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Abstract. The application of superpopulation models to estimate population parameters
is an advantageous practice when recognizing the relationship between the study variable
and one or more auxiliary variables is a simple matter. This paper aims to estimate the �nite
population total under Ranked Set Sampling Without Replacement (RSSWOR) employing
the model relationship, especially Gamma Population Model (GPM), between the study
and auxiliary variables. Behavior of the proposed estimator, in terms of relative e�ciency,
is studied in the case of a constant 
 through Monte Carle experiment. The simulation
study demonstrates the superiority of the proposed estimator to existing estimators under
the same model. The sampling procedure, in particular, facilitates collecting data from a
continuous production process.
© 2021 Sharif University of Technology. All rights reserved.

1. Introduction

In the survey sampling literature, much attention
has been given to the design-based approach, which
assumes that the values of units in the population of
interest are �xed constants. However, in many real-life
situations, population values are generated as a result
of the realization of a set of stochastic variables with
speci�ed means and variances only, i.e., higher order
moments often remain unknown. Such populations are
called superpopulations and the statistical models for
them are called superpopulation models. Superpopu-
lation models facilitate sample selection, constructing
the estimators for population quantities of interest and
enhancing the precision of estimates. Superpopulation
model uses the relationship between the study variable
and the auxiliary variable(s) for sample values to
predict the population values of the non-sampled units,
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assuming that the selected sample is non-informative.
In the agriculture �eld, an estimate of the average
or total production of a certain crop can be obtained
using the relationship between the production and the
amount of fertilizer used or area under production.
Similar examples can be found in other �elds of
research, especially in business, economics, and social
and medical surveys. In the framework of model-based
inference, Fuller [1] attempted to estimate the �nite
population mean or total. Royall et al. [2,3] obtained
optimal model-unbiased estimators for the population
mean or total using Least Square (LS) estimation
methods and the well-known Gauss Markov theorem
using the regression population model. Discussion
on the model-based approach can be found in [4{11].
Royall [12] applied the linear LS prediction approach
to two-stage sampling. Hansen et al. [13] and Rao [14]
demonstrated the poor performance of the model-based
approach, especially in large samples under non-self-
weighting designs, even for small departure from the
model. Brewer and Gregoire [15] attempted to compare
the model-based approach with the model-assisted
approach. For a recent comparison between the model-



466 S. Ahmed and J. Shabbir/Scientia Iranica, Transactions E: Industrial Engineering 28 (2021) 465{476

based approach and the designed-based approach, see
[16]. An updated review of the model-based approach
can be found in [17]. Cheruiyot et al. [18] applied
this approach to predict the total and average numbers
of peoples with HIV/AIDS living in Nakuru Central
district in Kenya. Current work in this area can be
found in [19{24].

In the same era, many experts of survey sampling
have worked on e�cient methods of data collection.
Among them, Ranked Set Sampling (RSS) technique
is a good alternative in terms of Relative E�ciency
(RE) to Simple Random Sampling (SRS) for obtaining
experimental data that are truly representative of the
population under investigation. This is true across all
of the sciences including agricultural, biological, envi-
ronmental, engineering, physical, medical, and social
sciences. Because in RSS, measurements are likely to
be more regularly spaced than SRS. The RSS procedure
facilitates strati�cation of the entire population at
the sampling stage, i.e., we randomly select samples
from the subpopulations of small, medium, and large
units without constructing the subpopulations (strata)
in advance. RSS method, proposed originally by
McIntyre [25] to estimate mean pasture yields, has
recently been modi�ed by many authors to estimate the
population parameters. Dell and Clutter [26] showed
that the sample mean was an unbiased estimator for
the population mean under RSS for both perfect as
well as imperfect ranking. To take advantage of the
negative correlation between the observations, Patil et
al. [27] extended the idea of RSS for �nite population
assuming sampling without replacement. Muttlak [28]
suggested Median Ranked Set Sampling (MRSS) for
the estimation of �nite population mean. [29] used
Multi-Stage Ranked Set Sampling (MSRSS) to im-
prove the e�ciency of an estimator of the population
mean for certain values of the sample size. Although
Multi-Stage Ranked Set Sampling (MSRSS) leads to
improved estimators than what is possible to obtain in
RSS, this sampling scheme requires a large number of
population units to be ranked before actual quanti�-
cations. Mahdizadeh and Zamanzade [30] developed
a new variation in MRSS called Multi-Stage Paired
Ranked Set Sampling (MSPRSS) to reduce ranking
burden in MRSS and use it for estimation of bodyfat.
Many other authors have worked on estimation of
parameters in RSS (see [31{34] among others). RSS
has been applied, after modi�cations, for estimation of
di�erent population parameters such as mean, median,
distribution function, etc. Moreover, Haq et al. [35]
proposed a mixture of SRS and RSS for estimation of
population mean and median. Salehi and Jafari [36]
worked on the estimation of stress-strength reliability
with the help of record values obtained through the
RSS. Ahmed and Shabbir [37] suggested the extreme-
cum-median RSS for estimation of population mean by

