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Abstract. In the industrial world of today, a growing need for the advancement and
improvement of the organizations' operations is felt. Learning regarded as an inherent
property is time-dependent and comes with experience. In view of this, the present study
considers the process of learning for an imperfect production system in order to contribute
to reducing the setup cost with the level of maturity gained, hence bringing positive
results for organizations. Due to machine disturbances/malfunctions, defectives were
manufactured with a known probability density function. To satisfy the demand for good
products only, the manufacturer invested in a two-way inspection process with multiple
screening constraints. The �rst inspection misclassi�ed some of the items and delivered
inaccuracies called Type-I and Type-II errors. The loss resulting from inspection at the
�rst stage was e�ciently managed through the second inspection, which was presumed to
be error-free. The study mutually optimized the production backordering quantities in
order to maximize the expected total pro�t per unit time. Numerical analysis and detailed
sensitivity analysis were carried out to validate the hypothesis and further cater for some
valuable implications.

© 2020 Sharif University of Technology. All rights reserved.

1. Introduction and literature review

This section showcases the inspiration behind the
developed framework and presents an overview of the
literature in the �eld of inventory management relevant
to the present study. In this respect, the contribution
of the present framework is established among other
existing studies.
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1.1. Motivation
Production systems prone to malfunctions have caught
the attention of numerous researchers in recent years.
These systems have been explored under imperfect
environments in which the manufacturing process,
screening process, or possibly both could be imperfect.
In all cases, the results have revealed a higher per-
centage of defective items that are generally preferred
for rework so as to become as good as new ones,
while others are conventionally salvaged at a lower
price without any further check for screening errors.
Therefore, many papers have adopted only a single-
inspection technique to separate out the defectives from
the produced lot before sending them to the market
even in an imperfect inspection environment. In view
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of this, a less explored area of two-way inspection plans
is emphasized in this paper in which the �rst inspection
plan is prone to errors while the second one is assumed
to be error-free. The �rst inspection produces Type-I
and Type-II errors. Due to Type-I errors, the revenue
is directly a�ected as the non-defectives are classi�ed
as defectives. However, as a result of Type-II errors,
the defectives are sold to the customers, which yield
sales returns, thereby hampering the goodwill of the
�rm. Henceforth, through the second inspection plan,
the outcome of Type-I error can be completely saved
from scraping o� by mistake, resulting in an increase
in revenue. Moreover, the plan categorizes items into
three divisions, namely perfect, reparable, and scrap
items, instead of two conventional categories of repara-
ble and non- reparable items. Such a division helps
increase the number of perfect items in the inventory,
which are sold at the markup price and ultimately,
bring about more pro�t. Furthermore, learning process
is an inherent property of any organization and the
maturity gained through time must be considered to
gain economic bene�ts. In lieu of this, learning with
regard to production cost components is considered,
which is indeed helpful in gaining pro�t in subsequent
inventory cycles. Thus, the present paper considers a
production runtime-dependent set-up cost to moderate
the overall expenses of the system. In this regard, the
current study �lls the research gap by constructing an
inventory model that deals with imperfect production
systems, two-way inspection plans, inspection errors,
rework, backorders, and learning in setup cost.

1.2. Literature review
Imperfect quality and screening errors: While
investigating manufacturing systems, malfunctions
should be taken into account since they are capable
to produce defective items, which directly result in
an economic loss for an organization. Moreover, it is
necessary to manage the defectives so as to extract the
monetary value of the products as much as possible.
The defectives can be categorized into reworkable
and non-reworkable items. The non-reworkable items
can either be vended to a subordinate market at a
cheap rate or be disposed of at some cost. Pioneer
studies in the �eld of imperfect production systems
were conducted by Porteus [1], Rosenblatt and Lee [2],
Lee and Rosenblatt [3], Kim and Hong [4], Ben-
Daya and Hariga [5], Salameh and Jaber [6], Cardenas
Barron [7], Huang [8], Chung and Hou [9], Yeh et
al. [10], Ben-Daya and Rahim [11], Huang [12], Hsieh
and Lee [13], Chen and Lo [14], and Wee et al. [15].
While dealing with items of imperfect quality, it is
necessary to adopt screening process that may include
some human errors. Therefore, it is reasonable to
incorporate screening errors into the inventory model in
order to make it closer to the real-time manufacturing

process. Raouf et al. [16] as the pioneer contributors
to the �eld of inspection incorporated the e�ect of
human error into their model. Later, Du�uaa and
Khan [17] and Du�uaa and Khan [18] extended the
work to study misclassi�cation of the good items
into bad ones and vice versa. Furthermore, Zhou et
al. [19], Al-Salamah [20], Khan et al. [21], Khanna et
al. [22], Pal and Mahapatra [23], and Sett et al. [24]
recently explored the area of inspection errors with
other realistic scenarios for inventory management.

