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Abstract. Various control charts have been proposed to monitor generalized linear pro�les
in Phase II. However, the robustness of the proposed methods in detecting di�erent types
and especially di�erent directions of changes is not well-studied in the literature. In real-
world applications, di�erent kinds of change such as drift and multiple changes are likely
to occur, which can be isotonic (increasing) or antitonic (decreasing). This paper studies
the robustness of the Rao Score Test (RST) method, T 2, and Multivariate Exponential
Weighted Moving Average (MEWMA) in di�erent types, drift and multiple, and directions
of changes. The RST method also bene�ts from a change-point detection approach whose
performance is studied as well. According to the results, generally, the RST method shows
a better performance in detecting di�erent types of changes. Moreover, the performance
of the RST method is robust to the direction of the change, while T 2 and MEWMA are
not ARL-unbiased and show di�erent performances under isotonic and antitonic changes.
Therefore, to address this issue, a bias-reduced estimator is proposed for use in T 2. The
results demonstrate that the proposed control chart outperforms T 2 and is less biased than
T 2. Finally, a real-world problem is presented in which the aforementioned methods are
applied to real data.
© 2021 Sharif University of Technology. All rights reserved.

1. Introduction

A comprehensive review of the relevant literature indi-
cates that there has been much interest in the area of
pro�le monitoring within the past decade. A pro�le is
the functional relationship between a response variable
and one or more predictor variables. Pro�le monitoring
is the use of control charts to monitor this functional
relationship. Pro�les can be utilized in a wide variety
of manufacturing and service areas to monitor product
or process performance over time. For instance, Kang
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and Albin [1] studied the case of aspartame, which is an
arti�cial sweetener. They also considered a mass 
ow
controller, in which using pro�le monitoring was more
advantageous than a single measurement over time.

Studies in the �eld of pro�le monitoring can be
categorized by the types of the pro�les being monitored
and types of the change-points that occur in the pro-
cess. The type of a pro�le being monitored can be sim-
ple linear, nonlinear/multiple/polynomial regression,
and nonparametric. For a review of the studies in this
area one can refer to Noorossana et al. [2]. The most
important types of changes are single step, drift, and
multiple step. Most research e�orts have focused on
single step change, but in real applications, sometimes
it is not practical to model changes as a simple single
step change. For instance, in chemical applications or
real tear and wear examples in which change occurs
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gradually, they can be modeled better by a drift model.
Niaki and Khedmati [3] studied the change time of a
multivariate binomial process for step and drift types
of change. Kazemzadeh et al. [4] considered change-
point estimation of multivariate linear pro�les under
linear drift. Korkas and Fryzlewicz [5] proposed a
Wild Binary Segmentation (WBS) method to detect
the number and location of multiple change-points in
the second order structure of a time series. For a review
of change-point estimation methods, one can refer to
Atashgar [6] and Aminikhanghahi and Cook [7].

All the aforementioned research work can be
classi�ed into Phase I control and Phase II monitoring.
According to Woodall et al. [8], in the Phase I analysis,
practitioners use a set of historical process data to
evaluate process stability over time. Once anomalous
observations are omitted, the in-control process is
modeled and unknown parameters are estimated. In
the Phase II analysis, online data is utilized to quickly
identify shifts in the process.

There are some limiting assumptions in most of
the aforementioned control schemes. For instance, they
mostly assume that response variables are continuous,
while in many real examples, the response variable may
be discrete. For example, the response variable may be
a Poisson random variable (the number of defects per
item) or a binomial random variable. These limitations
in earlier methods encouraged the authors of this paper
to use a more general model, including a wide variety
of distributions and link functions. Generalized linear
models (GLMs) looked appropriate for this purpose.

Qiu [9], for the �rst time, introduced the GLM
to statistical process control. Yeh et al. [10] developed
�ve methods based on the Hotelling T 2 statistic and
by assuming that the response variable is binary, and
by applying them to Phase I control, compared the
performance of the proposed methods. Paynabar et
al. [11] presented Phase I risk-adjusted control charts
which are based on the likelihood ratio test approach
extracted from the change-point model. Soleymanian
et al. [12] presented four control charts, including
Hotelling T 2, MEWMA, a Likelihood Ratio Test and
LRT/EWMA, to monitor a binary response variable
in Phase II. Thereafter, the performances of the pro-
posed methods were evaluated by an Average Run
Length (ARL) measure. According to simulation
results, all methods perform quite well. Moreover, the
performance of the methods improves as the size of
the samples increases. According to the results, the
Multivariate Exponential Weighted Moving Average
(MEWMA) method performs better than others when
the changes in the parameters of logistic regression are
small or moderate in size, and LRT/EWMA performs
better than MEWMA when the changes are large in
size. Furthermore, the LRT/EWMA control chart per-
forms somewhat better than T 2 and Likelihood Ratio

Test (LRT) control charts for every size of change and
every size of sample. Koosha and Amiri [13] showed
that ignoring autocorrelation between observations in
di�erent levels of a binary pro�le may lead to mislead-
ing results in evaluating the performance of di�erent
monitoring methods. Afterwards, they evaluated the
performance of �ve T 2 control charts, proposed by
Yeh et al. [10], under step and drift types of change
assuming that autocorrelation exists. Their results
demonstrated that T 2

I is the best method, as already
shown by Yeh et al. [10]. Amiri et al. [14] assessed the
performance of �ve methods proposed by Yeh et al. [10]
in Phase I monitoring of Gamma pro�les. The gamma
parameter estimation process was another contribution
of this research. According to their results, T 2

I performs
better than other methods in detecting step change
and drift. Nevertheless, T 2

R performs better than other
methods when the step change or drift occurs in both
regression parameters simultaneously. Noorossana et
al. [15] evaluated four methods in Phase II monitoring
of polytomous pro�les. Their results demonstrate that
the MEWMA method performs better in detecting
small size changes. Moreover, they showed that
MEWMA and �2 are susceptible to the size of samples,
whereas EWMA/R and �2/EWMA are less a�ected by
the size of samples and roughly give the same results for
di�erent sample sizes. Amiri et al. [16] modi�ed three
methods which include T 2, the likelihood ratio test and
F to make them applicable in GLM regression pro�les
following Poisson distribution. Simulation results show
that the likelihood ratio test method shows the best
performance in detecting changes and the F method
performs better than others in detecting outliers. Qi
et al. [17] presented a method to monitor generalized
linear pro�les via weighted likelihood ratio charts.
Simulation results show that their proposed method
shows a better performance compared to some existing
methods. Sogandi and Amiri [18] proposed a maximum
likelihood estimator to monitor GLM based regression
pro�les under step change and drift. Simulation
results show that the proposed method performs better
than others in detecting small and moderate changes.
Khedmati and Niaki [19] developed an approach based
on the U statistic for Phase II monitoring of generalized
linear pro�les and removed the impact of between-
pro�le autocorrelation of error terms.

