient, braking time increases with 1.267 and 91.887 units, respectively. For each unit of increase in brake pressure, friction coefficient decreases with 0.016 units. For each unit of increase in friction coefficient and brake pressure, disc final temperature decreases with 388.2 and 5.219 units,

respectively. For each unit of increase in brake release speed, *brake speed* decreases with 2.4 units. For each unit of increase in friction coefficient, *braking pressure* decreases with 50.8 units.

Note

D

Data of the passenger car brake disc-pad pair used in regression analysis are taken from the doctoral thesis by Demir (2009), and from the doctoral thesis by Öz (2012) for the light commercial vehicle.

Nomenclature

D

D	Disc
DV	Dependent Variable
DV	Dummy Variable
FMVSS	Federal Motor Vehicle Safety Standards
ISO	International Organization for
	Standardization
IV	Independent Variable
JASO	Japan Automobile Standards
	Organization
JIS	Japanese Industrial Standard
LCV	Light Commercial Vehicle
0	Observation
OEM	Original Equipment Manufacturer
PC	Passenger Car
SAE	Society of Automotive Engineers

Symbols

ε	Error term
ν	Hız
α	Linear function constant
eta	Linear function elevation
μ	Friction coefficient
a	Deceleration
FA	Fluid Absor
Ι	Inertia
M	Torque
p	Pressure
t	Braking time
T	Temperature
X	Independent variable
Y	Dependent Variable

Subscript

avg	Average
BR	Brake Release speed
BS	Brake speed

- *DF* Disc Final temperature
- DI Disc Initial temperature
- *IPF* Inpad final temperature
- *IPI* Inpad initial temperature
- *LCV* Light Commercial Vehicle
- n Number (1, 2, 3, ...)
- *OPI* Outpad initial temperature
- *OPF* Outpad final temperature
- *p* Exploratory variable

References

- Dhir, D.K. "Thermo-mechanical performance of automotive disc brakes", *Materials Today: Proceedings*, 5(1-1), pp. 1864-1871 (2018).
- Goktan, A., Guney, A., and Ereke, M. "Vehicle brakes", *Alliedsignal Automotive*, Panel Publishing, p. 48, Istanbul, Turkey (1995).
- Demir, A. "An experimental investigation on the braking performance of coated brake discs/rotors", Doctoral Thesis, Kocaeli University, Institute of Science and Technology, Department of Machine Training, Kocaeli, Turkey (2009).
- Childs, P.R.N. "Clutches and brakes", Mechanical Design Engineering Handbook, Second Edition, pp. 599-655 (2019).
- 5. Limpert, R., *Brake Design and Safety*, Society of Automotive Engineers, Third Edition, Warrendale (2001).
- Bijwe, J., Dureja, N., Majumdarb, N., and Satapathy, B.K. "Influence of modified phenolic resins on the fade and recovery behavior of friction materials", *Wear*, 259(7), pp. 1068-1078 (2005).
- Lee, K. "Numerical prediction of brake fluid temperature rise during braking and heat soaking", SAE Technical Paper Series, 1999-01-0483 (1999).
- Chang, Y.H., Joo, B.S., Lee, S.M., and Jang, H. "Size effect of tire rubber particles on tribological properties of brake friction materials", *Wear*, **394-395**, pp. 80-86 (2018).
- 9. Owen, C., Automotive Brake Systems, Classroom Manual, Today's Technician, Delmar Cengage Learning (2010).
- Hiller, M.B. "Correlation between parameters of the tribosystem and automotive disc brake squeal", PhD Thesis, University of Paderborn, pp. 1-203 (2006).
- Dmitriev, A.I., Yu Smolin, A., Psakhie, S.G., et al. "Computer modelling of local tribological contact by the example of the automotive brake friction pair", *Physical Mesomechanics*, **11**(1-2), pp. 73-84 (2008).
- Wu, D., Li, J., Shu, X., et al. "Test analysis and theoretical calculation on braking distance of automobile with ABS", *Part IV, International Federation for Information Processing - IFIP AICT 347*, D. Li, Y. Liu, and Y. Chen (Eds.): CCTA 2010, pp. 521-527 (2011).

- BEEP, "How to read and understand the aftermarket standard SAE J2430/brake effectiveness evaluation procedure test report", *Link Testing Laboratories B.E.E.P. Task force* (2002).
- Noon, R.K., Engineering Analysis of Vehicular Accidents, ISBN 9780849381041, pp. 1-205, CRC Press, Florida, USA (1994).
- Nagurnas, S., Mitunevičius, V., Unarski, J., et al. "Evaluation of veracity of car braking parameters used for the analysis of road accidents", *Transport*, 22(4), pp. 307-311 (2007).
- Syahrullail, S., Izhan M.I., and Mohammed Rafiq, A.K. "Tribological investigation of RBD palm olein in different sliding speeds using pin-on-disk tribotester", *Scientia Iranica, Transactions B: Mechanical Engineering*, **21**(1), pp. 162-170 (2014).
- Rhee, S.K. "Friction properties of a phenolic resin filled with iron and graphite - sensitivity to load, speed and temperature", Wear, 28(2), pp. 277-281 (1974).
- Filip, P., Weiss, Z., and Rafaja, D. "On friction layer formation in polymer matrix composite materials for brake applications", *Wear*, 252(3), pp. 189-198 (2002).
- Cho, M.H., Kim, S.J., Kim, D., et al. "Effects of ingredients on tribological characteristics of a brake lining: An experimental case study", *Wear*, 258(11-12), pp. 1682-1687 (2005).
- Hong, U.S., Jung, S.L., Cho, K.H., et al. "Wear mechanism of multiphase friction materials with different phenolic resin matrices", *Wear*, 266(7-8), pp. 739-744 (2009).
- Heussaff, A., Dubar, L., Tison, T., et al. "A methodology for the modelling of the variability of brake lining surfaces", Wear, 289, pp. 145-159 (2012).
- El-Tayeb, N.S.M. and Liew, K.W. "On the dry and wet sliding performance of potentially new frictional brake pad materials for automotive industry", *Wear*, 266(1-2), pp. 275-287 (2009).
- 23. Saffar, A., Shojaei, A., and Arjmand, M. "Theoretical and experimental analysis of the thermal, fade and wear characteristics of rubber-based composite friction materials", *Wear*, **269**(1-2), pp. 145-151 (2010).
- Liew, K.W. and Nirmal, U. "Frictional performance evaluation of newly designed brake pad materials", *Materials & Design*, 48, pp. 25-33 (2013).
- Rashid, A. "Overview of disc brakes and related phenomena a review", International Journal of Vehicle Noise and Vibration, 10(4), pp. 257-301 (2014).
- Ricciardi, V., Augsburg, K., Gramstat, S., et al. "Survey on modelling and techniques for friction estimation in automotive brakes", *Appl. Sci.*, 7(873), Review, pp. 1-23 (2017).
- Behrendt, J., Weiss, C., and Hoffmann, N. "A numerical study on stick-slip motion of a brake pad in steady sliding", J. Sound Vib., 330, pp. 636-651 (2011).

