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Abstract. The present study deals with adaptive detection of radar target signal with
an unknown amplitude embedded in Gaussian interference that has been modeled as an
AR process. Application of such a model to the interference decreased the number of
parameters to be estimated; therefore, less or even no secondary data were required to
obtain a detector with the desired performance. Herein, detection was accomplished based
on only the primary data. The authors resorting to the modern Kalman �ltering technique
developed the conventional GLRT-based detection in the presence of AR interference and
proposed two new detectors: AREKF based on extended Kalman �lter and ARUKF based
on unscented Kalman �lter. The performance assessment conducted by Monte Carlo
simulation compared the proposed detectors with the existing ones based on the generalised
likelihood ratio test and Kalman �lter. The results revealed that the ARUKF detector
could signi�cantly outperform other detectors in terms of detection for both small number
of primary datasets and high Signal-to-Noise Ratio (SNR).

© 2021 Sharif University of Technology. All rights reserved.

1. Introduction

The present study considers a coherent pulsed radar
that transmits a train of pulses to detect targets
around the radar. After pre-processing and sampling
the received signal in the receiver, a data vector is
formed that comprises N successive returned samples
from range Cell Under Test (CUT). One of the most
important challenges while dealing with the problem
of radar target detection is the lack of accurate in-
formation of interference (clutter plus noise). Even if
we suppose that the interference has Gaussian model,
there is usually not enough information about the
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covariance matrix of interference; hence, optimum
Neyman-Pearson detector is not implementable.

A conventional method for tackling the mentioned
problem is to use Generalised-Likelihood-Ratio-Test
(GLRT) based detectors such as Kelly [1], Adaptive
Matched Filter (AMF) [2], and two-dimensional detec-
tor [3] in which the covariance matrix of interference
is estimated through Maximum Likelihood (ML) ap-
proach. In these and similar types of detectors, the
covariance matrix is generally estimated from a num-
ber of independent and identically distributed sample
vectors achieved through receiving data from the range
cells adjacent to the CUT. For appropriate estimation,
these samples, often called training or secondary data,
must contain only the same interferences as the CUT.
Of note, the accuracy of the ML estimation relies on
the amount of data used for estimation. For good and
reliable estimation, K > 2N secondary data vectors
are required [4]. Unfortunately, in some applications
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such as airborne radar, providing a su�cient number
of secondary data vectors to achieve a detector with
satisfactory performance may be impractical due to
clutter heterogeneity or outliers [5].

Some solutions have been already addressed in
the literature with less or even no need for secondary
data for target detection such as resort to covariance
matrix estimation through the Bayesian approach [6].
Another approach is to apply the structural informa-
tion (in addition to the Hermitian property) about
the covariance matrix such as circulant structure [7],
Toeplitz property [8], and especially Auto-Regressive
(AR) model [9,10]. An interesting idea was addressed
in this study: assuming the AR model for interference
is equivalent to considering a model with a speci�c
analytical structure for the interference covariance
matrix. Fortunately, for the interference modeled as an
AR process, the model order is rather low in terms of
practical applications of radar and active sonar ranging
from two to �ve in the former applications, and it has
been chosen up to eight in the latter applications [11].
To �nd a detector with the desired performance, the
AR model for the interference decreases the number of
parameters to be estimated; therefore, less or even no
secondary data was needed.

In recent years, using the clutter with the AR
model has received substantial attention in the liter-
ature. In [9], Kay presented a GLRT-based adaptive
detector using an AR model for the interference with
the assumption that the target signal is completely
known. In [12], a GLR detector of radar target with an
unknown amplitude embedded in the interference with
AR model was introduced in which only the primary
data from a pulsed radar with a single antenna was
used. This detector was developed using the secondary
data in [13], a multichannel radar in [14], and a Multi-
Input Multi-Output (MIMO) radar in [15]. In [16],
the problem of detecting the range-distributed targets
in the presence of structured interference modeled as
an AR Gaussian process was investigated with no
secondary data and therein, both the clutter homo-
geneity and heterogeneity in the cells under test were
taken into account. Given the interference with the
AR model in [17], the model coe�cients were �rst
estimated using some methods such as Yule-Walker.
Then, the inverse covariance matrix of the interference
was obtained by those coe�cients, and AR-model-
based adaptive detection was performed by GLRT de-
tector. In [18], the GLRT-based detection of a moving
target embedded in non-homogeneous environments
with distributed MIMO radars was considered, and the
interference was modeled as an AR process. Moving
Target Detection (MTD) was extended in [19] to the
distributed MIMO radar on moving platforms with the
consideration of the e�ects of platform motion and
estimation of the order of AR process. In [20], the