One attractive and practical topic in the process
monitoring area is the e�ective estimation of the
time at which a change has occurred in the process.
The change-point approach provides experts with a
diagnostic tool which can help to identify the time of
change in process. This tool simpli�es the identi�cation
of the root causes. Maximum likelihood estimation,
clustering analysis, and arti�cial neural networks are
examples of the common change-point identi�cation
methods. Noorossana et al. [20] used the maximum
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likelihood method to detect step changes. Perry et
al. [21] utilized the maximum likelihood estimation to
estimate a change-point when a linear change occurs in
the process. Noorossana and Shadman [22] estimated
the time of a monotonic change through a maximum
likelihood estimator. Alaeddini et al. [23] presented a
clustering approach to identify the change-point of the
process. Atashgar and Noorossana [24] took advantage
of arti�cial neural networks to identify the change-point
in a process. Ahmadzadeh [25] used an arti�cial neural
network to estimate the change-point for multivariate
control charts.

Some researchers have studied change-point esti-
mation in the pro�le monitoring content. In Phase II,
Zou et al. [26] utilized the likelihood ratio method to
identify the time of change when a step shift takes place
in the mean of a linear pro�le. Moreover, Paynabar et
al. [27] developed a change-point estimation approach
for monitoring multivariate pro�les. They applied their
presented method in a real-world problem related to
a forging process. Simulation results show that their
method performs better in estimating the change-point
in comparison with some other methods. Maleki et
al. [28] proposed two maximum likelihood estimators
to identify the real time of step changes and drifts in
Phase II monitoring of binary pro�les, where within-
pro�le autocorrelation exists.

The maximum likelihood framework comprises
three general tests: Wald, Likelihood Ratio, and Rao
Score Test (RST). There are some di�erences between
these three tests. In order to carry out a likelihood ratio
test, one must estimate both models under the null and
alternative hypotheses. The RST requires estimation
of the model subject to the null hypothesis, while the
Wald test needs to estimate the model based on the
alternative hypothesis.

In previous research less e�ort has been devoted
to study the susceptibility of the proposed methods
to type, and, especially, the direction and increase or
decrease of the change. Most of the proposed methods
use Iterative Weighted Least Square (IWLS) as an
estimator, which is a biased estimator [29]. Therefore,
methods that use IWLS as an estimator are expected
to be susceptible to the direction of the change, and
they are not ARL-unbiased, while the RST method,
which does not use an estimator, is robust to this issue.
This paper studies this problem and proposes a bias-
reduced estimator to be used in T 2, which satisfactorily
attempts to solve this problem.

2. Methodology

2.1. RST method
Suppose that pro�le samples are collected over time
and the jth random pro�le is comprised of n observa-
tions. There are a set of observations f(xij ; yij); i =

1; 2; :::; ng, in which yij is the ith response observation
in the jth pro�le and xij is a vector consisting of
q predictor variables (xij = (xij1; xij2; :::; xijq)). In
this research, it is assumed that predictor variables
in each pro�le are known and constant over time.
Moreover, it is assumed that the relationship between
the response variable and predictor variables can be
adequately modeled by GLMs, which means:

1. Response variables are from an exponential family
with a canonical form.

2. Linear combination of predictor variables with the
coe�cient vector �j is as follows:

�ij = xTij�j ; (1)

�j = (�j1; �j2; :::; �jq): (2)

3. A monotone link function g exists that connects
the mean of the response variable �ij to the linear
predictor:

g(�ij) = �ij = xTij�j ; (3)

�ij = E(yij): (4)

Most times, as in this research, xij1 is set to be 1 for
all i and j, therefore, �j1 is the intercept of the model.
As mentioned earlier, the RST method is discussed in
Shadman et al. [30] in detail but the following steps
give a summary of the method:

1. For j = 1; 2; 3; :::; t, we have:

wj = wj�1 + XTyj : (5)

In Eq. (5), t is the current time of monitoring, w0
is a q dimensional 0 vector, X is an n� q regressor
matrix and yj is an n-variate response vector.

2. For k = 1; 2; :::; t� 1, one has:

U0(k; t) = wt �wk � (t� k)XT�0: (6)

In Eq. (6) �0 is an n-dimensional in-control mean
vector of response variable.

And:

Rk;t = UT
0 (k; t)�

�
1

t� k
�

J�1
0 �U0(k; t): (7)

In Eq. (7), J�1
0 is an in-control variance-covariance

matrix.
3. The statistic of the method equals:

Rmax;t = maxmax(0;t�window)�k<t(Rk;t): (8)

In Eq. (8), window is a rather newly adapted notion
which is used because as t becomes very large, it
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is di�cult to record all the past data and �nd
the maximum. Choosing a window is a trade-o�
between recording less data and having a good
performance for the control chart. Theoretically,
having an in�nite window (recording all of the data)
should show the best performance. However, it can
be shown that in most control charts if the window
is not too small, it will show a performance close to
the method without using window.

If Rmax;t � ht, then control chart signals and the
tth pro�le is out of control. ht is the control limit for
the tth pro�le and the method to determine this limit
will be described later. The change-point is estimated
by:b� = arg maxmax(0;t�window�k<t)(Rk;t): (9)

In most research e�orts the control limits are constant
for every t but Margavio et al. [31] showed that this
approach could result in variations of false alarms over
time. Therefore, in this research, the following condi-
tional probability is used, which generates a constant
alarm rate for every t:

Pr(Rmax;t > htjRmax;i � hi; 1 � i < t) = �: (10)

Since Eq. (10) is not easily tractable, simulation is used
to determine the sequence of control limits [32]. Similar
to Shadman et al. [30], it is assumed that after the
100th pro�le, the control limit converges to a constant
control limit, and the control limit is set equal to the
control limit of the 100th pro�le. In order to estimate
control limits using simulation, an 80000*100 matrix
was generated, in which the ith row is an in-control
simulation of the following vector:

Vi = [Rmax;1; Rmax;2; :::; Rmax;100]: (11)

In order to set ARL at 200, the 0.995th quantile of
the �rst column in the matrix was calculated and
determined as h1. After that, for elements of column 1
which are greater than h1, the relevant row was
removed from the matrix. A similar procedure was
applied to the second and other columns in order to
estimate all the control limits.