Imperfect quality and rework: To compensate for
the failure of increasing the pro�t margins mainly
due to misclassi�cations and the consequent sale and
salvage of defectives, implementing the rework process
apart from planning the backorders is found useful. In
addition, shortages are likely to occur whenever there is
a supply or demand di�culty, especially under an im-
perfect quality environment. Hayek and Salameh [25]
looked into the signi�cance of rework when there were
defective items in the inventory system of �nite pro-
duction model with shortages. In several production
systems, imperfect items are preferred for rework and
signi�cantly reduce the total costs of production and
inventory. Several signi�cant contributions made in
this �eld are those of Chiu [26], Chiu et al. [27],
Chiu et al. [28], Chiu et al. [29], Sana [30], Sarkar
et al. [31,32], and Dey and Giri [33]. Later, Chiu
[34], Lin [35], and Yoo et al. [36] explored the area
of inventory modeling with imperfect items, screening
process, and rework. Recently, Hsu and Hsu [37] and
Wee et al. [38] developed an optimal replenishment
model with defective items, screening errors, shortages,
and sales returns. C�ardenas-Barr�on et al. [39] put forth
a pioneering work through a brief introduction to the
inventory papers. Taleizadeh et al. [40] proposed an
optimal order quantity model with partial backorders
and reparation of imperfect products. Wang et al. [41]
also proposed an optimal order quantity model, taking
into account the screening constraints. Jaggi et al. [42],
Moussawi-Haidar et al. [43], Liao [44], Pal et al. [45],
Shah et al. [46], Sekar and Uthayakumar [47], Benkher-
ouf et al. [48], Chen [49], Sha�ee-Gol et al. [50], Jawla
and Singh [51], C�ardenas-Barr�on et al. [52], Nobil et
al. [53], Chung et al. [54], and Nobil et al. [55] have
recently explored the area of inventory management
by employing various rework scenarios.

Learning in setup cost: Learning is a time-
dependent process that comes into picture when the
maturity phase of an organization and its workers is
ful�lled. In particular, learning in setup cost is a
dynamic process through which setup costs can be
reduced with the onset of learning in the subsequent
cycles. This process was previously adopted by Adler
and Nanda [56], Sule [57], and Urban [58]. The e�ect
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Table 1. Comparison of contributions of di�erent authors.

Research papers Imperfect
quality

Inspection
errors

Screening
constraints

Sales
returns

Rework
Learning in
setup cost

Du�uaa and Khan [18] Yes Yes No No No No
Khan et al. [21] Yes Yes No No Yes Yes

Khanna et al. [22] Yes Yes No Yes Yes No
Jaggi et al. [42] Yes Yes No Yes Yes No
Sha�ee-Gol [50] Yes No No No Yes No

Jawla and Singh [51] Yes No No No Yes No
C�ardenas-Barr�on et al. [52] Yes No No No Yes No

Nobil et al. [53] Yes No No No Yes No
Chung et al. [54] Yes No No No Yes No
Nobil et al. [55] Yes Yes No No Yes No

Konstantaras et al. [64] Yes No No No No No
Mukhopadhyay and Goswami [65] Yes No No No No Yes

Gautam and Khanna [66] Yes No No Yes No No
Present paper Yes Yes Yes Yes Yes Yes

of learning and forgetting was incorporated in many
papers thereafter. Jaber and Bonney [59] presented
an extended review of learning in their study. Later,
other researchers including Jaber and Bonney [60],
Jaber [61], and Darwish [62] investigated the process of
learning in their inventory modeling. Khan et al. [63]
presented an inventory model with defective items and
learning inspection. Konstantaras [64] extended the
model of Khan et al. [63] by incorporating shortages.
Recently, Mukhopadhyay and Goswami [65] proposed
an imperfect production inventory model for three
kinds of defectives with rework and learning setup.
Table 1 gives a quick review of the literature and �lled
research gaps.

Our contribution: Inventory management revolves
around products and customers. The process of
managing products is categorized into numerous parts,
implementing all required activities such as manufac-
turing, screening, rework, and sales refunds when the
end consumer is not satis�ed. Therefore, it makes sense
to employ product management, i.e., controlling the
perfect and imperfect products for realistic inventory
modeling. In order to e�ciently manage the whole lot,
�rst, an \error-prone" screening process is employed
on the complete batch that discards some perfect
products by mistake (an outcome of Type-I error)
and erroneously sells some defectives as perfect items
(an outcome of Type-II error). In order to reduce
the loss resulting from compromised screening at �rst
hand, another screening process is simultaneously run
in the smaller lot of accumulated defectives (consisting
of both actual and wrongly-classi�ed defectives) under
rigorous surveillance at a relatively higher cost than

the �rst inspection process. Since this re-inspection is
conducted with higher quality, it seems to be error-
free and successfully nulli�es the loss resulting from
Type-I error by completely extracting the perfect items
(that are wrongly classi�ed as defectives). Finally,
this second inspection successfully categorizes the ac-
cumulated defectives into three parts, namely perfect,
reparable, and non-reparable. Thus, it contributes to
increasing the number of perfect items and hence, the
revenue from an additional investment in the second
inspection process. After these two simultaneous
screening processes, the rework process begins on the
reparable lot, which adds up to the revenue at a
marginal cost of rework. Therefore, contrary to the
previous research practices that considered the single
and perfect inspection capable to handle the defectives,
the present paper investigates the imperfect production
systems under the condition of two-way inspection
processes with screening errors at the �rst stage only
along with sales returns. Therefore, a rework process
is employed for accumulated defectives under various
screening constraints for achieving higher standards of
quality and revenue as well. Additionally, learning in
setup cost is considered in this model to gain some
maturity with time and elevate the pro�t values. Two
mathematical models are proposed for imperfect pro-
duction system with and without considering the e�ects
of learning. Numerical and sensitivity analyses are
carried out to showcase the key features. Furthermore,
the importance of two-way inspection plan is signi�ed
through a comparative study. The model is applicable
to a variety of manufacturing industries that target
high standards of quality and customer satisfaction,
encourage teamwork, and prefer to invest in learning.
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2. Model development

The present segment gives the notation, assumptions,
and constraints based on which the model is developed.