- Grkic, A., Muzdeka, S., Arsenic, Z., et al. "Model for estimation of the friction coefficient in automotive brakes under extremely high temperatures", *Int. J. Eng. Tech. Res.*, 2, pp. 290-294 (2014).
- 29. Lee, N. and Kang, C. "The effect of a variable disc pad friction coefficient for the mechanical brake system of a railway vehicle", *PLoS ONE*, **10**(8), e0135459 (2015).
- Carlos, E.A. and Ferro, E. "Technical overview of brake performance testing for original equipment and aftermarket industries in the US and European markets", Link Technical Report FEV 2005-01, pp. 15-16 (2005).
- Demir, A., Samur, R., and Kilicaslan, I. "Investigation of the coatings applied onto brake discs on disc-brake pad pair", *Metalurgija*, 48(3), pp. 161-166 (2009).
- 32. Oz, A. "Experimental research on reuse of worn brake discs by coating with powders", PhD Thesis, Suleyman Demirel University, Isparta, Turkey (2012).
- Newbold, P., Carlson, W.L., and Thorne, BM., Statistics for Business and Economics, 8th Ed., ISBN 13: 978-0-13-274565-9, Pearson Education, Prentice Hall (2013).
- 34. Ataee, O., Moghaddas, N.H., Lashkaripour, G.R., et al. "Predicting shear wave velocity of soil using

multiple linear regression analysis and artificial neural networks", *Scientia Iranica*, **25**(4), pp. 1943-1955 (2018).

- Xiao, X., Yin, Y., Bao, J., et al. "Review on the friction and wear of brake materials", Advances in Mechanical Engineering, 8(5), pp. 1-10 (2016).
- Verma, P.C. "Automotive brake materials: Characterization of wear products and relevant mechanisms at high temperature", Department of Industrial Engineering, PhD Thesis, University of Trento, Italy, pp. 1-134 (2016).
- 37. Luo, Y. and Yang, Z. "Effect of different-condition parameters on frictional properties of non-asbestos phenolic resin-based friction material", Advances in Mechanical Engineering, 9(5), Research Article, pp. 1-14 (2017).

Appendix

In this section, some technical information about dynamometers used in experiments, as well as regression analysis and correlation matrices were included.

Table A.1. Technical specifications and measurement parameters of the inertia dynamometer used in the automobile disc-pad pair test.

				Sorial	Full-		Uncontainty	Uncontainty	Full-	
No	Definitions	Manufacturer	Model	Serial	scale	Units	(1% FS)	(LIInit)	scale	\mathbf{Unit}
				110	standards	3	(+7013)	(+0mt)	\mathbf{metric}	
1	Air velocity	RM Young	27105 R-2400 jenerator	AS17A	55	$\mathrm{m}\mathrm{ph}$	1.44	0.79	88.55	kph
2	Maximum inertia	Link Engineering			68	Slug ft^2	0.44	0.30	92.82	kgm^2
3	Base inertia				8	Slug ft^2			10.20	$\mathrm{kg}\mathrm{m}^2$
4	Inertia intervals				28 at 2.2	Slug ft 2			2.99	$\mathrm{kg}\mathrm{m}^2$
5	Engine power	General motors			100	hp			74.57	kW
6	Pressure	Sensotec	${ m TJE}$ -0743-03 ${ m TJG}$ -3000	478656	3,000	\mathbf{psi}	0.31	9.33	206.70	bar
$\overline{7}$	Angular velocity	Sick stegmann	DRS25-4F400512	71002439	2,000	rpm	0.29	5.79	$2,\!000.00$	rpm
8	Temperature	Link engineering	1484 CAQ	TL17A	2,400	$^{\circ}$ F	0.54	13.07	$1,\!315.56$	$^{\circ}\mathrm{C}$
9	Torque	Siebe Lebow	$2112\text{-}50\mathrm{K}$	332	4,167	$\mathrm{ft}^*\mathrm{lbs}$	0.34	14.03	$5,\!667.12$	Nm
10	Corrosion	Mitutoyo	Çeşitli	Çeşitli	1	in	0.34	0.00	2.54	$^{\mathrm{cm}}$
11	Liquid volume	Balluff	BTL-5-A21-M0102-2-532	FD17	2.4409	in^3	0.30%	0.01	40.00	cm^3
12	Capacitive prob	Capacitec	4008 - P115		0.100	in	0.24	0.0002	2,540.00	micron

(a) LINK full scale inertia dynamometer (Link Engineering Company, Detroit, USA)

(b) ESAM brand inertia dynamometer (Gebze/Kale Balata)

Figure A.1. Full-scale inertia dynamometers used in the tests.

3344

Technical specification parameters	\mathbf{Units}	Value
Maximum engine revolutions	rpm	2,400
Maximum inertia moment	kgm^2	166
Maximum braking torque	Nm	5,000
Max, speed for both directions (hardware limit)	rpm	2,400
Max, speed for both directions (software limit)	rpm	2,160
Ventilation maximum speed	rpm	2,600
Test equipment weight	DA.N	13,000
Maximum dynamometer load	kgmsq	166
Minimum revolutions stopping engine	rpm	± 20
Hydraulic system power unit pressure limit	bar	160
Hydraulic system applicable pressure size	bar	150
Hydraulic system pressure alarm limit	bar	152
Maximum body movement	mm	1,900
Maximum and minimum torque weight	Nm	$\pm 4,500$
Torque meter mechanic accuracy	Nm	± 2.5
Thermocouple temperature range	$^{\circ}\mathrm{C}$	01000
Thermocouple telemetry channel precision	$^{\circ}\mathrm{C}$	± 3
Pressure transformation scale	bar	200
Pressure transformation precision	bar	$\pm 0, 1$
Flowmeter flow range	l/\min	0.004 - 4
Flowmeter precision	mm3	10
Ventilation pipe diameter	mm	255
Maximum air flow	m^3/h	2,200
Engine power	kW	140
Height	$\mathbf{m}\mathbf{m}$	2,250
Flywheel	N°	4
Length	$\mathbf{m}\mathbf{m}$	6,950

Table A.2. Specifications of the inertia dynamometer used in the light commercial vehicle disc-pad pair test.

Table A.3. The correlation coefficients between independent variables and braking time (for PC).

	ν_{BS}	ν_{BR}	a	M_{avg}	p_{avg}		T_{DI}	T_{DF}	T_{IPI}	T_{IPF}	T_{OPI}	T_{OPF}	t
	(k/h)	(k/h)	(m/s^2)	(Nm)	(bar)	μ_{avg}	(°C)	(°C)	$(^{\circ}C)$	(°C)	(°C)	$(^{\circ}C)$	(s)
$\nu_{BS}, \mathrm{k/h}$	1												
$\nu_{BR}, \mathrm{k/h}$	0.86474	1											
$a, m/s^2$	0.25746	0.02039	1										
M_{avg} , Nm	0.27948	0.06384	0.99566	1									
p_{avg} , bar	0.27637	0.09255	0.97251	0.97977	1								
μ_{avg}	0.0914	-0.1094	0.548	0.52566	0.35945	1							
$T_{DI}, ^{\circ}\mathrm{C}$	0.06749	-0.2759	0.43353	0.39634	0.32349	0.46047	1						
$T_{DF}, ^{\circ}C$	0.30583	-0.07	0.50268	0.47278	0.40824	0.42956	0.95515	1					
$T_{IPI}, ^{\circ}C$	0.09596	-0.2459	0.43795	0.40235	0.33933	0.41708	0.9914	0.94929	1				
$T_{IPF}, ^{\circ}C$	0.09633	-0.2553	0.43222	0.3959	0.32849	0.43057	0.99244	0.94989	0.99905	1			
$T_{OPI}, ^{\circ}\mathrm{C}$	0.09342	-0.2466	0.43325	0.39784	0.33751	0.40396	0.98776	0.9443	0.99941	0.99786	1		
$T_{OPF},\ ^{\circ}\mathrm{C}$	0.10378	-0.2451	0.42734	0.39192	0.32988	0.40222	0.9896	0.95182	0.99916	0.99861	0.99923	1	
t, s	-0.2314	-0.2764	-0.7113	-0.7091	-0.7198	-0.4268	-0.0146	-0.0628	-0.0242	-0.0075	-0.0221	-0.0018	1