2.2. Bias-reduced T 2

Firth [29] proposed an approach called bias reduction
of maximum likelihood estimates. In the �tting process
of the logistic model sometimes one or more parameter
estimates diverge to � in�nity. This phenomenon is
called separation which is ideally solved by the Firth
procedure [33]. This method is built on the generic
iteration proposed in Kosmidis and Firth [34] to solve
the bias-reducing adjusted score equations. According
to Kosmidis and Firth [34] this estimator has two ad-
vantages: 1) It is a second order unbiased estimator and

has smaller variance compared to Maximum Likelihood
Estimation (MLE), 2) The resulted estimates and their
standard errors are �nite. A detailed description of
this estimator is given in Heinze and Schemper [35].
As mentioned earlier, most methods that are proposed
to monitor generalized linear pro�les are biased due to
using a biased estimator. Therefore, to deal with this
problem, the T 2 method proposed by Yeh et al. [10]
was enhanced using the estimator proposed by Firth
[29] instead of the usual IWLS method.

3. Performance comparisons

This section is devoted to evaluate performances of
the RST, T 2, MEWMA, and proposes using the bias
reduced method under di�erent types and direction of
changes. This comparison is done using Monte Carlo
simulation and the ARL measure is used to evaluate
the methods. The RST method also bene�ts from a
change-point estimation approach, whose performance
is studied as well.

3.1. Hotelling T 2

A Hotelling T 2 control chart was used by Kang and
Albin [1] for monitoring simple linear pro�les. Yeh et
al. [10] developed �ve Hotelling T 2 control charts to
monitor binary pro�les in Phase I. The T 2 statistic for
the jth pro�le is calculated as:

T 2
j = (b�j � �0)

T
��1

0 (b�j � �0): (12)

The above statistic can be rewritten as:

T 2
j = (b�j � �0)

T
XTWX(b�j � �0); (13)

where �̂j is the estimated vector of parameters via
iterative weighted least square algorithm, �0 is the
in-control vector of parameters and �0 is the in-
control variance-covariance matrix. In Eq. (13), W is
a N � N diagonal matrix in which diagonal elements
are calculated as follows:

wii =
1

V ar(yi)

�
@�i
@�i

�2

: (14)

As long as this statistic is less than the upper control
limit, it is assumed that the process is in-control, but,
when T 2

j > UCL, it is assumed that the process is out of
control. The upper control limit is estimated according
to a given ARL.

3.2. MEWMA method
MEWMA which was proposed by Zou et al. [26], is
also applicable in monitoring generalized linear pro�les.
Soleymanian et al. [12] and Noorossana et al. [15] used
this method for monitoring generalized linear pro�les.
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The MEWMA statistic for the jth pro�le is calculated
as:
Qj = ZTj ��1

zj Zj : (15)

In Eq. (15), Zj is a q-dimensional vector which is equal
to:

Zj = �(b�j � �0) + (1� �)Zj�1: (16)

�Zj is the asymptotic variance-covariance matrix of Zj
which is calculated as follows :

�Zj =
�

2� �J�1
0 ; (17)

�̂j is the maximum likelihood estimator of �j which
is calculated by the iterative weighted least square
algorithm, � is weighting parameter and Z0 = 0. This
control chart gives a signal when Qj > LMEWMA
and LMEWMA, the MEWMA upper control limit, is
simulated to give a known ARL, which is 200.

3.3. Binomial pro�les
To simplify the problem, suppose that there is only one
predictor variable (q = 2) and yij � Binomial (m;�ij)
in which m is the number of observations and �ij is
the probability of success for the jth pro�le and ith
observation. The link function is considered as:

g(�ij) = log
�

�ij
1� �ij

�
= �0 + �1xij : (18)

Eq. (18) can be simpli�ed as:

�ij =
exp(xTij�)

1 + exp(xTij�)
=

exp(�ij)
1 + exp(�ij)

: (19)

In-control parameters are assumed as �0 = (�00;
�10)T = (�2:8; 1)T . Predictor variables are 0.1, 0.2,
0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, and 1 and n = 10.
m = 30 is set and control charts are simulated for three
di�erent time windows: 20, 50, 100.

3.3.1. Isotonic drift
The change-point is assumed to be � = 30, this means
that for j = 1; 2; :::; 30 the pro�les are in-control and
parameters are as �0 = (�2:8; 1)T . After the 30th
pro�le for j = 31; 32; ::: the process undergoes a change
which is modeled as:
�1 = (�00 + (j � 30)� �1 � �1; �10 + (j � 30)

��2 � �2); (20)

�1 and �2 are the standard deviation of intercept and
slope, respectively, which are calculated as:

�0 =
�
�2

1 ��1�2
��1�2 �2

2

�
= (XTWX)�1

=
�

0:2186 �0:2936
�0:2936 0:4771

�
: (21)

Therefore, standard deviations are calculated as �1 =

0:4676 and �2 = 0:6907, and the performance of the
method is evaluated by ARL and estimated change-
point criteria for di�erent �1 and �2. Results are given
in Tables 1 and 2. In this research, three cases are
simulated: 1) change in intercept; 2) change in slope;
and 3) change in intercept and slope, simultaneously.
However, for the sake of brevity, simulation results
are presented only for case 1. In Tables 1 and 3,
the numbers stand for ARL's and the numbers inside
parentheses are standard deviations of run lengths. All
the results are determined based on 10000 iterations.

3.3.2. Isotonic multiple step change
In the case of isotonic multiple step change, two step
changes occur in the process at �1 = 30 and �2 = 35.
The monitoring is done in Phase II and, according to
the literature, the aim is to detect the change as soon as
possible and estimate the change-point. Let �ij control
the size of change in the ith parameter and jth step.
The model of change is as:

�0 = (�2:8; 1); j = 1; 2; :::; 30; (22)

�1 = (�00 + �11 � �1; �10 + �21 � �2);

j = 31; 32; :::; 35; (23)

�2 = (�00 + �12 � �1; �10 + �22 � �2);

j = 36; 37; :::: (24)

Standard deviations of intercept and slope are calcu-
lated as shown in the previous section and the number
of simulation replications is set at 10000. Moreover,
since the performance of Hotelling T 2 was very poor,
its results are not given for this case. Results are shown
in Tables 3 and 4. In Table 4, which is related to the
change-point, the �rst change has been assumed as the
change-point.