2.1. Notation
Parameters
� Demand rate of units per unit time
� Production rate
'1 Rework rate
x Inspection rate in units per unit time,

� > D
� Proportion of imperfect items (a

random variable with known p.d.f.)
q1 Proportion of Type-I imperfection

error (a random variable with known
p.d.f.)

q2 Proportion of Type-II imperfection
error (a random variable with known
p.d.f.)

p1 Proportion of non-reparable/scrap
items (a random variable with known
p.d.f.)

p2 Proportion of reparable items (a
random variable with known p.d.f.)

p3 Proportion of perfect items, secluded
from the second inspection process (a
random variable with known p.d.f.)

r Proportion of rework items (a random
variable with known p.d.f.)

T Cycle length
E(:) Expected value operator
E(�) Expected value of �
K0 Production setup cost for each cycle
cP Purchase cost per item ($/item)
i1 Inspection cost per item during

production ($/item)
i2 Inspection cost per item after

production ($/item)
s Selling price ($/item)
u Disposal cost of defectives (< s)

($/item)
v Unit discounted price of each defective

item (< s) ($/item)
cB Shortage cost per unit per unit time
cr Cost of obligating Type-I error

($/item)
ca Cost of obligating Type-II error

($/item)
h Holding cost per unit time

h1 Holding cost of reworked items per
unit time

Decision variables
y Production lot size
B Backorder level
Functions
f(�) p.d.f. of defective items
f(q1) p.d.f. of Type-I error
f(q2) p.d.f. of Type-II error
f(r) p.d.f. of rework items
f(p1) p.d.f. of scrap items
f(p2) p.d.f. of non-repairable items
f(p3) p.d.f. of repairable items
T:C: Total cost
E:T:C:U: Expected total cost per unit time
T:R: Total revenue
E:T:R:U: Expected total revenue per unit time
Zj(y;B) Total pro�t per unit time for j = 1; 2
E[Zj(y;B)] Expected total pro�t per unit time for

j = 1; 2
Optimal values
T � Optimal cycle length
y� Optimal order quantity per cycle
B� Optimal backorder level
E[Z�(y;B)] Optimal expected total pro�t per unit

time

2.2. Assumptions
The mathematical model is proposed based on the
following assumptions:

1. Demand rate is constant, uniform, and determinis-
tic. Moreover, demand is satis�ed by perfect items
only;

2. Production rate is �nite and constant;

3. Production process produces only single-product
type and delivers some imperfect items as well;

4. Screening process �rst leads to Type-I and Type-II
misclassi�cation errors;

5. The second procedure of inspection is error-free
and produces three types of items, namely perfect,
repairable, and non-repairable;

6. Rework process is run after the end of the second
inspection procedure;

7. The screening cost during production is higher
than that for production completion;

8. The holding cost of defectives that are reworked is
more than that of non-defective items;
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9. The manufacturer who learns from the past expe-
riences is able to eventually reduce the setup time
and cost;

10. The non-learning model can be the trivial case of
the present study, i.e., 2= 0;

11. Shortages are allowed and fully backlogged;
12. Time period is in�nite and lead time is insigni�-

cant.

2.3. Model constraints
1. Production rate is greater than screening rate (� >

x);
2. Screening rate is greater than demand rate (x > �);
3. Rework rate is greater than demand rate (� > �);
4. Since some perfect items will always be there in the

inventory, 1� E[p1] > 0;
5. In order to eliminate the backorders and maintain

the positive inventory, consider (1� E [p1])x�� >
0;

6. In order to avoid shortages during the screening
process, the number of inspected perfect items
should be at least equal to the demand rate during
that speci�c period, i.e. �y

x � y (1� E [p1]);
7. Production rate of perfect items satis�es the in-

equality � (1� E [p1]) > x.

2.4. Screening constraints
1. When the production rate is greater than the

screening time, the screening process will continue
even after the production process, i.e. (t4 > 0);

2. For smooth functioning of inventory, screening
should be �nalized before the completion of inven-
tory, i.e. t4 < (t5 + t6);

3. The total expected cost of production and screening
should be less than the total sales revenue earned by
selling both perfect and imperfect items, i.e. cp +
d1 + d2 < s (1� �)� s�q2 + s�r + v� (1� r).

3. Mathematical modeling

The present section presents the problem de�nition so
as to give a clear picture of the problem under study
and formulate the mathematical model that �ts the
abovementioned assumptions and constraints.