sub-sampling non-respondents. Similarly, Priya and
Thomas [38] developed a method for estimation of
common location and scale parameters using suitable
RSS schemes. Mahdizadeh and Zamanzade [39] worked
on reliability estimation in Multi-Stage Ranked Set
Sampling (MSRSS) and [38] developed tests of perfect
rankings applied with binary data. Recently, D�umbgen
and Zamanzade [40] worked on estimation of cumula-
tive distribution function in RSS.

Predicting the nature of the behavior of some
future observations using the information contained
in sample and the previous knowledge about the
parameter involved in the density is an important
problem in statistical data analysis such as estimation
and inference, etc. The method is called Bayesian
prediction. It has many applications in quality control
and reliability engineering and biological sciences. One
might construct a desirable con�dence limit for the
future observations. A wide range of literature pieces
are available regarding predictive inference for future
observations. Some of the related works are cited as
[18,41{45].

Chambers and Clark [46] discussed model-based
estimation in detail under the application of di�er-
ent population models. The current paper discusses
Gamma Population Model (GPM) for estimation of
�nite population mean in SRS in Section 2. Ranked
Set Sampling Without Replacement (RSSWOR) is em-
ployed under the model-based approach to estimation
of di�erent superpopulation total in Section 3. A com-
parison between the proposed estimators and existing
ones is made using Monte Carle (MC) experiment in
Section 4. Section 5 concludes the paper.

2. Model-based estimation under SRS

Let Y and X denote the study and auxiliary variables,
respectively, for the corresponding units in population
U = fUi; i = 1; 2; :::; Ng. Let U be comprised of two
mutually exclusive sets s (set of sampled elements) and
�s (set of non-sampled elements) having n and (N � n)
elements, respectively. We assume the following three
population models:

1. yi = �+ �i (Homogenous Population Model, HPM)
2. yi = �xi + �ix
i (Gamma Population Model, GPM)
3. yi = �+ �xi + �i (Linear Population Model, LPM)

for i = 1; 2; :::; N ,

where yi, xi, and �i are the ith population values cor-
responding to the study variable Y , auxiliary variable
X, and the random error term �, respectively. The
random error term �i is iid with zero mean and constant
variance. Further, � and � are unknown constants
to be estimated using sample data. Here, 
 is the
rate parameter as Y varies with this rate; it may also
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be unknown, but is chosen in advance using expert
judgment or pilot surveys with cross validation. Many
studies on prediction under LPM are available in the
model-based estimation literature.

This study �rst brie
y discusses the estimation of
population total under HPM and GPM.

2.1. Homogenous Population Model (HPM)
Under HPM, we have the relationship yi = � + �i,
which assumes that there is no auxiliary variable at
design stage or/and estimation stage. We can express
the population total as:

Ty =
X
i2s

yi +
X
i2�s

yi: (1)

The notations
P
i2s and

P
i2�s show that the summa-

tion is applied over the samples s and �s, respectively.
A Best Linear Unbiased Predictor (BLUP) for Ty
suggested by Chambers and Clark [46] is as follows:

ty =
X
i2s

yi + E(ty�sjyi; i 2 s) = n�ys + (N � n)�ys

= N �ys; (2)

where ty�s =
P
i2�s yi. The prediction variance of ty, is

given by:

V ar(ty � Ty) = �2�N � n��N
n
�
; (3)

where �2 = 1
N
P
i2U (yi � �)2: Proof of Eq. (3) can be

found in [46].