As discussed before, to simplify the problem, q =
2 and n = 10 are considered. In order to see if the
RST method is still e�cient for larger values of q and
n, both parameters (q = 4 and n = 20) are doubled and
the simulations are run. In this case, the link function,
in-control and out of control parameters are de�ned by:

g(�ij)=log
�

�ij
1��ij

�
=�0+�1xij+�2x2

ij+�3x3
ij ;

(25)

�0 = (�00; �10; �20; �30) = (�2:8; 1; 2; 3)T ;

j = 1; 2; :::; 30; (26)

�0 = (�00 � (j � 30)� �1 � �1; �10; �20; �30)

= (�2:8; 1; 2; 3)T ; j = 31; 32; :::: (27)

Table 5 demonstrates that RST still outperforms T 2.
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Table 1. Average Run Length (ARL) for isotonic drift in intercept of binomial pro�le.

�1
RST

(Window = 20)
RST

(Window = 50)
RST

(Window = 100)
Hotelling

T 2
MEWMA
� = 0:05

MEWMA
� = 0:2

MEWMA
� = 0:4

0.001 95.8035
(63.06388)

93.1838
(59.71108)

90.5993
(57.3664)

367.0953
(333.1151)

165.4975
(85.42436)

200.363
(117.1865)

250.1403
(165.8289)

0.005 42.7568
(20.78963)

41.3498
(19.76968)

41.3548
(19.54215)

163.8714
(68.62347)

61.8955
(19.43502)

72.2004
(24.62263)

93.2443
(32.86928)

0.01 28.5414
(12.36723)

27.9485
(12.08684)

27.9149
(11.93115)

97.516
(30.76698)

40.3651
(10.5095)

43.9174
(12.56879)

55.6392
(15.826645)

0.05 10.5216
(3.699964)

10.4708
(3.803413)

10.4925
(3.724882)

25.8201
(5.102287)

15.8617
(2.7960)

14.1949
(2.848072)

15.9725
(3.325168)

0.1 6.8208
(2.221821)

6.8206
(2.238262)

6.8363
(2.237611)

14.2792
(2.521239)

10.8136
(1.7164)

9.0160
(1.582259)

9.4987
(1.787232)

0.5 2.4638
(0.689122)

2.4664
(0.68518)

2.4648
(0.688739)

3.6675
(0.656311)

4.6202
(0.6744)

3.4937
(0.564589)

3.212
(0.527879)

1 1.6466
(0.481569)

1.6480
(0.479475)

1.6487
(0.479467)

2.0833
(0.362162)

3.2505
(0.5266)

2.4007
(0.500739)

2.0708
(0.302634)

1.5 1.1592
(0.365862)

1.1638
(0.370094)

1.1567
(0.363518)

1.6528
(0.47608)

2.7079
(0.4604)

1.97
(0.194165)

1.8744
(0.331398)

2 1.0062
(0.078496)

1.0057
(0.075283)

1.0052
(0.071923)

1.121
(0.326127)

2.2599
(0.4554)

1.8458
(0.36114)

1.5147
(0.499784)

2.5 1 (0) 1 (0) 1 (0) 1.0021
(0.045778)

2.0029
(0.2247)

1.5922
(0.491426)

1.1359
(0.342682)

3 1 (0) 1 (0) 1 (0) 1 (0) 1.9484
(0.22167)

1.2788
(0.448409)

1.0114
(0.10616)

Table 2. Change-point estimation (isotonic drift in intercept of binomial pro�le).

�1 Window = 20 Window = 50 Window = 100
�̂� s.e (�̂) �̂� s.e (�̂) �̂� s.e (�̂)

0.001 119.8958 62.18153 112.6677 56.93061 104.8658 52.83577
0.005 65.0683 20.78963 57.9071 19.16977 56.3100 19.54215
0.01 50.4597 12.13221 46.1548 12.08684 45.8965 11.93115
0.05 34.7407 5.126818 34.1740 6.237445 34.2766 6.211899
0.1 32.4584 3.981491 32.2473 4.606446 32.2701 4.622764
0.5 30.3311 2.385932 30.2677 2.60765 30.2682 2.660013
1 30.0730 1.917517 30.0787 2.032512 30.0470 0.479467

1.5 29.9599 1.270548 29.9419 1.366793 29.9429 1.333731
2 29.9426 0.603246 29.9327 0.663303 29.9402 0.600187

2.5 29.9817 0.280651 29.9715 0.378798 29.9761 0.325467
3 29.9931 0.158279 29.9890 0.21466 29.9931 0.150507

3.4. Poisson pro�les
Similar to a binomial example, suppose that there is
only one predictor variable (q = 2) and yij � Poisson
(�ij), in which �ij is the mean for the jth pro�le and
ith observation. Link function is considered as:

g(�ij) = log(�ij) = �0 + �1xij : (28)

Eq. (28) can be simpli�ed as:

�ij = exp(xTij�) = exp(�ij): (29)

In-control parameters are assumed as �0 = (�00;
�10)T = (3; 2)T . Predictor variables are 0.1, 0.2, 0.3,
0.4, 0.5, 0.6, 0.7, 0.8, 0.9, and 1 and, therefore, n = 10.
Simulations are run for three di�erent time windows:
20, 50,100.

3.4.1. Antitonic drift
Change-point is assumed to be � = 30, that is, for
j = 1; 2; :::; 30 pro�les are in-control and parameters are
as �0 = (3; 2)T . After the 30th pro�le for j = 31; 32; :::,
the process undergoes a change which is modeled as:
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Table 3. Average Run Length (ARL) for isotonic multiple change in intercept of binomial pro�le.