				\mathbf{Regre}	ssion sta	tistic	cs	_			
			Ν	Aultiple R	• /	0.9	95796				
			1	l square		0.9	91769				
			A	djustable	R square	0.9	91393				
			S	tandard e	error	0.7	73315				
			() bservatio	n		276				
					ANOVA			-			
		d	f	SS	MS		F	Sig	nificance F	_	
	Regress	sion 1	2	1576.03	131.336	244	.343		6E-135	_	
	Differer	nce 26	63	141.365	0.53751						
	Total	27	75	1717.4							
	Coefficients	Stand	lard	t	P-ve	lue	$\mathbf{L}\mathbf{c}$	w	High	Low	\mathbf{High}
		erre	or	Stat	; 1-ve	uue	95	%	95%	95.0%	95.0%
Intersection	29.1689	1.883	393	15.48	3 7.1E	-39	25.4	593	32.8784	25.4593	32.8784
$\nu_{BS}, \mathrm{k/h}$	0.0596	0.009	946	6.2980)4 1.3E	-09	0.04	096	0.07823	0.04096	0.07823
$\nu_{BR},\; {\rm k/h}$	-0.06	0.007	711	-8.432	25 2.3E	-15	-0.0	074	-0.046	-0.074	-0.046
$a, m/s^2$	-7.3079	0.776	538	-9.412	28 2.5E	-18	-8.8	366	-5.7791	-8.8366	-5.7791
M_{avg} , Nm	0.05709	0.003	394	14.50	6 2E-	35	0.04	934	0.06483	0.04934	0.06483
p_{avg} , bar	-0.4543	0.055	509	-8.247	72 7.8E	-15	-0.5	628	-0.3458	-0.5628	-0.3458
μ_{avg}	-60.868	6.389	96	-9.525	56 1.1E	-18	-73	.45	-48.287	-73.45	-48.287
$T_{DI}, ^{\circ}\mathrm{C}$	0.01249	0.005	576	2.1680	0.03	105	0.00	115	0.02383	0.00115	0.02383
$T_{DF}, ^{\circ}\mathrm{C}$	-0.012	0.003	826	-3.69	8 0.00	026	-0.0	184	-0.0056	-0.0184	-0.0056
$T_{IPI},\ ^{\circ}\mathrm{C}$	-0.0081	0.04	33	-0.18	68 0.85	194	-0.0	933	0.07716	-0.0933	0.07716
$T_{IPF}, ^{\circ}\mathrm{C}$	0.00932	0.024	4 81	0.375	57 0.70	754	-0.0	395	0.05816	-0.0395	0.05816
$T_{OPI}, ^{\circ}\mathrm{C}$	-0.1823	0.042	214	-4.32	5 2.2E	-05	-0.2	652	-0.0993	-0.2652	-0.0993
T_{OPF} , °C	0.1815	0.034	103	5.3341	.1 2.1E	-07	0.11	145	0.24849	0.1145	0.24849

Table A.4. Multiple regression model statistics of the factors that contributed to the stopping/braking time (for PC).

Table A.5. The correlation coefficients between independent variables and braking time (for LCV).

	I	$ u_{BS}$	ν_{BR}	p_{avg}	M_{avg}	a	FA		T_{DI}	T_{DF}	t
	-	(k/h)	(k/h)	(bar)	(Nm)	(m/s^2)		μ avg	(°C)	$(^{\circ}C)$	(s)
Ι	1										
$\nu_{BS},\; {\bf k/h}$	-0.53874	1									
$\nu_{BR}, \mathrm{k/h}$	0.515739	-0.82696	1								
p_{avg} , bar	-0.71998	0.247353	-0.40849	1							
M_{avg}, Nm	-0.12483	-0.26334	0.023628	0.563023	1						
$a, m/s^2$	-0.81658	0.416691	-0.44359	0.68695	0.373259	1					
FA	0.23632	-0.52126	0.274012	0.395285	0.533453	-0.08364	1				
μ_{avg}	0.607629	-0.4212	0.356912	-0.48446	0.423433	-0.3228	0.059694	1			
$T_{DI}, ^{\circ}\mathrm{C}$	-0.085	0.721645	-0.5822	-0.01083	-0.32088	-0.05859	-0.27456	-0.18781	1		
$T_{DF}, ^{\circ}\mathrm{C}$	0.063896	0.725292	-0.57266	-0.11098	-0.37223	-0.18011	-0.26583	-0.15384	0.951683	1	
t, s	0.321696	0.455721	-0.23309	-0.61766	-0.76367	-0.31432	-0.5021	-0.03842	0.554085	0.656019	1

				Regre	ession stati	stics			
				Multiple R		0.98186			
				R square		0.964049			
				Adjustable	R square	0.961028			
				Standard e	error	1.583748			
				Observatio	n	130			
					ANOVA				
			df	SS	MS	F	Significance F		
		Regression	10	8004.082	800.4082	319.1091	6.18E-81		
		Difference	119	298.4827	2.508258				
		Total	129	8302.564					
	Coefficie	ents Sta	ndard rror	$t \ { m stat}$	<i>P</i> -value	Low 95%	${f High}$ 95 $\%$	Low 95.0%	${f High}\ 95.0\%$
Intersection	-32.688	35 5.3	92565	-6.06177	1.63E-08	-43.366	3 -22.0106	-43.3663	-22.0106
Ι	0.39547	74 0.0	4869	8.122278	4.82E-13	0.29906	0.491886	0.299063	0.491886
$\nu_{BS}, \mathrm{k/h}$	0.10729	0.0	28741	3.733061	0.000292	0.05038	0.164201	0.050381	0.164201
$ u_{BR},{ m k/h}$	-0.1629	96 0.2	78037	-0.58611	0.558909	9 -0.713	5 0.387579	-0.7135	0.387579
p_{avg} , bar	1.26773	35 0.2	04418	6.201687	8.36E-09	0.86296	1.672503	0.862968	1.672503
M_{avg}, Nm	-0.1481	.2 0.0	10935	-13.5453	7.3E-26	-0.1697	7 -0.12646	-0.16977	-0.12646
a, m/s2	0.20440	0.0	20655	9.896078	3.28E-17	0.16350	0.245302	0.163504	0.245302
FA	0.00322	0.0	01272	2.532618	0.012623	0.00070	0.005741	0.000703	0.005741
μ_{avg}	91.8873	36 10.	11557	9.083757	2.76E-15	71.8575	3 111.9172	71.85753	111.9172
$T_{DI}, ^{\circ}\mathrm{C}$	-0.0241	16 0.0	12807	-1.88678	0.061627	-0.0495	0.001195	-0.04952	0.001195
$T_{DF}, ^{\circ}\mathrm{C}$	0.02032	28 0.0	14111	1.44053	0.152343	3 -0.0076	61 0.04827	-0.00761	0.04827

Table A.6. Multiple regression model statistics of the factors that contributed to the stopping/braking time (for LCV).