AR spectral estimation and its application on weak
target detection were investigated based on the fractal
properties of sea clutter in the power spectrum domain
regarded as an AR process. The multichannel AR
model for the interference was used in Space-Time
Adaptive Processing (STAP) for phased array radar
applications. This model was employed in [21,22]
to propose the parametric detectors containing AMF,
Rao, and GLRT.

According to the aforementioned detectors, mod-
eling the interference as an AR process is conventional
and acceptable in adaptive radar target detection. In
this category of detectors, unknown parameters are
usually estimated through the ML approach. Although
the ML estimation is featured by useful properties
such as asymptotically e�ciency and consistency, its
accuracy depends on the length of the data set which
is operationally �nite and inadequate. Therefore, it
may be possible to achieve better results using optimal
�ltering techniques. The linear relationship between
the received signal and interference as well as recursive
form of the interference modeled as an AR process
was the incentive to form a Gauss-Markov model and
estimate the AR model coe�cients by Kalman Filter
(KF). Although the KF is widely applied in some �elds
such as tracking [23, and references therein], and [24,25]
it has received little attention in the �eld of radar
target detection. This study later reveals that use
of KF in the estimation procedure will signi�cantly
improve the detection performance, especially in case of
no secondary data and limited primary data. Another
advantage of KF in online radar detection is that due
to the sequential processing of the estimator, if the
estimation operation stops during its execution (for any
reason such as expiring the processing time), the result
of processing will not be corrupted and an estimation
of the intended parameters is available.

In this study, based on the modern Kalman �lter-
ing technique, the conventional GLRT-based detection
was developed in the presence of AR interference.
To this end, a coherent pulsed radar with a single
antenna was employed that used N successive returned
samples from the CUT for adaptive detection of a likely
slow uctuating target embedded in the interference
modeled as an AR complex Gaussian process. Herein,
the detection is performed with no secondary data,
and the unknown parameters contain the complex
amplitude of the target signal as well as the variance of
the white noise and coe�cients of the AR model. In the
detector proposed in [26], the AR model coe�cients are
estimated using the KF. The problem of this method,
which will be further discussed in the next section, is
that the observation equation in Gauss-Markov model
is naturally nonlinear which is approximated to a linear
equation by substituting some state variables from the
previous stage. To overcome this problem in this study,
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the Extended KF (EKF) and Unscented KF (UKF)
were employed, indicating that these methods outper-
formed those presented in [12,26]. In addition, the
detector based on the UKF signi�cantly outperformed
others in terms of detection for the small number of pri-
mary data sets and high Signal-to-Noise Ratio (SNR).

The rest of this paper is organized as follows. The
next section is dedicated to modeling the signal and
interference and a brief review of conventional GLRT-
based detection in the presence of AR interference.
Section 3 addresses the estimation of the AR model
coe�cients using the KF and proposed detectors based
on EKF and UKF. Section 4 evaluates the performance
of the proposed detectors using Monte Carlo simulation
and compares it with other detectors. Finally, Section 5
concludes this study.