3.1. Problem de�nition
Manufacturing systems are loaded with a number
of sub-units and due to factors such as interrupted
supply of power, age-based issues, malfunction of tools,
overheating of the machines, etc. a system may �nally
stop producing defectives. The defective items should
be removed from the lot through a vigilant screening
process. However, the screening is not always error-
free due to a number of factors such as lack of enough

work instructions, human error, weak control over
the entire screening process, etc. that �nally lead to
misclassi�cation of both Type-I and Type-II errors.
The �rst type of error results in a direct loss of revenue
for the manufacturer and as a result of the second type
of error, the defective items are delivered to the cus-
tomers who bring sales returns. To reduce the damage
brought about by the goodwill of the manufacturer
in the market, sales returns are also legitimate for
full price refunds. To e�ectively manage the whole
inventory system, the management of all items that
are actually defective, wrongly-classi�ed as defective
or even returned by customers, is vital. As a result
of Type-I error, another inspection process is needed
that is capable of not only saving the perfect items
from getting scrapped at a reduced price or getting
them reworked for no use, but also extracting them
successfully at a marginal cost of the second inspection
process only. To this end, the second inspection process
is considered to be error-free, thus providing the
manufacturer with three types of products including
non-reparable (p1 = �(1�r)), reparable (p2 = �r), and
perfect (p3 = (1��)q1) that are particularly victimized
by the Type-I error earlier. Furthermore, a rework
process is employed in order to transform the items
of reparable category into perfect ones at some rework
cost. Moreover, the process of learning is an ongoing
time-dependent process and learning in the setup of
the production process is of great importance for the
manufacturer. With time, the organization is able
to learn well, which should be incorporated into the
subsequent production cycles in order to increase the
e�ciency of the �rm. In light of this, the present study
develops two cases for an inventory model with and
without the e�ects of learning in setup cost with defec-
tives, two-stage inspection process, screening errors in
the �rst inspection procedure, perfect rework process,
disposal of non-reparable stock, and incorporation of
fully backlogged shortages. The proposed model was
explored under several realistic model and screening
constraints in order to obtain more practical results.
The sequential ow of the abovementioned events is
given in Figure 1.

The manufacturer's problem is formulated by
jointly optimizing both optimal production batch size
and backorder size. Pro�t is obtained by subtracting
all cost components including costs of production, in-
spection, misclassi�cation, rework, shortage, disposal,
and holding from the revenue, which is obtained by
the sales of good, imperfect, and reworked items.
Furthermore, the fractions of Type-I and Type-II errors
are considered independent of defect proportion.

3.2. Mathematical formulation
The present fragment formulates a mathematical model
which �ts the problem description and assumptions.
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Figure 1. Sequence of events in the inventory cycle.

The graphical representation of the inventory is given
in Figure 2.

The total outcome of the perfect items sorted after
the combined e�ects of inspection and rework processes
is (l � p1)y where p1 is expanded in Appendix A.

Since demand is satis�ed through only perfect
items, the length of the total cycle is de�ned as the
total number of sold perfect items per demand rate,
i.e.:

T = (1� p1)
y
�
: (1)

Shortages are there from the beginning of the inventory
cycle, i.e., from time 0 to A1. Therefore, the total
backorder building time is calculated as:

t1 =
B
�
: (2)

After time point A1, shortages begin to decrease and
get completely eliminated by A2. Therefore, complete
shortage elimination time is determined by:

t2 =
B

(1� p1)x� �: (3)
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Figure 2. Inventory behavior of the system.

Furthermore, the whole inventory of defectives built
during the shortage removal time (A1; A2) is estimated
as:

z1 = [�� (1� p1)x] t2 =
[�� (1� p1)x]B

(1� p1)x� � : (4)

The overall inventory during time period (A2; A3) is
constructed by the accumulation of defectives and
unsold perfect items. The uptime of this inventory is
calculated as:

t3 =
z5 � z1

�� � =
1

�� �
�
z5 � [�� (1� p1)x]B

(1� p1)x� �
�
:
(5)

Moreover, the entire production runs within a period of
A1 up to A3 and duration of the period can be obtained
by adding lengths t2, t3, i.e.:

t2 + t3 =
y
�
: (6)

By substituting the value of Eq. (3) into the above
equation:

t3 =
y
�
� B

(1� p1)x� �: (7)

By equating Eqs. (5) and (7), the value of z5 is obtained
as:

z5 =
[�� (1� p1)x]B

(1� p1)x� �
+ (�� �)

�
y
�
� B

(1� p1)x� �
�
: (8)

Since the total screening time is presumed to exceed
the production time, it varies from time point A1 to
A4 given by:

t2 + t3 + t4 =
y
x
: (9)

By substituting the value of Eq. (6) into the above
equation:

t4 =
y
x
� y
�
: (10)

Furthermore, the total inventory depleted during the
post-production screening time is determined as:

z5 � z4 = �t4: (11)

Through Eqs. (8), (10), and (11), the value of z4 is
obtained as:

z4 =
[�� (1� p1)x]B

(1� p1)x� �

+ (�� �)
�
y
�
� B

(1� p1)x� �
�

��
�
y
x
� y
�

�
: (12)