2.2. Gamma Population Model (GPM)
When population under study is heterogeneous, the
estimator given in Eq. (2) may not work well. One pos-
sible way to overcome this de�ciency is strati�cation;
however, in some occasions, it is di�cult to stratify
the population according to certain strati�cation vari-
able(s), e.g., stratifying units in the production process
may cause destruction of units. In such a situation,
the best way to handle the problem of heterogeneity
is to search for an auxiliary variable that has some
correlation with the study variable. GPM deals with
such problems by controlling variance in the study
variate Y when there is a proportional relationship
between the study variable and some auxiliary variable
whose values for all population units are available in
advance. Another condition that must hold in such
a model is that the marginal distribution of sampled
and non-sampled values of Y for a given value of the
auxiliary variable should be the same. In other words,
by conditioning on X, we obtain a non-informative
sample [46]. Under GPM, we have a relationship

yi = �xi + �ix
i between Y and X. A BLUP for Ty
is given by:

tyg = tys + E
�
ty�sjyi; i 2 s;xi; i 2 U� = tys + btx�s;

(4)

where b =
P
i2s ciyi and ci = x1�2


iP
i2s x

2�2

i

for i =
1; 2; :::; n: The conditional expectation of tyg for the
given sample information is:

E(tygjxi; i 2 s) = �xi = � (say): (5)

This reveals that for �xed values of X, ty is unbiased
conditioning on values of X with conditional variance:

V ar(tygjxi; i 2 U) = V ar(tys) + t2x�sV ar

 X
i2s

ciyi

!
= �2

X
i2s

�
1 + �2x2�4


i
�
; (6)

where � = ty�sP
i2s x

2�2

i

. The variance goes down when
larger values of X are selected in the sample. Compar-
ing Eqs. (6) with (3), we see that V ar(tygjxi; i 2 U) <
V ar(ty) if:

n+ �
X
i2s

x1�2

i <

�
N � n��N

n

�
: (7)

The unbiasedness and e�ciency properties are com-
puted with respect to the model, although the total
estimator with gamma population under the design-
based approach is biased.

3. Model-based estimation under RSS

To obtain a more accurate dataset, [25] proposed the
RSS assuming that ranking small sets of units was
economical, while taking actual measurement from a
large sample was costly. This section provides the ap-
plication of a RSS scheme to the model-based approach
upon making some modi�cations and discussion on
estimation of population total in RSS assuming HPM
and GPM. Consider a �nite population U generated
from a superpopulation with mean �(i) and variance
�2

(i) for the ith ordered random variable y(i) for i 2 U .
For any given underlying superpopulation model:

1. Take sub-populations of size Nj for j = 1; 2; :::; t
from a superpopulation such that N =

Pt
j=1Nj ,

in which t is the number of cycles or time frame.
It is also assumed that every subpopulation is
large enough to select m2 units from them, i.e.,
Nj > m2. The concept of so-called sub-populations
is de�ned just for taking larger sets to ensure
that sampling is without replacement. For a valid
statistical inference, this division must be random
and independent of the survey variable;
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2. Select m2 units from each sub-population, i.e., units
produced at the same time on the same day can be
taken as sub-population in the production process;

3. Divide each m2 unit in m sets, each with size m,
and rank each set within itself according to some
ranking mechanism;

4. Select the ith ranked unit from the ith set for
i = 1; 2; 3; :::;m, and j = 1; 2; ::; t. In this way, a
RSSWOR of size tm is obtained. An illustration of
RSSWOR scheme is provided in Figure 1.