2. Problem statement and GLRT-based
detection

Consider a coherent pulsed radar with a single antenna
that transmits a train of pulses. The receiver forms a
primary data vector containing N successive returned
samples from the CUT in one Coherent Processing
Interval (CPI) for adaptive target detection in that
CUT. Hence, a binary hypothesis test problem shows
up:(

H0 : y = n
H1 : y = n + �s

(1)

where y =
�
y1 y2 � � � yN

�T 2 CN�1 is the data
vector received from the CUT with T denoting the
transpose operator. This vector under H0 contains only
the interference vector n =

�
n1 n2 � � � nN

�T 2
CN�1 and includes the target vector as well as the
interference under H1. The target is modeled as
�s 2 CN�1, where � is a complex amplitude as-
sumed to be deterministic and unknown, and s =�
1 ej� ej2� � � � ej(N�1)�

�T 2 CN�1 is a known
vector corresponding to the known Doppler shift of
target. On the radars, the known Doppler shift
assumption is common [1,4,27], mainly due to the use of
�lter banks in the classical radars and extraction of the
signal spectrum using Fast Fourier Transform (FFT)
in the digital radars based on new signal processing
techniques. The interference assumed to be an AR
complex Gaussian process with a known model order
M(M < N) is obtained from:

nn =
MX
j=1

ajnn�j + wn: (2)

The interference vector is represented by n �
ARN(a; �2;M), where both of the coe�cient vector
a = [a1 a2 � � � aM ]T and variance �2 belonging to the

complex white Gaussian noise wn are deterministic and
unknown. The Probability Density Function (PDF) of
the received vector under two hypotheses H0 and H1
and the ratio of likelihood functions can be written as
follows [12]:

fy(yjHi;a; �2; � = �i)

�= 1
�N�2N exp

8><>:� 1
�2

NX
n=M+1

������yin� MX
j=1

ajyin�j

������
2
9>=>; ;

i = 0; 1; (3)

L(y) =
fy(yjH1;a; �2; �)

fy(yjH0;a; �2; � = 0)
; (4)

where:

yin =

(
yn under H0 (i = 0)
yn � �sn under H1 (i = 1)

�i =

(
0 under H0 (i = 0)
� under H1 (i = 1)

and sn is the nth element of vector s. Note that
the implementation of the optimum Neyman-Pearson
detector requires perfect knowledge of the interference
covariance matrix as well as the target amplitude [28].
Here, due to the unknown parameters fa; �2; �g in
the above ratio, realization of the optimum Neyman-
Pearson detector is not possible. However, with
a proper estimation of these parameters under any
hypothesis, we can obtain a suboptimum detector with
the following test statistic:

Lsubopt(y) =
fy
�
yjH1; â1; �̂2

1 ; �̂
�

fy (yjH0; â0; �̂2
0 ; � = 0)

?H1
H0

�: (5)

The ML estimates of � under H1 and also �2 under H1
and H0 were used so that the test statistic (5) would
yield the following [12]:

�̂2
0
�̂2

1
?H1

H0
�; (6)

�̂2
0 =

1
N
ku�Yâ0k2 ; (7)

�̂2
1 =

1
N
ku0 �Y0â1k2 ; (8)

where:

u =
�
yM+1 � � � yN

�T ; (9)
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Y =

264 yM � � � y1
...

. . .
...

yN�1 � � � yN�M

375 ; (10)

u0 = Hu; Y0 = HY; (11)

where H is the projection matrix of the null space of  
which is de�ned as:

H = I�   
H

 H 
; (12)

 =
�
1 ej� ej2� � � � ej(N�M�1)�

�T : (13)

The superscript H denotes the conjugate transpose
operator, and I is the identity matrix. In addition,
the noise variances namely �̂2

0 and �̂2
1 under H0 and H1

can be obtained by substituting the ML estimations â0
and â1 in Eqs. (7) and (8). Then, by substituting �̂2

0
and �̂2

1 into Eq. (6), the GLRT detector based on the
ML estimation of unknown parameters is derived and
called ARGLR [12].

This study used the Kalman-based �lter for
estimating the coe�cients â0 and â1, employed to
�nalize test Eq. (6) and proposed a new detector. Of
note, in [26], the coe�cients of the AR model were
estimated using the conventional KF approximately,
and the achieved detector was called ARKD. Since the
data model is non-linear, the EKF and UKF were used
for estimating the AR model in this paper and the
results revealed that the obtained detectors exhibited
better performance.