The defectives which are to be scrapped add up to p1y
and are disposed right after the end of the screening
process, i.e., at A4. Therefore, the e�ective inventory
is instantaneously reduced and obtained by:

z3 = z4 � p1y =
[�� (1� p1)x]B

(1� p1)x� �

+ (�� �)
�
y
�
� B

(1� p1)x� �
�

��
�
y
x
� y
�

�
� p1y: (13)

Next, the rework process of a fraction from total
accumulated defectives starts right after the second
inspection procedure. The second inspection is done
hand over hand and its time period is not taken into
account. Therefore, the rework runtime, which begins
from A4 and continues until A5, is determined as:
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t5 =
z3 � z2

�1 � � =
1

�1 � �
�

[�� (1� p1)x]B
(1� p1)x� �

+ (�� �)
�
y
�
� B

(1� p1)x� �
�

��
�
y
x
� y
�

�
� p1y � z2

�
: (14)

In addition, out of the entire defective inventory �y, the
count of reworkable is p2y and the rework processing
time is rewritten as:

t5 =
p2y
�1

: (15)

By equating Eqs. (14) and (15), the value of z2 is
obtained as:

z2 =
[�� (1� p1)x]B

(1� p1)x� �

+ (�� �)
�
y
�
� B

(1� p1)x� �
�

��
�
y
x
� y
�

�
� p1y � p2y (�1 � �)

�1
: (16)

Finally, the remaining perfect items obtained from the
rework process (p2y) and those directly segregated from
the second inspection process (p3y) are sold until the
inventory completely depletes to zero. Thus:

t6 =
z2

�
=

1
�

�
[�� (1� p1)x]B

(1� p1)x� �

+ (�� �)
�
y
�
� B

(1� p1)x� �
�

��
�
y
x
� y
�

�
� p1y � p2y (�1 � �)

�1

�
: (17)

The whole screening process is covered in two parts,
one ends with the production procedure and runs for a
length of (t2+t3) and the other begins after completion
of the production process and runs for a length of (t4),
i.e. until all the remaining items are screened. In this
regard, the number of units screened during the �rst
interval (A1; A3) is obtained through:

=
�
�+ ��+ ��2 + ::::

�
(t2 + t3) =

� (t2 + t3)
1� �

=
�y

� (1� �)
: (18)

= Ay; where A =
�

� (1� �)
: (19)

To estimate the total number of units screened during
the second interval (A3; A4), the �nal number of
defectives accumulated by time point A3 is determined

and then, subtracted from the maximum inventory
level present in that speci�c time period z5. The total
number of defectives accumulated during (A3; A4) is
obtained by the total units screened by time point A3
minus the demand satis�ed in this time, i.e.:

= Ay � �t1: (20)

Using Eq. (20), the total number of items screened
between (A3; A4) is calculated:

= z5 � (Ay � �t1) : (21)

=
[�� (1� p1)x]B

(1� p1)x� � + (�� �)
�
y
�
� B

(1� p1)x� �
�

� �y
� (1� �)

�B: (22)

Furthermore, this model incorporates the e�ect of
learning in setup cost by assuming a variable setup cost
function depending on the production run length TP ,
where:
TP = t2 + t3; (23)

C0 (TP ) =

(
C0(TP )2 TP < TM
Cmax TP � TM (24)

C0 (TP ) =

8<:C0

�
y
�

�2
TP < TM

Cmax TP � TM
(25)

where 2 is the shape factor, C0 is the setup cost related
to the basic production quantity model when the shape
factor is zero, and TM is the minimum run length after
which the setup process requires the maximum cost
(Cmax).

The cost (Cmax) acts as an upper limit for the
setup cost. The shape factor 2 is estimated using
the past data for earlier manufacturing practices and
adopting the curve �tting method. Darwish [53] repre-
sented the setup cost against the production run length
for di�erent values of shape factor (2) as demonstrated
in Figure 3.

3.3. Components of sales revenue
The components of revenue are evaluated as follows:

R1 Sales of only good quality items

= s (1� �) (1� q1) y + s�q2y; (26)

R2 Loss of revenue from sales returns

= �s�q2y; (27)

R3 Sales of reworked items

= s�ry; (28)
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Figure 3. Behavior of setup cost.

R4 Sales of misclassi�ed perfect items

(outcome of Type-I error) =s (1��) q1y; (29)

R5 Sales of scrap/non-reworkable items

= v� (1� r) y: (30)

By adding the sales of items with high quality, revenue
loss in sales returns, sales from reworked items, sales
of scrap items, and sales of non-reworkable items, the
total revenue of the manufacturer is obtained as follows:

T:R: = R1 +R2 +R3 +R4 +R5 = s (1� �) y

+s�ry + v� (1� r) y: (31)

3.4. Components of inventory system costs
The cost components that are incurred in the present
inventory scenario are:

� Setup cost obtained from introducing the e�ects of
learning into setup costs:

C0 (TP ) =

8<:C0

�
y
�

�2
TP < TM

Cmax TP � TM
(32)

� Purchase cost including the variable cost per cycle:

Cpy: (33)