(�11; �12) RST
(Window = 20)

RST
(Window = 50)

RST
(Window = 100)

MEWMA
� = 0:05

MEWMA
� = 0:2

MEWMA
� = 0:4

(0.1,0.2) 35.4825
(30.38748)

31.3287
(24.69028)

30.4503
(22.42146)

87.2043
(63.5371)

249.3337
(242.0212)

622.2976
(610.2426)

(0.1,0.3) 19.1274
(12.88038)

18.1492
(10.95447)

18.1014
(10.83084)

37.2727
(17.7532)

67.8792
(57.2167)

292.2946
(289.1756)

(0.1,0.4) 13.0761
(6.754236)

12.9803
(6.47031)

12.9902
(6.524163)

24.3403
(8.6288)

28.7672
(18.4522)

92.6143
(86.0084)

(0.1,0.5) 10.3039
(4.444361)

10.3657
(4.428178)

10.3195
(4.430533)

18.7677
(5.4528)

17.7730
(8.1244)

37.0998
(29.2889)

(0.1,0.6) 8.8622
(3.246754)

8.8922
(3.218288)

8.8538
(3.21612)

15.7622
(3.9346)

13.3857
(4.4544)

20.2450
(12.4547)

(0.1,0.7) 7.9498
(2.50533)

7.9072
(2.630359)

7.9525
(2.543628)

13.8507
(3.0414)

11.2853
(2.9839)

13.8790
(6.313)

(0.1,0.8) 7.2955
(2.109545)

7.3186
(2.158447)

7.2930
(2.122346)

12.4965
(2.5694)

10.0001
(2.1770)

10.9394
(3.5871)

(0.1,0.9) 6.8901
(1.855915)

6.8799
(1.87512)

6.8723
(1.900051)

11.5568
(2.1714)

9.1583
(1.7149)

9.4649
(2.4113)

(0.1,1) 6.5446
(1.659406)

6.5754
(1.693669)

6.5639
(1.6764)

10.8136
(1.9273)

8.5933
(1.4045)

8.5968
(1.7331)

(0.1,1.1) 6.3227
(1.524849)

6.3221
(1.541347)

6.3354
(1.528367)

10.2322
(1.6928)

8.1681
(1.2038)

7.9762
(1.3479)

Table 4. Change-point estimation (isotonic multiple change in intercept of binomial pro�le).

(�11; �12) Window = 20 Window = 50 Window = 100
�̂� s.e (�̂) �̂� s.e (�̂) �̂� s.e (�̂)

(0.1,0.2) 57.7286 30.29054 47.1392 23.52195 43.2806 20.43896

(0.1,0.3) 40.8859 12.58369 36.4500 10.64466 36.1211 10.52653

(0.1,0.4) 35.7408 6.588734 34.4359 7.410512 34.3527 7.343862

(0.1,0.5) 34.3025 4.85477 33.7665 6.049163 33.7434 5.901471

(0.1,0.6) 33.9021 4.26712 33.7055 5.062467 33.5491 5.172503

(0.1,0.7) 33.8740 3.775781 33.5166 4.771658 33.6375 4.522731

(0.1,0.8) 33.7937 3.636776 33.5818 4.35579 33.5708 4.374127

(0.1,0.9) 33.8383 3.450703 33.6934 4.021442 33.6544 4.11227

(0.1,1) 33.8549 3.389638 33.7509 3.845237 33.6924 3.985923

(0.1,1.1) 33.9336 3.27249 33.8121 3.671974 33.8363 3.73067

�1 = (�00 � (j � 30)� �1 � �1; �10 � (j � 30)

��2 � �2); (30)

�1 and �2 are the standard deviation of intercept and
slope, respectively, which are calculated as:

�0 =
�
�2

1 ��1�2
��1�2 �2

2

�
= (XTWX)�1

=
�

0:0117 �0:0146
�0:0146 0:0207

�
: (31)

Therefore, �1 = 0:1082 and �2 = 0:1440 and the
performance of the methods are evaluated by ARL and
estimated change-point criterion for di�erent �1 and �2.
All simulation results are based on 10000 replications.
Results are given in Tables 6 and 7.

3.4.2. Antitonic multiple change
In antitonic multiple change, two step changes occur in
the process at �1 = 30 and �2 = 35. It was allowed that
�ij control the size of change in the ith parameter and
jth step. The model of the change is as:



564 S. Hajifar and H. Mahlooji/Scientia Iranica, Transactions E: Industrial Engineering 28 (2021) 557{571

Table 5. Result for e�ect of number of predictors and observations (standard deviations are given in parenthesis).

�1 RST T 2

ARL Change-point ARL
0.001 81.8060 (45.6467) 94.1230 (37.4829) 165.7940 (137.5765)
0.005 32.1920 (12.5176) 45.5820 (12.5241) 107.7130 (68.9080)
0.01 21.6800 (7.6661) 38.6630 (8.9933) 79.7070 (43.4161)
0.05 8.0310 (2.3966) 32.2180 (4.3323) 30.9970 (13.2006)
0.1 5.3520 (1.4430) 31.1470 (3.1638) 19.7210 (7.3898)
0.5 1.9090 (0.3935) 29.8060 (2.5642) 6.5260 (2.1391)
1 1.1440 (0.3513) 29.8800 (1.4421) 4.0500 (1.2685)

1.5 1 (0) 29.9560 (0.4902) 3.0420 (0.9743)
2 1 (0) 29.9870 (0.1512) 2.4830 (0.8357)

2.5 1 (0) 29.9810 (0.3045) 2.1580 (0.7011)
3 1 (0) 29.9960 (0.0774) 1.8900 (0.6483)

Table 6. Average Run Length (ARL) for antitonic drift in intercept of Poisson pro�le.

�1
RST

(Window = 20)
RST

(Window = 50)
RST

(Window = 100)
Hotelling

T 2
MEWMA
� = 0:05

MEWMA
� = 0:2

MEWMA
� = 0:4

0.001 102.1630
(65.0406)

97.6786
(59.8645)

91.6726
(55.2262)

122.5580
(84.5574)

77.8625
(41.9650)

90.4725
(52.4263)

100.5746
(61.7167)

0.005 42.6454
(19.5507)

40.6931
(18.3308)

40.4171
(17.9133)

59.3012
(29.7561)

35.8102
(13.9485)

39.1006
(16.3133)

44.7450
(19.7063)

0.01 27.8681
(11.4363)

27.3876
(10.9084)

27.2422
(10.9074)

39.6646
(17.1881)

24.9405
(8.4750)

25.9056
(9.6675)

29.3069
(11.4395)

0.05 10.4254
(3.4140)

10.4066
(3.5638)

10.4094
(3.4250)

13.5452
(4.5513)

10.8028
(2.8830)

9.8563
(2.7702)

10.3102
(3.1317)

0.1 6.8028
(2.0960)

6.8258
(2.1055)

6.8451
(2.1027)

8.2083
(2.5387)

7.5457
(1.8817)

6.6082
(1.6707)

6.6275
(1.8213)

0.5 2.5733
(0.6901)

2.5679
(0.6824)

2.5857
(0.6782)

2.5374
(0.7294)

3.3113
(0.7840)

2.6995
(0.6152)

2.4756
(0.6093)

1 1.7318
(0.4570)

1.7407
(0.4546)