Figure 1 explains our sampling scheme assuming
that a �nite population of size N is coming from a
large superpopulation with speci�ed mean and variance
generated through the stochastic process. Top stream
of Figure 1 shows the continuous population. From
the �nite population of size N units, we consider
t di�erent cycles with sizes N1; N2; :::; Nt randomly,
leaving N �Pt

j=1Nj as non-sampled. For example,
in the production process (for quality control), one
might consider the units produced in 20 days as a �nite
population; then, we take t = 8 randomly selected days
as cycles. In this way, we are left with t so called
sub-populations. From each sub-population, we then
select m2 units for ranking, leaving (Nj � m2) units
from each sub-population as non-sampled. Finally, the
RSS is applied for selecting m units from each cycle by
returning the remaining m2 � m non-sampled units.
The total non-sampled units are obtained through

three di�erent stages, as shown in Figure 1.

Non-sampled = Non-sampled at Stage-1

+Non-sampled at Stage-2

+Non-sampled at Stage-3

= N �
tX

j=1

Nj +
tX

j=1

(Nj �m2)

+
tX

j=1

(m2 �m) = N � tm:

Let s be a set of tm units selected using the above
mechanism and �s a set of units that are not in s. A
ranked set sample, s, can be de�ned as:

s =
�
y1(1)1; :::; ym(m)1; :::y1(1)2; :::; ym(m)2; :::::::

y1(1)t; :::ym(m)t
	
:

3.1. RSS under HPM
To determine the ith population value of the study
variable Y , we have y(i) = �(i) + �(i) for i 2 U ,
where �(i) for all i 2 U is i.i.d with zero mean and
variance �2

(i). Hence E(y(i)) = 0, V ar(y(i)) = �2
(i), and

Cov(y(i); y(j)) = 0 for i 6= j, when y(i) and y(j) are
taken from di�erent ranked sets. The condition of zero
mean for error term hold and only some variables, other

Figure 1. Ranked Set Sampling Without Replacement (RSSWOR) layout for set size m and number of cycles t.
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than study variables, are ranked. Hence the ranking
process is considered judgmental rather than perfect
ranking. In this respect, consider a predictor for the
total population given in Eq. (1):

ty(rss) = ty(rss)s + ty�s; (8)

where ty(rss)s =
Pt
j=1

P
i2s yi(i)j and ty�s =

P
i2U yi �Pt

j=1
P
i2s yi(i)j : The problem is to predict ty�s using

the information at hand such that (i) E(ty(rss)�Ty) =
0, the prediction error, and (ii) E(ty(rss) � Ty)2, the
squared prediction error, are minimum. ty(rss) can be
expressed as a linear combination of the ranked data
as follows:

ty(rss) =
X
i2s

w(i)yi(i): (9)

To simplify the computation, we take t = 1, i.e., only
one cycle is performed.

ty(rss) � Ty =
X
i2s

w(i)yi(i) +
X
i2s

yi(i) �
X
i2s

yi(i) � Ty

=
X
i2s

�
w(i) � 1

�
yi(i) � ty�s; (10)

where (w(i) � 1) = u(i) (say) is the prediction weight
of the ith non-sampled unit. Taking expectation of
Eq. (10), we have:

E(ty(rss) � Ty) =
X
i2s

u(i)�(i) � (N �m)�: (11)

Therefore, ty(rss) will be unbiased when
P
i2s u(i)�(i) =

(N � m)�. Similarly, variance of ty(rss) � Ty can be
found as follows:

V ar(ty(rss) � Ty) = V ar

 X
i2s

u(i)yi(i) � ty�s

!