Table A.7. The correlation coefficients between independent variables and friction coefficient (for PC).

	$ u_{BS}$	ν_{BR}	t	a	M_{avg}	p_{avg}	T_{DI}	T_{DF}	T_{IPI}	T_{IPF}	T_{OPI}	T_{OPF}	
	(k/h)	(k/h)	(s)	(m/s^2)	(Nm)	(bar)	$(^{\circ}C)$	$(^{\circ}C)$	$(^{\circ}C)$	$(^{\circ}C)$	$(^{\circ}C)$	$(^{\circ}C)$	μ_{avg}
$\nu_{BS}, \mathrm{k/h}$	1												
$\nu_{BR},\; {\rm k/h}$	0.8647	1											
t, s	-0.231	-0.276	1										
$a, m/s^2$	0.2575	0.0204	-0.711	1									
M_{avg} , Nm	0.2795	0.0638	-0.709	0.9957	1								
p_{avg} , bar	0.2764	0.0926	-0.72	0.9725	0.9798	1							
$T_{DI}, ^{\circ}\mathrm{C}$	0.0675	-0.276	-0.015	0.4335	0.3963	0.3235	1						
$T_{DF}, ^{\circ}C$	0.3058	-0.07	-0.063	0.5027	0.4728	0.4082	0.9552	1					
$T_{IPI}, ^{\circ}C$	0.096	-0.246	-0.024	0.438	0.4023	0.3393	0.9914	0.9493	1				
$T_{IPF}, ^{\circ}C$	0.0963	-0.255	-0.008	0.4322	0.3959	0.3285	0.9924	0.9499	0.9991	1			
$T_{OPI}, \ ^{\circ}\mathrm{C}$	0.0934	-0.247	-0.022	0.4333	0.3978	0.3375	0.9878	0.9443	0.9994	0.9979	1		
$T_{OPF}, ^{\circ}\mathrm{C}$	0.1038	-0.245	-0.002	0.4273	0.3919	0.3299	0.9896	0.9518	0.9992	0.9986	0.9992	1	
μ_{avg}	0.0914	-0.109	-0.427	0.548	0.5257	0.3594	0.4605	0.4296	0.4171	0.4306	0.404	0.4022	1

			Regre	ssion sta	tistics				
		Μ	[ultiple]	2	0.98	1			
		R	square		0.962	24			
		А	djustable	e R squar	e 0.960	07			
		St	andard e	error	0.006	51			
		0	bservatio	on	276				
				ANOVA					
		$d\!f$	SS	MS	F	Signif	icance F	-	
	Regression	12	0.2506	0.0209	561.14	11	E-179	-	
	Difference	263	0.0098	4E-05					
	Total	275	0.2604						
	Coefficients	Standa error	rd St	t Ptat	value	Low 95%	${f High}\ {f 95\%}$	Low 95.0%	High 95.0%
Intersection	0.3381	0.0059	57.	055 4	E-150	0.3264	0.3497	0.3264	0.3497
$\nu_{BS}, k/h$	0.0004	8E-05	5.2	737 3	E-07	0.0003	0.0006	0.0003	0.0006
$\nu_{BR}, \mathrm{k/h}$	-3E-04	6E-05	-4.	204 4	E-05	-4E-04	-1E-04	-4E-04	-1E-04
t, s	-0.004	0.0004	-9.	526 1	E-18	-0.005	-0.003	-0.005	-0.003
$a, { m m/s^2}$	0.0085	0.007	5 1.1	378 0	2562	-0.006	0.0231	-0.006	0.0231
M_{avg} , Nm	0.0005	3E-05	15.	746 8	E-40	0.0004	0.0006	0.0004	0.0006
p_{avg} , bar	-0.008	0.0002	-43	3.19 2	E-121	-0.008	-0.007	-0.008	-0.007
$T_{DI}, \ ^{\circ}\mathrm{C}$	0.0004	4E-05	8.2	242 9	E-15	0.0003	0.0004	0.0003	0.0004
T_{DF} , °C	-1E-04	3E-05	-3.	863 0	.0001	-2E-04	-5E-05	-2E-04	-5E-05
$T_{IPI}, ^{\circ}\mathrm{C}$	-9E-04	0.0004	-2.	604 0	.0097	-0.002	-2E-04	-0.002	-2E-04
$T_{IPF}, \ ^{\circ}\mathrm{C}$	0.0004	0.0002	1.9	767 0	.0491	2E-06	0.0008	2E-06	0.0008
$T_{OPI}, ^{\circ}\mathrm{C}$	0.001	0.0004	2.8	787 0	.0043	0.0003	0.0017	0.0003	0.0017
$T_{OPF}, \ ^{\circ}\mathrm{C}$	-9E-04	0.0003	-2.	901 (0.004	-0.001	-3E-04	-0.001	-3E-04

Table A.8. Multiple regression model statistics of the factors that contributed to the friction coefficient (for PC).

Table A.9. The correlation coefficients between independent variables and friction coefficient (for LCV).

	Ι	${m u}_{BS} \ ({ m k/h})$	${m u_{BR}} \ ({ m k/h})$	$t \ (s)$	$p_{avg} \ (\mathrm{bar})$	$M_{avg} \ ({ m Nm})$	$a \ ({ m m/s}^2)$	FA	$T_{DI} \ (^{\circ}\mathrm{C})$	$T_{DF} \ (^{\mathrm{o}}\mathrm{C})$	μ_{avg}
Ι	1										
$\nu_{BS}, \mathrm{k/h}$	-0.5387	1									
$\nu_{BR}, {\rm k/h}$	0.51574	-0.827	1								
t, s	0.3217	0.45572	-0.2331	1							
p_{avg} , bar	-0.72	0.24735	-0.4085	-0.6177	1						
M_{avg}, Nm	-0.1248	-0.2633	0.02363	-0.7637	0.56302	1					
$a, m/s^2$	-0.8166	0.41669	-0.4436	-0.3143	0.68695	0.37326	1				
FA	0.23632	-0.5213	0.27401	-0.5021	0.39528	0.53345	-0.0836	1			
$T_{DI}, ^{\circ}C$	-0.085	0.72165	-0.5822	0.55409	-0.0108	-0.3209	-0.0586	-0.2746	1		
$T_{DF}, \ ^{\circ}\mathrm{C}$	0.0639	0.72529	-0.5727	0.65602	-0.111	-0.3722	-0.1801	-0.2658	0.95168	1	
μ_{avg}	0.60763	-0.4212	0.35691	-0.0384	-0.4845	0.42343	-0.3228	0.05969	-0.1878	-0.1538	1