1.7514
(0.4454)

1.5783
(0.5029)

2.3713
(0.5807)

1.8991
(0.3951)

1.7460
(0.4413)

1.5 1.2753
(0.4467)

1.2788
(0.4484)

1.2843
(0.4511)

1.1369
(0.3438)

1.9288
(0.4349)

1.6055
(0.4888)

1.3342
(0.4717)

2 1.0302
(0.1711)

1.0314
(0.1744)

1.0330
(0.1786)

1.0066
(0.0810)

1.7440
(0.4410)

1.2933
(0.4553)

1.0721
(0.2587)

2.5 1.0007
(0.0264)

1.0008
(0.0283)

1.0014
(0.0374)

1 (0) 1.5820
(0.4933)

1.0849
(0.2787)

1.0061
(0.0779)

3 1 (0) 1.0001
(0.0100)

1 (0) 1 (0) 1.4059
(0.4911)

1.0136
(0.1158)

1 (0)

�0 = (�2:8; 1); j = 1; 2; :::; 30; (32)

�1 = (�00 � �11 � �1; �10 � �21 � �2);

j = 31; 32; :::; 35; (33)

�2 = (�00 � �12 � �1; �10 � �22 � �2);

j = 36; 37; ::: (34)

Standard deviations of intercept and slope are cal-
culated as shown in subsection 3.4.1 and simulation

results are based on 10000 replications. Results are
given in Tables 8 and 9, in which the �rst change has
been assumed as the change-point.

3.5. A summary of simulation results
3.5.1. Isotonic drift
In the isotonic drift case results agree with those results
presented by Shadman et al. [30] for isotonic single
step change. The RST method outperforms MEWMA
and T 2 in all cases and a much better performance is
noticed for small changes. When the changes are very
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Table 7. Change-point estimation (antitonic drift in intercept of Poisson pro�le).

�1 Window = 20 Window = 50 Window = 100
�̂� s.e (�̂) �̂� s.e (�̂) �̂� s.e (�̂)

0.001 124.1868 63.3619 111.9734 55.0070 98.2496 48.1345
0.005 62.7816 18.3835 53.4607 17.6813 51.3865 18.8041
0.01 47.8178 11.1994 43.1857 12.4164 42.5046 13.0578
0.05 33.6446 4.9518 32.9300 6.3049 32.9654 6.2887
0.1 31.6196 3.9092 31.3930 4.8558 31.3608 4.8428
0.5 30.0230 2.4248 29.9161 2.9887 29.9218 2.9734
1 29.8152 2.0916 29.7412 2.4162 29.7918 2.3062

1.5 29.8052 1.6822 29.7457 2.0124 29.7564 2.0091
2 29.8415 1.2015 29.8212 1.3430 29.8537 1.1899

2.5 29.9039 0.8001 29.8973 0.8731 29.9180 0.7137
3 29.9455 0.607396 29.9545 0.5001 29.9454 0.5292

Table 8. Average Run Length (ARL) for antitonic multiple change in intercept of Poisson pro�le.

(�11; �12) RST
(Window = 20)

RST
(Window = 50)

RST
(Window = 100)

Hotelling
T 2

MEWMA
� = 0:05

MEWMA
� = 0:2

MEWMA
� = 0:4

(0.1,0.2) 33.0810
(27.5027)

28.6003
(19.9843)

27.6637
(18.2534)

76.9551
(74.3105)

21.2364
(11.5879)

25.8082
(19.5560)

36.7855
(31.4660)

(0.1,0.3) 17.3729
(10.3399)

16.6281
(8.8489)

16.4788
(8.7580)

46.0258
(42.7766)

14.8859
(6.2077)

15.1887
(8.2943)

19.6177
(13.7646)

(0.1,0.4) 12.2378
(5.4792)

12.2963
(5.3827)

12.1655
(5.3349)

28.5567
(23.9756)

12.0527
(4.1468)

11.3892
(4.6050)

12.9013
(6.8018)

(0.1,0.5) 10.0138
(3.7808)

10.0327
(3.8308)

10.0225
(3.7681)

19.3053
(14.5890)

10.6090
(3.2261)

9.5737
(3.0303)

10.0674
(4.0634)

(0.1,0.6) 8.7051
(2.9399)

8.7580
(2.9375)

8.7518
(2.8576)

13.8968
(9.0027)

9.6099
(2.5577)

8.5186
(2.2459)

8.6840
(2.6887)

(0.1,0.7) 7.9212
(2.3745)

7.9552
(2.4096)

7.9992
(2.3449)

10.7440
(5.6346)

8.9306
(2.1335)

7.9273
(1.7415)

7.8477
(2.0036)

(0.1,0.8) 7.3439
(2.0637)

7.3938
(2.0668)

7.3812
(2.0530)

8.9828
(3.8050)

8.4001
(1.8876)

7.4613
(1.4778)

7.3397
(1.5578)

(0.1,0.9) 6.9886
(1.8006)

7.0202
(1.7799)

7.0362
(1.7580)

7.8999
(2.6537)

8.0562
(1.6717)

7.1758
(1.2929)

6.9960
(1.3255)

(0.1,1) 6.7054
(1.6333)

6.6985
(1.6996)

6.7278
(1.6435)

7.2182
(1.9965)

7.7799
(1.5107)

6.9349
(1.1899)

6.7302
(1.1539)

(0.1,1.1) 6.4822
(1.5443)

6.5006
(1.4901)

6.4893
(1.5672)

6.7191
(1.4712)

7.5433
(1.4035)

6.7422
(1.1216)

6.5400
(1.0511)

small, the out of control ARL's related to MEWMA
and T 2 methods are even larger than in-control ARL
(200), which shows these control charts are not ARL-
unbiased.

Results of MEWMA for di�erent values of �
show that MEWMA with a small � performs better in
detecting small changes and MEWMA with a large �
performs better in detecting large changes. Comparing
MEWMA with T 2 shows that MEWMA performs
better in detecting small changes while T 2 performs
better in detecting large changes.

Di�erent time windows give close results for mod-
erate and large changes but this similarity is caused

because the change occurs early. For small changes, the
e�ect of the time window is relatively discernible and
increasing the time window improves the performance
of the control chart. Nevertheless, the time window
of 50 gives satisfactory results. Moreover, the change-
point estimator estimates the change-point close to the
real change-point for moderate and large changes.