3. Detection based on Kalman estimates of
interference parameters

In this section, the EKF and UKF are employed to
estimate the unknown coe�cients of the AR model
used in Eqs. (7) and (8) and substitute these esti-
mates in Eq. (6) which resulted in two new detectors.
Modeling the interference as an AR process provides
a group of equations that are appropriate for better
realization of the Kalman family �lters with high accu-
racy and ability in estimating the unknown parameters
of AR model. The �rst stage in achieving KF is
to de�ne the state variables and obtain the suitable
Gauss-Markov equations. As mentioned earlier, y =�
y1 y2 � � � yN

�T denotes the data vector received
from the CUT and contains the interference n =�
n1 n2 � � � nN

�T . Under both hypotheses, we can
write nn = yn � �sn, n = 1; � � � ; N (note that under
H0, � = 0) and substitute it into Eq. (2) which results
in the following recursive relation:

yn =a1(yn�1 � �sn�1) + a2(yn�2 � �sn�2)

+ aM (yn�M � �sn�M ) + �sn + wn: (14)

In this equation, wn is the complex white Gaussian
noise of the AR model with variance �2, and � and sn
are the complex amplitudes and the nth element of the
target vector, respectively. For indices n � 0, yn and sn
are considered equal to zero. Here, � and a1 to aM are
unknown parameters; hence, the state vector at time n
is considered as xn =

�
a1n a2n � � � aMn �n

�T =�
aTn �n

�T . As observed in Eq. (14), yn cannot be
displayed as a linear combination of state variables
which is the main idea behind using the EKF and
UKF. In fact, the measurement equation has a non-
linear form as follows:
yn = hn(xn) + wn: (15)

However, in order to obtain the other equation of
Gauss-Markov model, we assume that during a CPI,
the AR model coe�cients belonging to the interference
of the CUT are almost time invariant. Moreover, the
slow target uctuation was taken into consideration to
�x the target amplitude. Therefore, the state vector
is assumed to be �xed within the CPI, and the system
dynamic equation can be written as follows:

xn+1 = xn + vn; (16)

where vn is a complex white Gaussian noise with
covariance matrix Qn, as shown in the following:

Qn =
�
q2
nIM 0
0 q

02
n

�
; (17)

where q2
n and q

02
n are the variances of the deviations

of the AR model coe�cients and target amplitude,
respectively. It is clear that consideration of vn makes
small changes in the AR model coe�cients and target
signal amplitude during the implementation of the
KF steps. Here, the Gauss-Markov equations can be
expressed as follows:(

xn+1 = xn + vn
yn = hn(xn) + wn

n = 1; � � � ; N: (18)

The nonlinear form of Gauss-Markov equations was
taken into account to estimate the state vector xn
based on the EKF and UKF algorithms using only the
primary data.

3.1. Detector based on EKF
Suppose that x̂njn�1 is the prediction of the state
vector xn based on the received data until time n � 1,
namely

�
y1 y2 � � � yn�1

�T . In the EKF, non-linear
function hn(xn) in Eq. (18) is changed into a linear
equation in terms of the state variables using Taylor
expansion around the point xn = x̂njn�1, as shown in
the following:

hn(xn)=hn(x̂njn�1)+
@hn
@xn

����
xn=x̂njn�1

(xn�x̂njn�1):
(19)
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In this case, since the variation (xn� x̂njn�1) becomes
small, the second and higher order terms in the expan-
sion are supposed to be negligible. By de�ning:

Hn =
@hn
@xn

����
xn=x̂njn�1

; (20)

and through the de�nition hn(xn) in Eq. (15), we have:

Hn =

266666664
yn�1 � �̂njn�1sn�1
yn�2 � �̂njn�1sn�2

...
yn�M � �̂njn�1sn�M

sn � â1njn�1sn�1 � â2njn�1sn�2 � : : :� âMnjn�1sn�M

377777775
T

:
(21)

Thus, the equations of the EKF in the measurement-
update algorithm denoted by x̂njn are given below:

x̂njn = x̂njn�1 + Ln
�
yn � hn �x̂njn�1

��
;

Ln = Pnjn�1Hn
�
HH
n Pnjn�1Hn + �2

n
��1 ;

Pnjn =
�
I� LnHH

n
�
Pnjn�1; (22)

where �2
n is the variance of the white noise wn in the

AR models (2) and (18) that can be time-varying in
the proposed method.