= V ar

 X
i2s

u(i)yi(i)

!
+ V ar(ty�s)

V ar(ty(rss) � Ty) =
X
i2s

u2
(i)�

2
(i) + (N �m)�2: (12)

Given that the sampled and non-sampled values are
independent, the covariance term on the right-hand
side of Eq. (12) is zero. The value of ui which provides
unbiased estimate of ty(rss) is u(i) = N�m

m .
Moreover, the second term in variance expression

is (N � m)�2 as there is no-ranking on non-sampled

data. Inserting the value of u(i) in variance expression,
we get:

V ar(ty(rss)�Ty)=
X
i2s

�
N �m
m

�2

�2
(i)+(N�m)�2

=
N
m

(N �m)�2 �
�
N �m
m

�2X
i2s

�2
(i)

= V ar(ty � Ty)�
�
N �m
m

�2X
i2s

�2
(i); (13)

where �(i) = (�(i) � �) and (m�2 � Pi2s �2
(i)) =P

i2s �2
(i). From Eqs. (3) and (13), it is clear that ty(rss)

is always more e�cient than ty.

3.2. RSS under GPM
Under GPM, the ith population value of the study
variable Y is expressed as y(i) = x[i]� + x
[i]�(i) for
i 2 U , where E(y(i)) = x[i]�, V ar(y(i)) = x2


[i] �
2
(i) and

Cov(y(i); y(j)) = 0 for i 6= j, when y(i) and y(j) are
taken from di�erent ranked sets. It is also assumed that
ranking is applied to the study variable itself (based
on personal judgment or some other mechanism). The
best predictor for ty�s is E

�
ty�sjy(i)i 2 s; x[i]; i 2 U�, see

[46] for detail.

ty(rss)g = ty(rss)s + E
�
ty�sjy(i)i 2 s; x(i); i 2 U�;

ty(rss)g = ty(rss)s +
X
i2�s

x[i]�: (14)

In Eq. (14) � is assumed unknown. A Best Linear
Unbiased Predictor (BLUP) b for � is obtained by
minimizing the following sum of squared error for
sample data with respect to b:X
i2s

e2
i(i) =

X
i2s

x�2

i[i]

�
yi(i) � xi[i]b�; (15)

which is given by b =
P
i2s q(i)yi(i), where q(i) =

x1�2

i[i]P

i2s x
2�2

i[i]

and the resulting estimator is:

ty(rss)g = ty(rss)s +
X
i2�s

x[i]b:

Inserting the value of b to the above and simplifyin the
previous relations, we get:

ty(rss)g =
X
i2s

�
1 + �x1�2


i[i]

�
y(i); (16)

where � = tx�sP
i2s x

2�2

i[i]

. It is now clear that ty(rss)g is

unbiased with respect to variance, given by:
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V ar(ty(rss)gjx[i]; i 2 U) = V ar

 X
i2s

��[i]y(i)

!
=
X
i2s

��2[i]�
2
(i) = �2

X
i2s

��2[i] �
X
i2s

��2[i]�
2
(i); (17)

where ��[i] = 1 + �x1�2

i[i] . We can also express Eq. (17)

as:

V ar(ty(rss)gjx[i]; i 2 U) = V ar(tygjx[i]; i 2 U)

�X
i2s

��2[i]�
2
(i);

where �(i) = �(i) � �. This provides that ty(rss)g is
more e�cient than its counterpart in SRS.

In this section, GPM is considered a general
population model for situations where the values of the
study variable generated from the stochastic process
are proportional to the corresponding values of the
auxiliary variable. Further the variation in Y depends
on the value of X
 , where 
 is the rate parameter
that controls how much the variation in Y depends
on X. Chambers and Clark [46] suggested choosing
the value of gamma out of 0 and 1. Ratio population
model is a particular case of the GPM for 
 = 1

2 .
We can derive BLUP in RSS for the ratio population
model by inserting 
 = 1

2 . In practical data sets
the value of 
 can be guessed using the scatter plot
or through the value of correlation coe�cient between
X and Y . Similarly, by setting 
 = 0 and adding
the intercept term the GPM is reduced to LPM. In
the subsequent section, real world data are used to
check the e�ciency of the proposed estimators for
determining the population total.