� Screening cost of the �rst inspection process during
production runtime:

d1

�
�y

� (1� �)

�
: (34)

� Screening cost of the �rst post-production inspec-
tion process:

d2

�
[�� (1� p1)x]B

(1� p1)x� � + (�� �)�
y
�
� B

(1� p1)x� �
�
� �y
� (1� �)

�B
�
:
(35)

� Screening cost of the second inspection process:

d3 [�y + (1� �) q1y] : (36)

� Rework cost:
Cw�ry: (37)

� The incurred cost of Type-I error due to the in-
spector's misclassi�cation of some fractions of non-
defectives as defectives:
Cr (1� �) q1y: (38)

� The incurred cost of Type-II error due to the in-
spector's misclassi�cation of a portion of defectives
as non-defectives:
Ca�q2y: (39)

� Disposal cost of non-reworkable items:

u� (1� r) y: (40)

� Holding cost of the defectives, non-defectives, and
sales returns in a cycle:

h
�

1
2
z1t2 +

1
2
t3 (z1 + z5) +

1
2
t4 (z5 + z3)

+
1
2
t6z2 +

1
2
�q2yT

�
+ h1

1
2

(z3 + z2) t5: (41)

� Shortage cost:

CB
1
2

(t1 + t2)B: (42)

Since the present model is developed under the assump-
tion of learning in setup cost, two cases are established
for the manufacturer's total cost depending upon the
learning e�ects:

Case I: TP < TM (under the e�ects of learning)
When TP < TM , the following value is obtained for
the total cost of the manufacturer by substituting the
appropriate value of C0(TP ):

T:C:1 = C0

�
y
�

�2
+ Cpy + d1

�
�y

� (1� �)

�
+d2

�
[�� (1� p1)x]B

(1� p1)x� � + (�� �)�
y
�
� B

(1� p1)x� �
�
� �y
� (1� �)

�B
�

+d3 [�y + (1� �) q1y] + Cw�ry

+Cr (1� �) q1y + Ca�q2y + u� (1� r) y
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+h
� 1

2z1t2 + 1
2 t3 (z1 + z5) + 1

2 t4 (z5 + z3)
+ 1

2 t6z2 + 1
2�q2yT

�
+h1

1
2

(z3 + z2) t5 + CB
1
2

(t1 + t2)B: (43)

The manufacturer's total pro�t for Case I is shown in
the following:

T:P:1: = s (1� �) y + s�ry + v� (1� r) y

�C0

�
y
�

�2
� Cpy � d1

�
�y

� (1� �)

�
�d2

�
[�� (1� p1)x]B

(1� p1)x� � + (�� �)

�
y
�
� B

(1� p1)x� �
�
� �y
� (1� �)

�B
�

�d3 [�y + (1� �) q1y]� Cw�ry

�Cr (1� �) q1y � Ca�q2y � u� (1� r) y

�h
2

[�� (1� p1)x]B2

[(1� p1)x� �]2

�h
�
y
�
� B

(1� p1)x� �
� �

[�� (1� p1)x]B
(1� p1)x� �

�
�h

2
(�� �)

�
y
�
� B

(1� p1)x� �
�2

�h
2

�
y
x
� y
�

��
2 [�� (1� p1)x]B

(1� p1)x� �

+2 (�� �)
�
y
�
� B

(1� p1)x� �
�

��
�
y
x
� y
�

�
� p1y

�
� h

2�

�
[�� (1� p1)x]B

(1� p1)x� � + (�� �)

�
y
�
� B

(1� p1)x� �
�
� �

�
y
x
� y
�

�
�p1y � p2y (�1 � �)

�1

�2

= � h
2�
�q2 (1� p1) y2

�h1

2

�
2
�

[�� (1� p1)x]B
(1� p1)x� � + (�� �)�

y
�
� B

(1� p1)x� �
�
� �

�
y
x
� y
�

�
� p1y

�
�p2y (�1 � �)

�1

��
p2y
�1

�
+CB

1
2

�
1
�

+
1

(1� p1)x� �
�
B2: (44)

=yG1�BG2�y2G3�B2G4�yBG5�C0y2
�2 ; (45)

where p1, p2, p3, G1; G2; :::; G5 are expanded in Ap-
pendix A.

The manufacturer's total pro�t per unit time for Case I
can be expressed as follows:

Z1 (y;B) =
�

(1� p1)

�
G1 � BG2

y
� yG3 � B2G4

y

�BG5 � C0y2�1

�2
�
� �q2y

2
: (46)

Thus, the expected total pro�t per unit time can be
written as:

E [Z1 (y;B)] =
�

(1� E [p1])

�
E [G1]� BE [G2]

y

�yE [G3]� B2E [G4]
y

�BE [G5]� C0y2�1

�2
�

�E [�]E [q2] y
2

; (47)

where E[p1], E[p2], E[p3], E[G1], E[G2]; :::; E[G5] are
expanded in Appendix B.