According to the linear form of the system equa-
tion in Eq. (18), the equations of the EKF in the time-
update algorithm or prediction are as follows:

x̂njn�1 = x̂n�1jn�1;

Pnjn�1 = Pn�1jn�1 + Qn: (23)

In the above equations, P denotes the covariance
matrix of that state estimate in each stage. Since the
variance �2

n and covariance matrix Qn are not available
in a practical sense, during the implementation of the
KF algorithm, we can adaptively estimate these values
with moment estimation. Based on Eq. (15), �2

n can
be written as follows:

�2
n = E

�
(yn � hn(xn))H(yn � hn(xn))

	
; (24)

where E denotes the expectation value operator. The
moment estimation of �2

n is obtained as follows [9]:

�̂2
n =

1
K

nX
k=n�K+1

E
n�
yk � hk �x̂kjk�1

��H
�
yk � hk�x̂kjk�1

��o
: (25)

Based on the simulation investigation, we suggest K =
3 which should be temporarily assumed to be K = n

for n < 2 to prevent k from being negative. Similarly,
through Eq. (16), Qn can be expressed as follows:

Qn = E
�

(xn+1 � xn)(xn+1 � xn)H
	
: (26)

Thus, the moment estimation of Qn can be obtained
as follows:

Q̂n =
1
K

nX
k=n�K+1

E
n�

x̂k+1jk+1 � x̂kjk
�

�
x̂k+1jk+1 � x̂kjk

�Ho; (27)

where K is supposed to be acting as before.
After running the EKF, the AR model coe�cients

(of the interference) are estimated, and by substituting
them in Eqs. (7) and (8), the noise variance of the AR
model is estimated under both hypotheses as follows:

�̂2
0 =

1
N
u�YâN jN

2 ; (28)

�̂2
1 =

1
N
u0 �Y0âN jN

2 : (29)

Finally, by substituting �̂2
0 and �̂2

1 in Eq. (6), the �rst
proposed detector can be obtained called AREKF.

3.2. Detector based on UKF
Unlike the EKF, UKF has no need for equation lin-
earization and the required means for implementing
the KF algorithm is obtained by simulation. Assuming
that we have l state variables, to run each step of the
�lter, we use M = 2l+1 weighted samples (called sigma
points) whose weights are determined as follows:

w0 =
�

l + �
; wi=

1
2(l + �)

; i=1; 2; � � � ; 2l:
(30)

Moreover, in each step of the algorithm, the sigma
points are de�ned as follows:

�0;n�1jn�1 = x̂n�1jn�1;

�i;n�1jn�1 = x̂n�1jn�1 +
hq

(l + �)Pn�1jn�1

i
i
;

i = 1; 2; � � � ; l;

�i;n�1jn�1 = x̂n�1jn�1 �
hq

(l + �)Pn�1jn�1

i
i
;

i = l + 1; � � � ; 2l; (31)

where [A]i denotes the ith column of matrix A and
the square root of the covariance matrix Pn�1jn�1 is
obtained by Cholesky factorization. In addition, � is a
scaling parameter and an appropriate choice of it can
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reduce the estimation error. In [29], this parameter is
proposed as follows:

� = 3�2 � l; (32)

where � is a constant that determines the spread of the
samples around the estimates of state vector at each
step, and it is usually set to a small positive value (e.g.,
10�4 � � � 1).