4. MC study

To make a comparison between the models in terms of
e�ciency, MC experiment was employed by generating
hypothetical data on variable X and obtaining Y using
the relationship Y = �2X + X
e for 
 = 0:3; 0:5; 0:8,
where e is an i.i.d error term, normally distributed with
zero mean and variance �2 with � = 0:7. The data
on X is generated from gamma distribution assuming
di�erent combinations of parameters a and b. Figure 2
provides di�erent shapes of gamma distribution for
the given combinations of parameters. A RSSWOR
procedure is obtained by using the steps given in
Section 3. The estimators for the sample total under
the ranked set sampling with replacement for HPM and
GPM models are obtained. For e�ciency comparison,
we also obtain an SRSWOR of size n = tm. Repeat
the sampling process 10,000 times to obtain bias and
variances of the proposed estimators. The Absolute
Biases (ABs) of the total estimators are obtained from

Figure 2. E�ect of distribution parameters on e�ciency.

the designed-based point of view as the unbiasedness is
conditioned on X. The RE of the suggested estimators,
is given by:

REr =
V ar(ty)
MSE

�
tyg
� ; RErss =

V ar
�
ty
�

MSE
�
ty(rss)

� ;
and:

RER:rss =
V ar

�
ty(rss)

�
MSE

�
ty(rss)g

� :
Tables 1{3 provide the RE and AB of the proposed
estimators. Di�erent sections of Tables 1{3 are con-
structed for gamma distribution G(a; b) for di�erent
combinations of a and b.

The results can be interpreted in the following
ways:

� It is clear that the RE rates of ty(rss)g and tyg both
are high when 
 = 1=2 as compared to the RE for
other choices of gamma. It is suggested that the
proposed estimator be used in case of a proportional
relationship between the two variables with 
 = 1=2;

� The RE of the estimator depends on the shape
of the population from which X is generated. If
the ratio a=b increases then the performance of the
proportional model increases more than that of the
HPM;

� According to di�erent sections of Tables 1{3, i.e.,
G(2; 6) and G(4; 2) have the lowest and highest
e�ciencies, respectively, with respect to their com-
petitors with other combinations. In other words,
it can be inferred that the relative performance of
GPM model is higher for skewed populations than
that for the HPMs;

� In case of fat tail distribution, the predictors under
GPM had the worst performance than their counter-
parts under HPM for both SRSWOR and RSSWOR;
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Table 1. Absolute bias and relative e�ciency of proposed estimators for 
 = 0:3.

Bias and RE for 
 = 0:3
r m REr RErss RER:rss AB.srs AB.rss

G(2; 2)

5
2 2.7477 1.0162 2.4882 60.4370 74.3182
5 8.4049 1.0416 7.8941 13.3828 28.1902
8 14.2844 1.0674 12.5380 3.6897 15.7625

10
2 6.4891 1.0371 6.0193 16.6093 37.0989
5 18.7730 1.0968 15.9923 14.8950 12.1114
8 28.1957 1.1624 25.2679 40.2373 8.4270

G(2; 3)

5
2 1.9541 1.0162 1.7817 39.3351 49.5385
5 5.9852 1.0416 5.5614 9.2946 19.1030
8 10.0640 1.0673 8.7772 1.7740 10.4089

10
2 4.5732 1.0371 4.2278 10.4029 24.9263
5 13.3438 1.0967 11.1148 9.1333 8.4639
8 20.4853 1.1623 17.5920 25.9294 6.0248

G(2; 6)

5
2 0.7002 1.0162 0.6532 18.2332 24.7587
5 2.1652 1.0416 1.9770 5.2064 10.0158
8 3.5829 1.0665 3.1030 0.1417 5.0553

10
2 1.6207 1.0370 1.5014 4.1965 12.7538
5 4.7780 1.0962 3.8859 3.3716 4.8163
8 7.6737 1.1615 6.1247 11.6216 3.6227

G(4; 2)

5
2 6.6740 1.0162 6.5199 70.2027 71.4624
5 18.6256 1.0414 17.5572 3.7536 26.4852
8 30.0509 1.0678 28.2431 32.0967 20.8870

10
2 14.6985 1.0371 13.7490 14.6898 36.9738
5 37.2922 1.0969 34.4925 50.2069 13.9068
8 52.2661 1.1625 54.6377 96.6559 8.0505

G(4; 3)