					\mathbf{Regre}	ssion stati	stics			
					Multiple R		0.992189			
					R square		0.984439			
					Adjustable	R square	0.983132			
					Standard e	rror	0.011029			
					Observatio	n	130			
						ANOVA				
				df	SS	MS	F	Significance F	_	
		Regre	ession	10	0.915772	0.091577	752.8396	$1.5 \operatorname{E-102}$		
		Differ	ence	119	0.014475	0.000122				
		Total		129	0.930248					
	Coeffic	ients	Stan er	dard ror	$t \ { m stat}$	<i>P</i> -value	Low 95%	${f High}$ 95%	Low 95.0%	High 95.0%
Intersection	0.2895	506	0.03	3785	8.569083	4.44E-14	0.22260	0.356404	0.222609	0.356404
Ι	-0.000	099	0.00	0413	-2.40528	0.0177	-0.0018	31 -0.00018	-0.00181	-0.00018
$ u_{BS},{ m k/h}$	0.000	147	0.00	0211	0.695873	0.48786	5 -0.000	27 0.000565	-0.00027	0.000565
$ u_{BR},{ m k/h}$	-0.00	055	0.00	1938	-0.28231	0.778193	3 -0.0043	39 0.003291	-0.00439	0.003291
t, s	0.0044	456	0.00	0491	9.083757	2.76E-15	0.00348	35 0.005428	0.003485	0.005428
p_{avg} , bar	-0.016	519	0.00	0691	-23.4308	2.12E-46	-0.0175	56 -0.01483	-0.01756	-0.01483
M_{avg}, Nm	0.0012	279	3.16	E-05	40.41932	2.36E-71	0.00121	0.001341	0.001216	0.001341
$a, m/s^2$	-0.00	118	0.00	0162	-7.28234	3.87E-11	-0.001	5 -0.00086	-0.0015	-0.00086
FA	-1.2E	-05	9.03	E-06	-1.29634	0.197367	-3E-05	5 6.18E-06	-3E-05	6.18E-06
T_{DI} , °C	0.000	499	7.81	E-05	6.395335	3.28E-09	0.00034	15 0.000654	0.000345	0.000654
T_{DF} , °C	-0.000	045	9 E	-05	-5.04478	1.65 E-06	-0.0006	63 -0.00028	-0.00063	-0.00028

Table A.10. Multiple regression model statistics of the factors that contributed to the friction coefficient (for LCV).

Table A.11. The correlation coefficients between independent variables and disc final temperature (For PC).

	$ u_{BS}$	ν_{BR}	t	a	M_{avg}	p_{avg}		T_{DI}	T_{IPI}	T_{IPF}	T_{OPI}	T_{OPF}	T_{DF}
	(k/h)	(k/h)	(s)	(m/s^2)	(Nm)	(bar)	μ_{avg}	$(^{\circ}C)$	$(^{\circ}C)$	$(^{\circ}C)$	$(^{\circ}C)$	$(^{\circ}C)$	$(^{\circ}C)$
$\nu_{BS}, \mathbf{k/h}$	1												
$\nu_{BR}, \mathbf{k/h}$	0.8647	1											
t, s	-0.231	-0.276	1										
$a, m/s^2$	0.2575	0.0204	-0.711	1									
M_{avg}, Nm	0.2795	0.0638	-0.709	0.9957	1								
p_{avg} , bar	0.2764	0.0926	-0.72	0.9725	0.9798	1							
μ_{avg}	0.0914	-0.109	-0.427	0.548	0.5257	0.3594	1						
$T_{DI}, ^{\circ}\mathrm{C}$	0.0675	-0.276	-0.015	0.4335	0.3963	0.3235	0.4605	1					
$T_{IPI}, ^{\circ}\mathrm{C}$	0.096	-0.246	-0.024	0.438	0.4023	0.3393	0.4171	0.9914	1				
$T_{IPF}, ^{\circ}\mathrm{C}$	0.0963	-0.255	-0.008	0.4322	0.3959	0.3285	0.4306	0.9924	0.9991	1			
$T_{OPI}, ^{\circ}\mathrm{C}$	0.0934	-0.247	-0.022	0.4333	0.3978	0.3375	0.404	0.9878	0.9994	0.9979	1		
$T_{OPF}, ^{\circ}C$	0.1038	-0.245	-0.002	0.4273	0.3919	0.3299	0.4022	0.9896	0.9992	0.9986	0.9992	1	
$T_{DF}, ^{\circ}\mathrm{C}$	0.3058	-0.07	-0.063	0.5027	0.4728	0.4082	0.4296	0.9552	0.9493	0.9499	0.9443	0.9518	1

			Regres	sion stati	stics			
			Multiple R		0.99517			
			R square		0.99037			
			Adjustable	R square	0.98993			
			Standard ei	ror	13.5391			
			Observation	1	276			
				ANOVA				
		df	SS	MS	F S	Significance F		
	Regres	ssion 12	4955552	412963	2252.84	3E-257		
	Differe	ence 263	48209.8	183.307				
	Total	275	5003762					
	Coefficients	Standar	rd t	D volu	Low	High	Low	High
	Coemcients	error	stat	r-valu	e 95%	95%	95.0%	95.0%
Intersection	149.972	47.2031	3.17716	0.00166	57.027	6 242.916	57.0276	242.916
$\nu_{BS}, \mathrm{k/h}$	1.54922	0.1613	9.60479	6.4E-19) 1.2316	2 1.86682	1.23162	1.86682
$\nu_{BR}, k/h$	-0.60234	0.14332	-4.20262	$3.6\mathrm{E}$ - 05	6 -0.8848	55 -0.32013	-0.88455	-0.32013
t, s	-4.10558	1.11023	-3.69796	0.00026	6.2916	65 -1.91952	-6.29165	-1.91952
$a,{ m m/s^2}$	7.14833	16.571	5 0.43136	0.6665	6 -25.48	14 39.7781	-25.4814	39.7781
M_{avg} , Nm	0.26013	0.09618	2.7048	0.00728	8 0.0707	6 0.4495	0.07076	0.4495
p_{avg} , bar	-4.0108	1.11414	-3.5999	0.00038	-6.2048	57 - 1.81703	-6.20457	-1.81703
μ_{avg}	-514.234	133.13	-3.86264	0.00014	4 -776.3	7 -252.097	-776.37	-252.097
$T_{DI}, ^{\circ}C$	0.93568	0.09051	10.3376	3E-21	0.7574	6 1.11391	0.75746	1.11391
$T_{IPI}, ^{\circ}\mathrm{C}$	4.69961	0.74522	6.30632	1.2E-09	3.2322	5 6.16698	3.23225	6.16698
$T_{IPF}, ^{\circ}C$	-3.77634	0.39468	-9.56804	8.4E-19) -4.553	48 -2.9992	-4.55348	-2.9992
$T_{OPI}, ^{\circ}\mathrm{C}$	-7.03853	0.67849	-10.3738	2.3E-21	-8.374	49 -5.70257	-8.37449	-5.70257
$T_{OPF}, ^{\circ}\mathrm{C}$	6.09007	0.54454	11.1839	5.2 E- 24	4 5.0178	6 7.16227	5.01786	7.16227

Table A.12. Multiple regression model statistics of the factors that contributed to disc final temperature (for PC).

Table A.13. The correlation coefficients between independent variables and disc final temperature (for LCV).