According to the system dynamics presented in
Eq. (18), the weighted samples do not change and the
equations of the UKF in the time-update algorithm are
as follows:

�i;njn�1 = �i;n�1jn�1; i = 0; 1; � � � ; 2l;

x̂njn�1 =
2lX
i=0

wi�i;njn�1;

Pnjn�1 =
2lX
i=0

wi
�
�i;njn�1 � x̂njn�1

�
�
�i;njn�1 � x̂njn�1

�H + Qn: (33)

Similarly, the equations of the UKF in the
measurement-update algorithm are given as follows:

x̂njn = x̂njn�1 +Kn
�
yn � ŷnjn�1

�
;

ŷnjn�1 =
2lX
i=0

wi�i;njn�1;

�i;njn�1 = hn
�
�i;njn�1

�
;

Kn = Px�;njn�1P�1
��;njn�1;

Px�;njn�1 =
2lX
i=0

wi
�
�i;njn�1 � x̂njn�1

�
�
�i;njn�1 � ŷnjn�1

�H ;
P��;njn�1 =

2lX
i=0

wi
�
�i;njn�1 � ŷnjn�1

�
�
�i;njn�1 � ŷnjn�1

�H ;
Pnjn = Pnjn�1 �Px�;njn�1P�1

��;njn�1PHx�;njn�1:
(34)

Here, during the implementation of the UKF algo-
rithm, like the EKF, we can adaptively estimate the
variance �2

n and covariance matrix Qn using moment
estimation.

By the same token, after running the UKF,

the AR model coe�cients (of the interference) were
estimated and by substituting them in Eqs. (24) and
(25), the noise variance of the AR model was estimated
under both hypotheses. Finally, upon substituting the
obtained �̂2

0 and �̂2
1 into Eq. (6) using the UKF, the

second proposed detector is achieved, which is called
ARUKF.

The state space model in Eq. (18) is a nonlinear
model with time-variant parameters, and this complex-
ity shows that the convergence and stability veri�ca-
tion of the algorithm is not analytically easy to do.
Therefore, the stability of an algorithm was evaluated
using simulation and statistical surveys under di�erent
conditions. The obtained results point to the high
stability of the proposed methods.

In the next section, the simulation results are
employed to evaluate the performance of the proposed
detectors and compare it with that of ARGLR and
ARKD detectors. According to the �ndings, the
ARUKF detector outperforms its counterparts, espe-
cially on the low sample support.

4. Performance evaluation

In this section, by resorting to Monte Carlo simulation,
the performance of the proposed detectors is evaluated
and compared with that of ARKD and ARGLR. In
modeling the ground clutter through an AR process,
the model order is usually assumed to be less than
four. In our simulations, the interference is regarded
as an AR Gaussian process of order 2 with coe�cients
vector a =

��0:25 + 0:25i 0:3
�T in [12]. An arbitrary

variance for the interference was taken into account to
determine the AR model of the interference and its
experimental covariance matrix RN , which is obtained
by averaging a su�cient number of the simulated
interference vectors. The signal-to-interference ratio is
de�ned as follows [12]:

SNR = j�j2sHR�1
N s: (35)

The target vector is assumed to be known, the target
amplitude is achieved in simulations for each SNR.
Also, the target phase is determined as a random value
with uniform distribution over the range [��;+�). For
evaluating and comparing the detection performance,
the Receiver Operation Characteristic (ROC) curves
of the detectors are used. In order to ensure a precise
evaluation, the curves of detection probability versus
SNR are plotted as well.

Before comparing the detectors with each other,
we �rst study the performance of each of the two
proposed detectors by changing the number of primary
data N . For this purpose, the curves of detection
probability versus the probability of false alarm and
those versus the signal to noise ratio are plotted at
di�erent values of N .
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Figure 1 shows the probability of detection (Pd)
versus the probability of false alarm (Pfa) of AREKF
detector at di�erent values of N , � = 1 rad and SNR =
10 dB. As it can be seen, with the increase in the
number of primary data, due to a more accurate esti-
mation of the interference parameters, the performance
of detector is enhanced. Figure 2 shows the AREKF
detection probability versus SNR at di�erent values of
N , � = 1 rad and Pfa = 10�2. This �gure shows
that at �rst, by increasing the SNR, the probability of
detection is enhanced; however, if this ratio exceeds
a certain limit owing to the decline in the relative
power of the AR interference, the estimation error
associated with the AR model parameters increases and
the probability of detection declines. However, with the
increasing number of primary data, this event occurs
later or, in other words, occurs at larger values of SNR.