3.5.2. Isotonic multiple step change
In isotonic multiple step change the superiority of the
RST method over MEWMA is evident. Since the T 2

method's performance was poor, it was not used in
simulations. As mentioned earlier, since the research
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Table 9. Change-point estimation (antitonic multiple change in intercept of Poisson pro�le).

Window = 20 Window = 50 Window = 100

(�11; �12) �̂� s.e (�̂) �̂� s.e (�̂) �̂� s.e (�̂)

(0.1,0.2) 52.9091 27.0831 40.5922 18.2721 37.5572 15.7719

(0.1,0.3) 37.5309 9.7858 33.6154 8.9670 33.5525 8.9150

(0.1,0.4) 33.9825 5.4301 32.8955 6.6706 32.8347 6.8298

(0.1,0.5) 33.4308 4.4555 32.7501 5.8495 32.6726 6.0940

(0.1,0.6) 33.2084 4.2335 32.8438 5.3553 32.8973 5.1945

(0.1,0.7) 33.3253 3.9451 33.0012 4.9768 33.0551 4.8684

(0.1,0.8) 33.3672 3.8647 33.1313 4.6572 33.1544 4.6130

(0.1,0.9) 33.4746 3.6598 33.2840 4.4724 33.3692 4.1998

(0.1,1) 33.6080 3.5141 33.3649 4.3120 33.4304 4.2077

(0.1,1.1) 33.6382 3.5171 33.5438 4.0952 33.4695 4.1614

is done in Phase II, the aim of the research is to
detect the change as soon as possible and estimate
the �rst change. This assumption agrees with Perry
et al. [21]. In simulations, a constant size for the �rst
change and 10 di�erent sizes for the second change are
assumed. According to the results, as the size of the
second change increases, at �rst, the performance of
the change-point estimation improves. However, for
larger sizes of the second change beyond a point, the
performance of the change-point estimation worsens,
and the change-point is estimated closer to the second
step change. It is obvious that for large sizes of the
second step change, most of the time the estimator
estimates the second step as the change-point.

3.5.3. Antitonic drift
In antitonic drift the RST method is not always
superior to the other two methods. For small changes,
MEWMA with a small � performs better than the
RST method. Moreover, for moderate size changes,
sometimes the MEWMA method with a moderate �
performs better than the RST method. For large
changes, T 2 performs better than the RST method.
Similar to an isotonic case for large and moderate
changes, the change-point estimation approach comes
up with estimates close to the real change-point.

3.5.4. Antitonic multiple step change
In antitonic multiple step change, the RST method
outperforms the other two methods most of the time.
The RST method is always superior to the T 2 method
but MEWMA with a small or moderate � performs bet-
ter than the RST method in detecting small changes.
Similar to the isotonic multiple example, increasing the
size of the second step change causes the change-point
approach to estimate the second change as the change-
point most of the time.

3.6. Bias-reduced T 2

According to the results, since T 2 and MEWMA use
a biased estimator, the performance of these methods
depends on the direction of the change, and they are
not ARL-unbiased. Therefore, the Firth bias-reduced
estimator was used as the estimator of the T 2 and the
simulations were run based on the following model:

�1 = (�00 � �1 � �1; �10): (35)

The only di�erence is that, here, both increasing and
decreasing changes were used to see the results. The
results show that the proposed method is signi�cantly
less biased than T 2. The results are given in Table 10
and Figure 1. According to the results, the proposed
method shows less di�erence between isotonic change
ARL and antitonic change ARL. Therefore, the pro-
posed method is less biased than T 2.

Figure 1. Comparison of the Bias reduced T 2 with T 2.
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Table 10. Average Run Length (ARL) comparison of the proposed method with T 2.

�1 Bias reduced T 2 T 2

Isotonic Antitonic Isotonic Antitonic

0.8 46.3708 (45.4409) 8.5361 (7.9815) 147.8055 (148.8448) 8.2820 (7.8097)

1 13.4137 (12.7153) 4.9672 (4.4272) 34.4333 (33.8360) 4.7895 (4.2527)

1.1 7.9368 (7.3582) 3.9600 (3.4593) 18.4573 (18.0038) 3.8633 (3.3482)

1.2 5.1139 (4.6667) 3.2107 (2.6734) 10.4202 (9.8837) 3.1227 (2.5878)

1.3 3.4750 (2.9379) 2.6992 (2.1582) 6.1981 (5.6435) 2.6422 (2.0693)

1.4 2.5291 (1.9569) 2.2879 (1.7030) 4.2043 (3.6496) 2.2458 (1.6594)

1.5 1.9047 (1.3017) 1.9858 (1.4171) 2.8906 (2.3483) 1.9450 (1.3494)

2 1.0534 (0.2374) 1.2604 (0.5634) 1.1296 (0.3821) 1.2444 (0.5460)

2.5 1.0004 (0.0200) 1.0545 (0.2382) 1.0014 (0.0374) 1.0579 (0.2453)

3 1 (0) 1.0093 (0.0960) 1 (0) 1.0097 (0.1010)

4. A real-data analysis

In this section, the RST method is used to monitor
a real-world data example in Phase II. This example
was used and monitored in Shadman et al. [30,36], in
both Phase I and Phase II. This research, however,
focuses on Phase II and drift. An instrument named a
Dispergrader was used to get data. This instrument is
used to assess the dispersion of carbon black �ller in a
rubber mix.

Evaluation of �ller dispersion is very important
in resin substances, especially in the tire industry. The
amount of dispersion a�ects the quality of the product;
and therefore, it is considered a parameter in quality
control systems. In the literature, di�erent methods
are introduced to evaluate the dispersion. These
methods are mostly subjective, time-consuming and
costly. The Dispergrader, using a microscope, provides
an appropriate method for measuring the dispersion of
�llers.

In resin production �ller pellets, which are mostly
1 milimeter in diameter, are broken down into aggre-
gates which are mostly 1 micron in diameter to produce
the desirable substance. In the process of production,
this breaking down does not occur in all particles,
and particles which are not broken down remain as
agglomerates and can be considered as defects. These
defects can highly a�ect mechanical features such as
tensile strength, rupture, and fatigue.

In the Dispergrader, beams are sent out to the
surface of the sample in such a way that the beams
direction and surface meet at a 30-degree angle to each
other. This equipment magni�es the image 100 times.

A sample curved rubber bar is put in the Dis-
pergrader and beams are sent out on its surface.
The beams re
ected from agglomerates larger than 3
microns in diameter make white spots in the image.