5
2 5.4981 1.0162 5.3625 46.4492 47.4090
5 15.4862 1.0413 14.5785 2.2278 16.6957
8 24.8446 1.0677 23.5442 22.2571 13.2721

10
2 12.2151 1.0371 11.3978 9.7364 24.3884
5 31.2106 1.0969 28.5025 33.9727 8.7211
8 45.2124 1.1624 44.7444 64.8684 4.4050

G(4; 6)

5
2 2.8007 1.0162 2.7367 22.6957 23.3556
5 8.0255 1.0412 7.5142 0.7021 6.9062
8 12.8020 1.0676 12.1435 12.4175 5.6571

10
2 6.3329 1.0371 5.8753 4.7830 11.8029
5 16.5931 1.0968 14.5284 17.7384 3.5353
8 26.1513 1.1619 22.3871 33.0809 0.7596
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Table 2. Absolute bias and relative e�ciency of proposed estimators for 
 = 0:5.

Bias and RE for 
 = 0:5
r m REr RErss RER:rss B.srs B.rss

G(2; 2)

5
2 4.1635 1.0162 3.8755 26.3349 38.4283
5 11.7600 1.0416 10.8376 0.2269 14.6806
8 19.0647 1.0674 16.6432 12.6135 7.0302

10
2 9.0123 1.0371 8.3368 0.3577 19.2577
5 24.6040 1.0968 20.8750 22.0938 5.2963
8 34.8054 1.1624 32.5903 45.1165 3.7419

G(2; 3)

5
2 2.4424 1.0162 2.2918 16.6708 25.5938
5 6.9412 1.0416 6.3435 0.4148 9.9228
8 11.2630 1.0673 9.7110 8.0589 4.2787

10
2 5.2569 1.0371 4.8709 0.7021 12.7774
5 14.6075 1.0967 12.1113 14.1533 3.5794
8 21.8860 1.1623 19.0112 29.5143 2.5279

G(2; 6)

5
2 0.6876 1.0162 0.6540 7.0068 12.7592
5 1.9717 1.0416 1.7872 0.6028 5.1650
8 3.2106 1.0665 2.7341 3.5042 1.5272

10
2 1.4733 1.0370 1.3731 1.7620 6.2971
5 4.1606 1.0962 3.3897 6.2128 1.8626
8 6.6925 1.1615 5.3228 13.9122 1.3139

G(4; 2)

5
2 11.6353 1.0162 11.3209 30.6179 36.0369
5 30.9743 1.0414 29.1134 10.1908 12.5094
8 47.6155 1.0678 46.2887 39.1973 11.9721

10
2 24.7812 1.0371 23.0511 3.4527 20.0803
5 57.9638 1.0969 55.5549 56.0029 7.7684
8 72.2816 1.1625 85.5164 98.7919 4.2145

G(4; 3)

5
2 8.2487 1.0162 8.0154 20.4934 24.2274
5 22.1472 1.0413 20.7583 6.4045 7.8630
8 34.1948 1.0677 33.1922 26.5797 8.0502

10
2 17.6948 1.0371 16.4005 1.6694 13.8710
5 42.7483 1.0969 39.5368 37.2152 5.1830
8 57.7674 1.1624 60.4255 65.7651 2.3580

G(4; 6)

5
2 3.2104 1.0162 3.1190 10.3689 12.4179
5 8.7104 1.0412 8.1194 2.6182 3.2166
8 13.6275 1.0676 13.0141 13.9622 4.1283

10
2 6.9433 1.0371 6.4016 0.1139 7.6617
5 17.7594 1.0968 15.3926 18.4274 2.5975
8 27.7148 1.1619 23.3248 32.7382 0.5016
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Table 3. Absolute bias and relative e�ciency of proposed estimators for 
 = 0:8.