Next, in Figures 3 and 4, the performance of
ARUKF detector is considered by changing the number
of primary data. In Figure 3, the curves of Pd
versus Pfa at di�erent values of N , � = 1 rad and

Figure 1. Pd against Pfa for AREKF with SNR = 10 dB,
� = 1 rad and four values of N .

Figure 2. Pd against Signal-to-Noise Ratio (SNR) for
AREKF with Pfa = 10�2, � = 1 rad and four values of N .

SNR = 10 dB are comparatively plotted. As expected,
owing to the dependence of the estimation accuracy
on the number of primary data, a greater increase
in the number of primary data, provides a greater
improvement in the detector performance. Figure 4
plots the curve of Pd versus SNR at di�erent values of
N , � = 1 rad and Pfa = 10�2. Fortunately, even for the
small number of primary data sets, by increasing SNR
up to 25 dB, the detection probability will not decline.
Indeed, even for the small number of primary data sets,
the estimation error of the AR model parameters in the
UKF does not increase with a rise in the SNR value.
This is a signi�cant advantage of ARUKF detector
compared with the previous detectors based on KF
such as AREKF and ARKD.

In the following, by using the ROC curves as well
as the curves of detection probability versus SNR, the
performances of the proposed AREKF and ARUKF de-
tectors is compared with those of ARGLR and ARKD
detectors. Figures 5, 6, and 7 show the ROC curves of
these detectors for di�erent number of primary datasets

Figure 3. Pd against Pfa for ARUKF with SNR = 10 dB,
� = 1 rad and four values of N .

Figure 4. Pd against Signal-to-Noise Ratio (SNR) for
ARUKF with Pfa = 10�2, � = 1 rad and four values of N .
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Figure 5. Pd against Pfa for AREKF and ARUKF
compared with ARGLR and ARKD for SNR = 10 dB,
� = 1 rad, and N = 10.

Figure 6. Pd against Pfa for AREKF and ARUKF
compared with ARGLR and ARKD for SNR = 10 dB,
� = 1 rad, and N = 30.

Figure 7. Pd against Pfa for AREKF and ARUKF
compared with ARGLR and ARKD for SNR = 10 dB,
� = 1 rad, and N = 50.

N = 10, N = 30, and N = 50, respectively, at
� = 1 rad and SNR = 10 dB. It is observed that
in the case of small number of primary data set, the
KF-based detectors outperform the ARGLR detector
and especially the ARUKF always has considerably
better performance than that of other detectors. We
see that with increase in the number of primary data,
the ARGLR performance will gradually become better
than the performance of ARKD and AREKF, because
the AR model parameters in ARGLR are estimated
entirely based on the ML method and, hence, with
increase in the number of data, these estimates will
tend to the e�cient estimates [30].

In Figures 8, 9, and 10, the curves of detection
probability versus SNR of the mentioned detectors for
di�erent numbers of primary data including N = 10,
N = 30, and N = 50, � = 1 rad, and Pfa = 10�2

are plotted. Here again, we see that the performance

Figure 8. Pd against Signal-to-Noise Ratio (SNR) for
AREKF and ARUKF compared with ARGLR and ARKD
for Pfa = 10�2, � = 1 rad, and N = 10.