	Ι	$rac{{{m u }_{BS}}}{\left({ m k/h} ight)}$	$rac{{{m u }_{BR}}}{\left({ m k/h} ight)}$	t(s)	$p_{avg} \ (\mathrm{bar})$	$M_{avg} \ ({ m Nm})$	$a \ ({ m m/s}^2)$	FA	μ_{avg}	T_{DI} (° C)	T_{DF} (°C)
Ι	1										
$\nu_{BS}, k/h$	-0.53874	1									
$\nu_{BR}, \mathrm{k/h}$	0.51574	-0.82696	1								
t, s	0.3217	0.45572	-0.23309	1							
$p_{\mathit{avg}}, \; \mathrm{bar}$	-0.71998	0.24735	-0.40849	-0.61766	1						
M_{avg} , Nm	-0.12483	-0.26334	0.02363	-0.76367	0.56302	1					
$a, m/s^2$	-0.81658	0.41669	-0.44359	-0.31432	0.68695	0.37326	1				
FA	0.23632	-0.52126	0.27401	-0.5021	0.39528	0.53345	-0.08364	1			
μ_{avg}	0.60763	-0.4212	0.35691	-0.03842	-0.48446	0.42343	-0.3228	0.05969	1		
$T_{DI}, ^{\circ}\mathrm{C}$	-0.085	0.72165	-0.5822	0.55409	-0.01083	-0.32088	-0.05859	-0.27456	-0.18781	1	
$T_{DF}, \ ^{\circ}\mathrm{C}$	0.0639	0.72529	-0.57266	0.65602	-0.11098	-0.37223	-0.18011	-0.26583	-0.15384	0.95168	1

				_	Regre	ssion stati	stics				
					Multiple R		0.994744				
					R square		0.989515				
					Adjustable	R square	0.988634				
					Standard e	rror	10.1997				
					Observatio	n	130				
				_		ANOVA					
				$d\!f$	SS	MS	F	Significance	F		
		Regres	sion	10	1168328	116832.8	1123.027	9.9 E- 113			
		Differe	nce	119	12380.03	104.0339					
		Total		129	1180708						
	Coeffic	ients	Sta	ndard	t	P-value	Low	High 05%	0	Low	High
Intersection		197	38 9	20344	_3 11562	0 002301	-194.67	4 -43 3807		94 674	-43 3807
I	2.05	19	0.3	49761	5 984351	2 35E-08	1 3725	2 729901	1	3795	2 729901
upa k/h	1 6519	210	0.0	02874	12 22/6/	2.00E-00	1.0120	1 807005	1	40653	1 807005
ν_{BS} , K/II	0.679	167	1.70	23074	0 27570	0.707749	1.40000 9.9751	5 1.091090 5 4.999091	1. 9	97515	1.097090
$\nu_{BR}, \kappa/n$	0.013	199	1.13	2109	1 44059	0.159949	- <u>-</u> 2.0751	1 2 002072	-2	91591	2 002072
<i>i</i> , s	0.040 5.91(1 33	1.4	06001	2 62966	0.000415	0.3130 0.0644	2 - 0.02073	-0	06442	2.002073
p_{avg} , bar	-0.21	94Z	1.4	00001	-3.03200	0.000413	-0.0044	-2.37441	-0	.00445	-2.37441
M_{avg} , Nm	0.4234	110	0.10	19391	4.019661	0.000103	0.21487	0.632081	0.	21487	0.632081
$a, m/s^2$	-0.95	167	0.1!	56992	-6.06186	1.63E-08	-1.2625	3 -0.64081	-1	.26253	-0.64081
FA	0.0195	543	0.0	08218	2.377933	0.019003	0.00327	0.035816	0.	00327	0.035816
μ_{avg}	-388.2	176	76.9	94604	-5.04478	1.65 E-06	-540.53	7 -235.815	-5	40.537	-235.815
$T_{DI}, ^{\circ}\mathrm{C}$	0.865	545	0.05	26665	32.45975	5.83E-61	0.81274	6 0.918345	0.8	312746	0.918345

Table A.14. Multiple regression model statistics of the factors that contributed to disc final temperature (for LCV).

Table A.15. The correlation coefficients between independent variables and brake speed (for PC).

	ν_{BR}	t	a	M_{avg}	p_{avg}		T_{DI}	T_{DF}	T_{IPI}	T_{IPF}	T_{OPI}	T_{OPF}	ν_{BS}
	(k/h)	(s)	(m/s^2)	(Nm)	(bar)	μ_{avg}	$(^{\circ}C)$	$(^{\circ}C)$	$(^{\circ}C)$	$(^{\circ}C)$	$(^{\circ}C)$	$(^{\circ}C)$	(k/h)
$\nu_{BR}, \mathrm{k/h}$	1												
t, s	-0.276	1											
$a, m/s^2$	0.0204	-0.711	1										
M_{avg}, Nm	0.0638	-0.709	0.9957	1									
p_{avg} , bar	0.0926	-0.72	0.9725	0.9798	1								
μ_{avg}	-0.109	-0.427	0.548	0.5257	0.3594	1							
$T_{DI}, ^{\circ}\mathrm{C}$	-0.276	-0.015	0.4335	0.3963	0.3235	0.4605	1						
T_{DF} , °C	-0.07	-0.063	0.5027	0.4728	0.4082	0.4296	0.9552	1					
$T_{IPI}, ^{\circ}\mathrm{C}$	-0.246	-0.024	0.438	0.4023	0.3393	0.4171	0.9914	0.9493	1				
$T_{IPF}, ^{\circ}\mathrm{C}$	-0.255	-0.008	0.4322	0.3959	0.3285	0.4306	0.9924	0.9499	0.9991	1			
$T_{OPI}, ^{\circ}\mathrm{C}$	-0.247	-0.022	0.4333	0.3978	0.3375	0.404	0.9878	0.9443	0.9994	0.9979	1		
$T_{OPF}, ^{\circ}\mathrm{C}$	-0.245	-0.002	0.4273	0.3919	0.3299	0.4022	0.9896	0.9518	0.9992	0.9986	0.9992	1	
$\nu_{BS}, \mathrm{k/h}$	0.8647	-0.231	0.2575	0.2795	0.2764	0.0914	0.0675	0.3058	0.096	0.0963	0.0934	0.1038	1

				Regre	ssion stati	stics			
				Multiple R		0.986615			
				R square		0.97341			
				Adjustable	R square	0.972196			
				Standard e	rror	4.453452			
				Observatio	n	276			
					ANOVA				
			$d\!f$	ss	MS	$oldsymbol{F}$	Significance F	_	
	Regi	ession	12	190949.7	15912.47	802.3133	2.3E-199		
	Diffe	erence	263	5216.141	19.83324				
	Tota	1	275	196165.8					
	Coefficients	Stan	dard	t	P-value	Low	${f High}$	Low	High
		error		stat	i varac	95%	95%	95.0%	95.0%
Intersection	-78.1101	15.0'	7086	-5.18286	4.36E-07	-107.78	5 -48.4352	-107.785	-48.4352
$\nu_{BR}, \mathbf{k/h}$	0.730576	0.018	8504	39.48298	1.5 E- 112	0.69414	2 0.76701	0.694142	0.76701
t, s	2.199016	0.34	9159	6.298038	1.26E-09	1.51151	3 2.886518	1.511513	2.886518
$a, m/s^2$	35.01316	5.00'	7219	6.992536	2.23E-11	25.1538	2 44.87249	25.15382	44.87249
M_{avg} , Nm	-0.26449	0.02'	7616	-9.5774	7.83E-19	-0.3188	6 -0.21011	-0.31886	-0.21011
p_{avg} , bar	1.914492	0.35	6352	5.372471	1.71E-07	1.21282	5 2.616158	1.212825	2.616158
μ_{avg}	225.7637	42.8	092	5.273718	2.79E-07	141.471	3 310.0561	141.4713	310.0561
$T_{DI}, ^{\circ}\mathrm{C}$	-0.25524	0.03	1605	-8.07606	2.42E-14	-0.3174	7 -0.19301	-0.31747	-0.19301
$T_{DF}, ^{\circ}C$	0.16762	0.01	7452	9.604791	6.43E-19	0.13325	7 0.201983	0.133257	0.201983
$T_{IPI}, ^{\circ}\mathrm{C}$	-1.72456	0.24	0553	-7.16914	7.63E-12	-2.1982	1 -1.2509	-2.19821	-1.2509
$T_{IPF}, ^{\circ}\mathrm{C}$	1.275339	0.128	8595	9.917485	6.69E-20	1.02213	2 1.528545	1.022132	1.528545
$T_{OPI}, ^{\circ}\mathrm{C}$	0.473436	0.26	3319	1.797955	0.073331	-0.0450	5 0.991917	-0.04505	0.991917
T_{OPF} , °C	0.121407	0.21	745	0.558322	0.57709	9 -0.3067	6 0.549573	-0.30676	0.549573