The function, as represented in Eq. (47), illus-
trates that when 2� l, the pro�t function is mono-
tonically decreasing in y, indicating that the total cost
function will be minimum when y = 0, which is reason-
ably impractical. In practice, y should be minimum,
i.e. as much as required, which closely follows the JIT
(Just-In-Time) manufacturing philosophy. Therefore,
it is recommended that 2< l. Moreover, C0(TP )
is a concave function, which increases for 0 <2� l.
However, it decreases for 2< 0.

The values indicating 2< 0 signify a state in
which the e�ect of learning nulli�es the e�ect of
forgetting and deterioration, resulting in a reduction
in the setup costs with time.

Case II: TP � TM (without the e�ects of
learning)
When TP � TM , the following expression for the
manufacturer's total cost is obtained as follows:
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T:C:2 = Cmax + Cpy + d1

�
�y

� (1� �)

�
+d2

�
[�� (1� p1)x]B

(1� p1)x� � + (�� �)�
y
�
� B

(1� p1)x� �
�
� �y
� (1� �)

�B
�

+d3 [�y + (1� �) q1y] + Cw�ry

+Cr (1� �) q1y + Ca�q2y + u� (1� r) y

+h
�

1
2
z1t2 +

1
2
t3 (z1 + z5) +

1
2
t4 (z5 + z3)

+
1
2
t6z2 +

1
2
�q2yT

�
+ h1

1
2

(z3 + z2) t5

+CB
1
2

(t1 + t2)B: (48)

The manufacturer's total pro�t for Case II is shown in
the following:

T:P:2 = s (1� �) y + s�ry + v� (1� r) y � Cmax

�Cpy � d1

�
�y

� (1� �)
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�d2
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�Cr (1� �) q1y � Ca�q2y � u� (1� r) y
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+ (�� �)
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� p1y
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Thus, the manufacturer's total pro�t can be written as:

=yG1�BG2�y2G3�B2G4�yBG5�Cmax; (50)

where p1, p2, p3, G1; G2; :::; G5 are expanded in Ap-
pendix A.

The manufacturer's total pro�t per unit time can
be written as:

Z2 (y;B) =
�

(1� p1)

�
G1 � BG2

y
� yG3 � B2G4

y

�BG5 � Cmax

�
� �q2y

2
: (51)

Therefore, the expected total pro�t per unit time can
be written as:

E [Z2 (y;B)] =
�

(1� E [p1])

�
E [G1]� BE [G2]

y

�yE [G3]� B2E [G4]
y

�BE [G5]

�Cmax

�
� yE [�]E [q2]

2
; (52)

where E[p1], E[p2], E[p3], E[G1], E[G2]; :::; E[G5] are
expanded in Appendix B.

4. Optimal policy

The manufacturer aims to maximize the expected total
pro�t per unit time by jointly optimizing the produc-
tion amount and backorder quantity. In the following
section, the concavity of the objective function is
proved in the form of two lemmas.

Case I: TP < TM .

Lemma 1. The function of manufacturer's expected
total pro�t per unit time for Case I is concave.
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Proof. In order to prove the global concavity of the
expected pro�t function for this case, two second-order
su�cient conditions of optimality should be satis�ed:�

@2E [Z1 (y;B)]
@y2

�
� 0;

�
@2E [Z1 (y;B)]

@B2

�
� 0;�

@2E [Z1 (y;B)]
@y@B

�2

�
�
@2E [Z1 (y;B)]

@y2

�
�
@2E [Z1 (y;B)]

@B2

�
� 0: (L-1:)

By taking the �rst-order partial derivative of E[Z1
(y;B)] with respect to y, we obtain:

@
@y
E [Z1 (y;B)] =

�
1� E [p1]

�
E [G2]

B
y2 � E [G3]

+E [G4]
B2

y2 � c0 (2 �1) y(2�2)

'2
�
:

�E [�]E [q2]
2

: (53)

Then, by taking second-order partial derivative of
E [Z1 (y;B)] with respect to y, we obtain:

@2

@y2E [Z1 (y;B)] =
�

1� E [p1]

�
�2E [G2]

B
y3

�2E [G4]
B2

y3 � c0 (2 �1) (2 �2) y(2�3)

'2
�
:
(54)

Again, by taking the �rst-order partial derivative of
E [Z1 (y;B)] with respect to B, we obtain:

@
@B

E [Z1 (y;B)] =
�

1� E [p1]

�
�E [G2]

y

�2E [G4]B
y

� E [G5]
�
; (55)

and by taking the second-order partial derivative of
E [Z1 (y;B)] with respect to B, we obtain:

@2

@B2E [Z1 (y;B)] = � �
1� E [p1]

2E [G4]
y

; (56)

and

@2

@y@B
E [Z1 (y;B)] =

�
1� E [p1]�

E [G2]
y2 +

2E [G4]B
y2

�
: (57)

Thus, through Eqs. (54), (56), and (57), we obtain:

�
@2

@y@B
E [Z1 (y;B)]

�2

�
�
@2

@y2E [Z1 (y;B)]
�

�
@2

@B2E [Z1 (y;B)]
�

=
�

�
1� E [p1]

�2

�
�
E2 [G2]
y4 � 2c0 (2�1) (2�2)E [G4] y2

y4'2
�
:
(58)

The three conditions of concavity are derived in Ap-
pendix C.