Figure 9. Pd against Signal-to-Noise Ratio (SNR) for
AREKF and ARUKF compared with ARGLR and ARKD
for Pfa = 10�2, � = 1 rad, and N = 30.
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Figure 10. Pd against Signal-to-Noise Ratio (SNR) for
AREKF and ARUKF compare with ARGLR and ARKD
for Pfa = 10�2, � = 1 rad and N = 50.

of ARUKF detector signi�cantly is better than that
of others. However, with increase in the number of
primary data sets, the parameter estimation error for
the AR model is reduced which is the reason why the
performances of other detectors, especially ARGLR,
approach those of the ARUKF. Interestingly, as con-
sidered and discussed in Figures 2 and 4, the detection
probability of ARUKF will not fall by increasing SNR
even for small number of primary data sets. This is
another important advantage of the ARUKF detector
compared with the two other KF-based detectors.

We also investigate the convergence of the KF-
based detectors. For this purpose, the Mean Squared
Error (MSE) of the estimates of AR model coe�cients
is considered. Figure 11, obtained by simulation results
in di�erent conditions, shows the MSE of estimates
versus the number of primary data sets for two situ-
ations: the �rst is noise only and the second considers
the signal with SNR = 25 dB. As is seen, following an

Figure 11. Mean Squared Error (MSE) versus N for
noise only and signal with SNR = 25 dB.

initial transition (almost 3 steps for the absent signal),
the MSE is monotonically reduced by increasing the
number of data sets in all detectors. This shows
the convergence of all of the algorithms. In the �rst
situation, all methods have a relatively small error
although the MSE of the ARUKF is a little more
than those of the other two detectors. In the second
situation with SNR = 25 dB, the MSEs and transient
times of the ARKD and AREKF have signi�cantly
increased in comparison with the �rst situation, while
the MSE of the ARUKF has a slight increase and its
transient time has even been reduced to 2. The increase
in the initial error results from the KF transient state
and, after passing through this transient state, the error
decreases with increase in the number of data sets and
the estimate of each method converges to a �nal value.
The interesting advantage of the ARUKF is that the
transient state error of the �lter is relatively low and
this results in a better performance of this method.
In the following convergence study, an analysis with
one million iterations in di�erent conditions shows that
the error of each method in each iteration is always
less than one and no instability is seen during the
estimation.

Finally, the e�ect of Doppler shift frequency
error of the target on the performance of detectors is
investigated. It is common in radar signal detection
to divide the target velocity (or Doppler frequency)
domain into small cells and test each cell for the
presence of target [27]. For simulation, the nominal
� is assumed to be �nom = 1 rad in the detectors while
the data vector y is simulated with the actual � with a
5% di�erence compared to the nominal �nom = 1 rad.
Figure 12 shows the ROC curve of the mentioned
detectors at N = 30, �nom = 1 rad, and SNR = 10 dB.
A comparison of the curves in Figures 6 and 12 shows
that although the presence of an error in Doppler shift

Figure 12. Receiver Operation Characteristic (ROC)
curve of the detectors for SNR = 10 dB, �nom = 1 rad and
N = 30.
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causes loss in the performance of the detectors, the
performance of the ARUKF is also better than those
of other detectors.

5. Conclusion

This study applied the adaptive detection of a radar
target signal embedded in Gaussian interference based
on only the primary data where the interference was
modeled as an AR process. Herein, ARGLR detector
relying on Maximum likelihood (ML) estimation of the
AR model parameters and also ARKD detector relying
on Kalman estimation of them were developed. In
this regard, two new detectors were proposed: AREKF
based on Extended KF (EKF) and ARUKF based
on Unscented KF (UKF). We demonstrated that the
ARUKF detector had signi�cantly better performance
than that of other detectors. However, with increase
in the number of primary data, parameter estimation
error in the AR model is reduced and, hence, the
performance of the other detectors, especially ARGLR,
approaches that of ARUKF. In addition, a consider-
able advantage of the ARUKF detector compared to
both other KF-based detectors is that the detection
probability of ARUKF is not corrupted by increasing
Signal-to-Noise Ratio (SNR) even for small numbers of
primary data sets; therefore, this detector outperforms
its counterpart, especially on the low sample support.
At the end, in order to generalize the proposed method,
it is suggested that this method be developed using
secondary data.
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