Table A.16. Multiple regression model statistics of the factors that contributed to brake speed (for PC).

Table A.17. The correlation coefficients between independent variables and brake speed (for LCV).

						-			1 (/			
	Ι	$rac{{ u _{BR}}}{\left({ m k/h} ight)}$	$t \ ({ m s})$	$p_{avg} \ ({ m bar})$	M_{avg} (Nm)	$a \ ({ m m/s}^2)$	FA	μ_{avg}	T_{DI} (°C)	T_{DF} (° C)	$rac{ u_{BS}}{(\mathrm{k/h})}$	
Ι	1											
$\nu_{BR}, \mathrm{k/h}$	0.51574	1										
$t, \ s$	0.3217	-0.2331	1									
p_{avg} , bar	-0.72	-0.4085	-0.6177	1								
M_{avg} , Nm	-0.1248	0.02363	-0.7637	0.56302	1							
$a, m/s^2$	-0.8166	-0.4436	-0.3143	0.68695	0.37326	1						
FA	0.23632	0.27401	-0.5021	0.39528	0.53345	-0.0836	1					
μ_{avg}	0.60763	0.35691	-0.0384	-0.4845	0.42343	-0.3228	0.05969	1				
$T_{DI}, ^{\circ}C$	-0.085	-0.5822	0.55409	-0.0108	-0.3209	-0.0586	-0.2746	-0.1878	1			
$T_{DF}, ^{\circ}\mathrm{C}$	0.0639	-0.5727	0.65602	-0.111	-0.3722	-0.1801	-0.2658	-0.1538	0.95168	1		
$\nu_{BS}, \mathrm{k/h}$	-0.5387	-0.827	0.45572	0.24735	-0.2633	0.41669	-0.5213	-0.4212	0.72165	0.72529	1	

			-	Regre	ssion stati	stics			
				Multiple R		0.988557			
				R square		0.977245			
				Adjustable	R square	0.975333			
				Standard e	rror	4.779327			
				Observatio	n	130			
					ANOVA				
			df	ss	MS	F	Significance F		
		Regressi	on 10	116736.8	11673.68	511.0629	9.9E-93		
		Differen	ce 119	2718.194 22.84197					
		Total	129	119455					
	Coefficie	ients Standar		t	P-value	Low	\mathbf{High}	Low	\mathbf{High}
			error	stat	1 varae	95%	95%	95.0%	95.0%
Intersection	130.119	91	14.29389	9.103124	2.48E-15	101.815	7 158.4224	101.8157	158.4224
Ι	-1.2761	12	0.140974	-9.05215	3.28E-15	-1.5552	6 -0.99697	-1.55526	-0.99697
$\nu_{BR}, \mathbf{k/h}$	-2.3920)5 (0.811133	-2.94902	0.003839	-3.9981	7 -0.78592	-3.99817	-0.78592
t, s	0.97700	68 (0.261734	3.733061	0.000292	0.45880	9 1.495327	0.458809	1.495327
p_{avg} , bar	0.5958	26 0	0.707493	0.842166	0.401384	4 -0.8050	1.996732	-0.80508	1.996732
$M_{avg},{ m Nm}$	0.0207	14 0	0.052575	0.393986	0.69429	6 -0.083	0.124818	-0.08339	0.124818
$a, m/s^2$	0.19052	21 (0.082325	2.314246	0.022369	0.02750	9 0.353534	0.027509	0.353534
FA	-0.019	8 (0.003499	-5.65948	1.07 E-07	-0.0267	3 -0.01287	-0.02673	-0.01287
μ_{avg}	27.5860	63 5	39.64322	0.695873	0.487865	-50.910	9 106.0842	-50.9109	106.0842
$T_{DI}, ^{\circ}C$	-0.2662	23	0.030705	-8.67055	2.58E-14	-0.3270	3 -0.20543	-0.32703	-0.20543
$T_{DF}, ^{\circ}\mathrm{C}$	0.3626	77 (0.027198	13.33464	2.26E-25	0.30882	2 0.416531	0.308822	0.416531

Table A.18. Multiple regression model statistics of the factors that contributed to the brake speed (for LCV).

Table A.19. The correlation coefficients between independent variables and average braking pressure (for PC).

	ν_{BS}	ν_{BS}	t	a	M_{avg}		T_{DI}	T_{DF}	T_{IPI}	T_{IPF}	T_{OPI}	T_{OPF}	p_{avg}
	(k/h)	(k/h)	(s)	(m/s^2)	(Nm)	μ_{avg}	$(^{\circ}C)$	$(^{\circ}C)$	$(^{\circ}C)$	$(^{\circ}C)$	$(^{\circ}C)$	$(^{\circ}C)$	(bar
$\nu_{BS}, \mathrm{k/h}$	1												
$\nu_{BR}, \mathrm{k/h}$	0.8647	1											
$t, \ s$	-0.2314	-0.2764	1										
$a, m/s^2$	0.2575	0.0204	-0.7113	1									
M_{avg} , Nm	0.2795	0.0638	-0.7091	0.9957	1								
μ_{avg}	0.0914	-0.1094	-0.4268	0.548	0.5257	1							
$T_{DI}, ^{\circ}C$	0.0675	-0.2759	-0.0146	0.4335	0.3963	0.4605	1						
$T_{DF}, ^{\circ}C$	0.3058	-0.07	-0.0628	0.5027	0.4728	0.4296	0.9552	1					
$T_{IPI}, ^{\circ}\mathrm{C}$	0.096	-0.2459	-0.0242	0.438	0.4023	0.4171	0.9914	0.9493	1				
$T_{IPF}, \ ^{\circ}\mathrm{C}$	0.0963	-0.2553	-0.0075	0.4322	0.3959	0.4306	0.9924	0.9499	0.9991	1			
$T_{OPI}, \ ^{\circ}\mathrm{C}$	0.0934	-0.2466	-0.0221	0.4333	0.3978	0.404	0.9878	0.9443	0.9994	0.9979	1		
$T_{OPF}, ^{\circ}\mathrm{C}$	0.1038	-0.2451	-0.0018	0.4273	0.3919	0.4022	0.9896	0.9518	0.9992	0.9986	0.9992	1	
p_{avg} , bar	0.2764	0.0926	-0.7198	0.9725	0.9798	0.3594	0.3235	0.4082	0.3393	0.3285	0.3375	0.3299	1