Bias and RE for 
 = 0:8
r m REr RErss RER:rss B.srs B.rss

G(2; 2)

5
2 2.9772 1.0162 2.9319 0.7295 11.7680
5 7.8813 1.0416 7.3193 6.4027 6.8744
8 13.0466 1.0674 11.2503 17.6501 2.4392

10
2 6.1334 1.0371 5.7045 9.8893 6.0968
5 16.3307 1.0968 13.8569 25.1742 3.3341
8 24.7321 1.1624 22.0765 46.4994 2.8797

G(2; 3)

5
2 1.3124 1.0162 1.2942 0.7727 9.2188
5 3.4763 1.0416 3.2281 2.4282 5.9425
8 5.8088 1.0673 4.9801 10.6486 1.9791

10
2 2.7028 1.0371 2.5220 6.4683 4.7646
5 7.3178 1.0967 6.1311 15.0885 3.1778
8 11.7379 1.1623 9.8098 29.6435 2.7129

G(2; 6)

5
2 0.2952 1.0162 0.2914 0.8158 6.6696
5 0.7815 1.0416 0.7259 1.5462 5.0106
8 1.3146 1.0665 1.1239 3.6471 1.5191

10
2 0.6073 1.0370 0.5688 3.0473 3.4325
5 1.6602 1.0962 1.3828 5.0029 3.0215
8 2.7646 1.1615 2.2174 12.7877 2.5461

G(4; 2)

5
2 19.0692 1.0162 18.5281 7.1291 4.0326
5 48.3596 1.0414 45.5339 24.8539 2.3440
8 70.4115 1.0678 72.8449 48.5345 1.7598

10
2 38.7544 1.0371 36.2560 21.4485 4.0871
5 83.1682 1.0969 85.3838 63.7828 0.5404
8 90.1236 1.1625 127.4162 103.5377 2.0718

G(4; 3)

5
2 9.4384 1.0162 9.1597 5.7765 2.1612
5 24.1982 1.0413 22.6224 16.4848 2.9508
8 36.5374 1.0677 36.3521 33.6606 0.9746

10
2 19.2451 1.0371 17.9593 14.0669 3.0742
5 45.4154 1.0969 42.6479 42.8306 0.9760
8 59.2750 1.1624 64.0248 69.4480 2.4260

G(4; 6)

5
2 2.5469 1.0162 2.4673 4.4240 0.2897
5 6.5779 1.0412 6.1133 8.1157 3.5577
8 10.2535 1.0676 9.8319 18.7867 0.1893

10
2 5.1960 1.0371 4.8419 6.6852 2.0612
5 13.2630 1.0967 11.5543 21.8784 1.4116
8 20.9691 1.1619 17.4367 35.3583 2.7801
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� It can also be noticed that RE i.e. RER (ratio),
RErss (RSS), and RER:rss (ratio estimator in RSS)
are all increasing functions of the set size (m) and
the number of cycles (t);

� The last two columns of Tables 1{3 provide ABs
of the total estimators under gamma population in
SRSWOR and RSSWOR. AB of the total estimator
decreases with increase in set sizes m and number
of cycles r in the RSSWOR scheme;

� ABs are relatively smaller in case of 
 = 1=2 in the
ratio population model.

5. Concluding remarks

A new version of RSS for obtaining a sample with-
out replacement under the Gamma Population Model
(GPM) (general form of proportional population
model) was introduced. Figure 1 shows an image
of the Ranked Set Sampling Without Replacement
(RSSWOR) which assumes that the �nite population
derives from an in�nite superpopulation in the stochas-
tic process with �nite mean and variance. It was also
assumed that a population could be generated from
di�erent points, i.e., cycles, and the m sets taken from
one cycle were totally di�erent from the m set in other
cycles. After selecting a sample using RSSWOR, the
model relationship between the study variable and the
auxiliary variable was used to predict the non-sampled
values while obtaining a point predictor for the popula-
tion total. The mathematical expressions and Monte-
Carlo experiment both supported the superiority of
the predictor under RSSWR to the total predictor
under SRSWOR for GPM and Homogenous Population
Model (HPM). Hence, the proposed predictors may
perform well for the process controls to construct
control charts given that in such situations, there are
highly dimensional data in terms of the number of
observations. They are applicable to social surveys
conducted on social media in which one deals with a
large population with unending size.
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