Afterwards, the number of white spots is recorded for
each given spot size. Recording is done in such a way
that sizes between 3 and 6 microns are recorded as 3,
sizes between 6 and 9 microns are recorded as 6, and
this approach is also used for larger spots. All the white
spots which are 57 microns in diameter or greater are
recorded as 57. The quality characteristic is de�ned
as a pro�le in which agglomerate count is the response
variable and the agglomerate diameter is the predictor
variable.

The aim of Phase II is online monitoring of the
Dispergrader. To start Phase II, a set of in-control
historical data are needed to estimate parameters and
control limits. For this purpose, in-control data used
by Shadman et al. [30] is chosen. They assumed
that the response variable can be adequately modeled
by negative binomial distribution. They used a log
function and assumed that there is a second order
polynomial relationship between response variable and
predictor variable:

Y � Negative Binomial(� = 1; p = 1=(1 + �=�));
(36)

Log(�) = �0 + �1X + �2X2: (37)

In this research, the authors used the same model and
the approach of Ver Hoef and Boveng [37] to estimate
parameters. Parameters were estimated as:

�in�control0 = 6:0781;

�in�control1 = �0:0104;

�in�control2 = �0:0030:

Three di�erent scenarios are considered, in which
parameters of the model undergo isotonic drift. Sce-
nario 1 is as follows:
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Figure 2. Control charts for real-data analysis.(
�0 =�in�control0 ; t=1; 2; :::; 16
�0 =�in�control0 +0:5��0�(t�16); t=17; 18; ::: (38)(
�1 =�in�control1 ; t=1; 2; :::; 16
�1 =�in�control1 +0:5��1�(t�16); t=17; 18; ::: (39)(
�2 =�in�control2 ; t=1; 2; :::; 16
�2 =�in�control2 +0:5��2�(t�16); t=17; 18; ::: (40)

The models for scenario 2 and 3 are similar to
scenario 1, and the only di�erence is that for scenario
2, the parameters which determine the slope of change
are �0 = �1 = �2 = 0:05. The same parameters for
scenario 3 are 0.005.

Finally, a control chart based on the change-point
approach and the RST statistic is implemented to
monitor a negative binomial pro�le, as speci�ed in the
following steps:

1. A simulated control limit which is not constant over
time is determined in a way that leads to a 200 in-
control ARL;

2. After obtaining new observations, the Rmax;t statis-
tic is calculated and compared to the control limit.
If it is below the control limit, new observations
will be made, otherwise, control chart signals and
the change-point are estimated.

Table 11. Alarm time for di�erent scenarios in real-data
analysis (CP is the estimated change-point).

RST MEWMA T 2

Scenario 1 17 (CP = 16) 18 17
Scenario 2 23 (CP = 19) 22 23
Scenario 3 61 (CP = 47) 43 76

Three methods, RST, T 2 and MEWMA, are
compared under the three mentioned scenarios. The
proposed method, bias reduced T 2, is not used in real-
data analysis for two following reasons:

1. Phase I of this example is done using IWLS which
is a biased estimator. Therefore, using another
estimator (bias reduced estimator) in Phase II
might be misleading;

2. The bias reduced GLM package in R (brglm R)
currently is developed only for binomial response
GLMs.

The time window of the RST method is 100 and
the � of the MEWMA method is 0.2. The results
and control charts are given in Figure 2 and Table 11,
respectively.

5. Conclusions

The aim of this study is to evaluate the performance
of the Rao Score Test (RST) method compared to
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Multivariate Exponential Weighted Moving Avrage
(MEWMA) and T 2 in monitoring generalized linear
pro�les in the presence of drift and multiple changes,
which can be increasing or decreasing. It also attempts
to solve the problem of being ARL-biased in control
charts that use IWLS as the estimator.

In this research, the performances of the men-
tioned methods are evaluated in detecting isotonic drift
and multiple changes in the parameters of the binomial
pro�le, and antitonic drift and multiple changes in the
parameters of the Poisson pro�le. For the case of
increasing drift and multiple changes, the results are
in agreement with Shadman et al. [30] and the RST
method outperforms MEWMA and T 2. Furthermore,
the change-point estimator matches the change-point
closely to the real change-point in large and moderate
drifts. For the case of multiple changes, in which the
�rst step is constant and the second step can have ten
di�erent sizes, increasing the size of the second step,
at �rst, makes the change-point estimation approach
to estimate the change-point close to the real change-
point. However, beyond a point, increasing the size
of the second step makes the change-point estimation
estimate the second step as the change-point most
of the time. In decreasing changes, the RST is not
superior to the other two methods in all cases. In terms
of detecting a small decreasing drift, MEWMA with a
small � value performs better than the RST method.
For a moderate change, sometimes MEWMA with
moderate � values shows a better performance, and for
a large change, T 2 outperforms the RST method. In
detecting small decreasing multiple changes, MEWMA
with a small or moderate � outperforms the RST
method. The performance of the change-point esti-
mator in estimating the change-point in the case of
antitonic drift and multiple changes was similar to the
case of isotonic change. Another important concern
might be the e�ect of the number of predictors and
observations on the performance of the RST method.
In order to study this issue, The numbers of the
predictors and observations for the binomial pro�le
under drift were doubled. Simulation results show that
the RST method still works well compared to T 2.

It was noticed that the performance of MEWMA
and the T 2 method di�ers for the case of isotonic
and antitonic change, and they are not ARL-unbiased.
This happens because MEWMA and T 2 methods do
not have the characteristic of being unbiased, which
is a result of the biased estimator that they use.
Therefore, to deal with this problem, the use of a bias
reduced Generalized Linear Model (GLM) approach
was proposed as an estimator in T 2. This estimator
was proposed by Firth [29], but it had never been used
in pro�le monitoring. The authors results show that
the proposed method reduces the bias of the control
chart satisfactorily.

A real world example of the resin industry is
presented to show the implementation of the methods
in Phase II. At �rst, through statistical analysis, a
negative binomial pro�le, with a log function which
relates the mean of the response variable to a second
order polynomial of predictor variable, is chosen to
model the data. Afterwards, three methods are used
to monitor negative binomial pro�les in Phase II and
under drift. According to the results in the scenario
with large drift, RST and T 2 show a similar perfor-
mance and outperform MEWMA. In the scenario with
moderate drift, three methods perform closely. In the
scenario with small drift, MEWMA outperforms RST
and RST outperforms T 2. As mentioned earlier, a bias
reduced GLM package in R (brglm R) currently works
only for binomial responses. Developing and testing
the package for other applications and using it in pro�le
monitoring could be considered for future study.
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