				Regres	ssion sta					
			М	ultiple R	2	0.99	987			
			R	square		0.99	974			
			A	djustable	R squar	e 0.99	973			
			St	andard e	error	0.73	315			
			0	bservatio	n	27	6			
				1	ANOVA					
			df	SS	MS	F	Signifi	cance F		
	Regress	sion	12	53554	4462.8	8339.	7	0	-	
	Differe	nce	263	140.74	0.5351					
	Total		275	53694						
	Coefficients	Star	ndard	t	P-	value	Low	\mathbf{High}	Low	High
		er	ror	sta	t	, and c	95%	95%	95.0%	95.0%
Intersection	38.016	1.1	1221	33.87	61	E-98	35.806	40.225	35.806	40.225
$\nu_{BS},~{\rm k/h}$	0.0517	0.0	0096	5.372	25 21	E-07	0.0327	0.0706	0.0327	0.0706
$\nu_{BR},~{\rm k/h}$	-0.0347	0.0	0077	-4.49	95 11	E-05	-0.0499	-0.0195	-0.0499	-0.0195
t, s	-0.4523	0.0	0548	-8.24	72 81	E-15	-0.5603	-0.3443	-0.5603	-0.3443
$a, { m m/s^2}$	1.3339	0.8	8919	1.493	56 0.	136	-0.4222	3.0901	-0.4222	3.0901
M_{avg} , Nm	0.0622	0.0	0036	17.22	22 51	E-45	0.0551	0.0693	0.0551	0.0693
μ_{avg}	-112.26	2.5	5994	-43.1	88 2E	-121	-117.38	-107.14	-117.38	-107.14
$T_{DI}, \ ^{\circ}\mathrm{C}$	0.034	0.0	0054	6.295	58 11	E-09	0.0234	0.0447	0.0234	0.0447
$T_{DF}, ^{\circ}\mathrm{C}$	-0.0117	0.0	0033	-3.59	99 0.	0004	-0.0181	-0.0053	-0.0181	-0.0053
$T_{IPI},^{\circ}\mathrm{C}$	-0.0395	0.0	0431	-0.91	48 0.3	3611	-0.1244	0.0455	-0.1244	0.0455
$T_{IPF}, ^{\circ}\mathrm{C}$	-0.0121	0.0	0247	-0.4	9 0.0	6245	-0.0609	0.0366	-0.0609	0.0366
$T_{OPI}, ^{\circ}\mathrm{C}$	0.1019	0.0	0431	2.367	73 0.	0186	0.0172	0.1867	0.0172	0.1867
T_{OPF} , °C	-0.0814	0.0	0354	-2.30	13 0.	0222	-0.1511	-0.0118	-0.1511	-0.0118

Table A.20. Multiple regression model statistics of the factors that contributed to average braking pressure (for PC).

Table A.21. The correlation coefficients between independent variables and average braking pressure (for LCV).

	Ι	ν_{BS} (k/h)	ν_{BR} (k/h)	t (s)	M_{avg} (Nm)	a (m/s^2)	FA	μ_{avg}	T_{DI} (° C)	T_{DF} (°C)	p_{avg}
Ι	1	(/)	(//	(-)	()	(/-)			(0)	(0)	()
$\nu_{BS}, \mathrm{k/h}$	-0.5387	1									
$\nu_{BR}, \mathrm{k/h}$	0.51574	-0.827	1								
t, s	0.3217	0.45572	-0.2331	1							
M_{avg} , Nm	-0.1248	-0.2633	0.02363	-0.7637	1						
$a, m/s^2$	-0.8166	0.41669	-0.4436	-0.3143	0.37326	1					
FA	0.23632	-0.5213	0.27401	-0.5021	0.53345	-0.0836	1				
μ_{avg}	0.60763	-0.4212	0.35691	-0.0384	0.42343	-0.3228	0.05969	1			
$T_{DI}, ^{\circ}C$	-0.085	0.72165	-0.5822	0.55409	-0.3209	-0.0586	-0.2746	-0.1878	1		
$T_{DF}, ^{\circ}\mathrm{C}$	0.0639	0.72529	-0.5727	0.65602	-0.3722	-0.1801	-0.2658	-0.1538	0.95168	1	
p_{avg} , bar	-0.72	0.24735	-0.4085	-0.6177	0.56302	0.68695	0.39528	-0.4845	-0.0108	-0.111	1

				Regre	ssion statis	stics			
				Multiple R		0.993268			
				R square		0.986581			
				Adjustable	R square	0.985454			
				Standard e	rror	0.61742			
				Observation	n	130			
					ANOVA				
			df	ss	MS	F	Significance F		
	Re	gression	10	3335.259	333.5259	874.9183	2.3E-106	_	
	Dif	ference	119	45.36376	0.381208				
	Tot	al	129	3380.623					
	Coefficient	s Star	ıdard	t	<i>P</i> -value	Low	High	Low	High
		er	ror	stat		95%	95%	95.0%	95.0%
Intersection	16.18699	1.89	02729	8.5522	4.87E-14	12.439	2 19.93478	12.4392	19.93478
Ι	-0.09253	0.02	22093	-4.18834	5.42E-05	-0.1362	-0.04879	-0.13628	-0.04879
$ u_{BS},{ m k/h}$	0.009944	0.01	1807	0.842166	0.401384	4 -0.0134	44 0.033323	-0.01344	0.033323
$ u_{BR},{ m k/h}$	-0.11271	0.10	8055	-1.04312	0.299009	-0.3260	67 0.101246	-0.32667	0.101246
t, s	0.192672	0.03	31068	6.201687	8.36E-09	0.13115	0.254189	0.131155	0.254189
M_{avg}, Nm	0.065653	0.00	3158	20.79209	1.98E-41	0.0594	0.071905	0.0594	0.071905
$a, m/s^2$	-0.05438	0.00	9662	-5.62858	1.23E-07	-0.0735	-0.03525	-0.07351	-0.03525
FA	0.001019	0.00	0501	2.036694	0.0439	2.83E-0	0.002011	2.83E-05	0.002011
μ_{avg}	-50.7501	2.16	55956	-23.4308	2.12E-46	-55.038	9 -46.4613	-55.0389	-46.4613
$T_{DI}, ^{\circ}\mathrm{C}$	0.022117	0.00)4644	4.762815	5.44E-06	0.01292	0.031312	0.012922	0.031312
T_{DF} , °C	-0.01913	0.00)5265	-3.63266	0.000415	-0.0295	5 -0.0087	-0.02955	-0.0087

Table A.22. Multiple regression model statistics of the factors that contributed to average braking pressure (for LCV).

Biographies

Abdullah Demir was born in Trabzon, Turkey in 1973. He received an MS degree from Marmara University in 1997 and PhD degree from Kocaeli University in 2009. He is now an Assistant Professor at the Mechanical Engineering Department of Marmara University. His research interests include power-train, vehicle test technique, transportation, and car-parking management. Ali Öz was born in Pozanti, Turkey in 1969. He completed his undergraduate education at Gazi University in 1993. He received his MS degree in 1997 and PhD degree in 2012 from Suleyman Demirel University, Turkey. He is currently an Assistant Professor at the Transportation Technologies Department of Mehmet Akif Ersoy University. His research interests include internal combustion engines, renewable energy, and occupational health and safety.