Lemma 2. The optimal solution (y�; B�) that maxi-
mizes the manufacturer's expected total pro�t per unit
time for Case I is written as:
y� =24 4 (1�2) c0E [G4]

p2
n

4E [G4]
n
E [G3]+E[�]E[q2]

2

o�E2 [G3]
o351/2� 2

;

and:

B� = �E [G2] + E [G5] y
2E [G4]

:

Proof. In order to �nd the optimal values of y and
B, say y� and B�, that maximize E [Z1 (y;B)], the
�rst-order necessary condition of optimality must be
equated to zero, i.e.:

@
@y
E [Z1 (y;B)] = 0 and

@
@B

E [Z1 (y;B)] = 0
(L-2)

By setting Eq. (53) equal to zero, we get:
�

1� E [p1]

�
�2E [G2]

B
y3 � 2E [G4]

B2

y3

�c0 (2 �1) (2 �2) y(2�3)

'2
�

= 0: (59)

By setting Eq. (55) equal to zero, we get:
�

1� E [p1]

�
�E [G2]

y
� 2E [G4]B

y
� E [G5]

�
= 0:

(60)

) B� = �E [G2] + E [G5] y
2E [G4]

: (61)

Substitute the value of B into Eq. (59) to calculate the
value for y, i.e.:
y� =24 4 (1�2) c0E [G4]

p2
n

4E [G4]
n
E [G3]+E[�]E[q2]

2

o�E2 [G3]
o351/2�2

:
(62)

Hence, y� and B� are the optimal values of y and B
for Case I.
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Case II: TM � TP .

Lemma 3. The function of manufacturer's expected
total pro�t per unit time for Case II is concave.

Proof. In order to prove the global concavity of
the expected pro�t function, the following two second-
order su�cient conditions of optimality for this case
should also be satis�ed:�

@2E [Z2 (y;B)]
@y2

�
� 0;

�
@2E [Z2 (y;B)]

@B2

�
� 0

and
�
@2E [Z2 (y;B)]

@y@B

�2

�
�
@2E [Z2 (y;B)]

@y2

�
�
@2E [Z2 (y;B)]

@B2

�
� 0: (L-3)

By taking the �rst-order partial derivative of
E [Z2 (y;B)] with respect to y, we obtain:

@
@y
E [Z2 (y;B)] =

�
1� E [p1]

�
E [G2]

B
y2 � E [G3]

+E [G4]
B2

y2 +
Cmax

y2

�
� E [�]E [q2]

2
: (63)

Then, by taking the second-order partial derivative of
E [Z2 (y;B)] with respect to y, we obtain:

@2

@y2E [Z2 (y;B)] =
�

1� E [p1]

�
�2E [G2]

B
y3

�2E [G4]
B2

y3 � 2Cmax

y3

�
� 0; (64)

by taking the �rst-order partial derivative of
E [Z2 (y;B)] with respect to B, we obtain:

@
@B

E [Z2 (y;B)] =
�

1� E [p1]�
�E [G2]

y
� 2E [G4]B

y
� E [G5]

�
; (65)

and by taking the second-order partial derivative of
E [Z2 (y;B)] with respect to B, we obtain:

@2

@B2E [Z2 (y;B)] = � �
1� E [p1]

2E [G4]
y

� 0: (66)

Also:

@2

@y@B
E [Z2 (y;B)] =

E [G2]
y2 +

2E [G4]B
y2 : (67)

Thus, through Eqs. (64), (66), and (67), we obtain:

�
@2

@y@B
E [Z2 (y;B)]

�2

�
�
@2

@y2E [Z2 (y;B)]
�

�
@2

@B2E [Z2 (y;B)]
�

=
E2 [G2]
y4

�4E [G4]Cmax

y4 : (68)

The conditions of concavity are derived in Appendix D.

Lemma 4. The optimal solution (y�; B�) that maxi-
mizes the manufacturer's expected total pro�t per unit
time is written as:

y� =

s
2� (BE [G2] +B2E [G4] + Cmax)

2�E [G3] + E [�]E [q2] (1� E [p1])
;

B� = �E [G2] + E [G5] y
2E [G4]

:

Proof. In order to �nd the optimal values of y and
B, or y� and B�, that maximize E [Z2 (y;B)], the �rst-
order necessary condition of optimality must be equal
to zero, i.e.:

@
@y
E [Z2 (y;B)] = 0; and :

@
@B

E [Z2 (y;B)] = 0: (L-4)

By setting Eq. (63) equal to zero, we get:

�
1� E [p1]

�
E [G2]

B
y2 � E [G3] + E [G4]

B2

y2 +
Cmax

y2

�
�E [�]E [q2]

2
= 0: (69)

) y� =

s
2� (BE [G2] +B2E [G4] + Cmax)

2�E [G3] + E [�]E [q2] (1� E [p1])
: (70)

By setting Eq. (65) equal to zero, we get:

�
1� E [p1]

�
�E [G2]

y
� 2E [G4]B

y
� E [G5]

�
= 0:

(71)

) B� = �E [G2] + E [G5] y
2E [G4]

: (72)

This value of B given in Eq. (72) is substituted into
Eq. (70), to attain the �nal value of y which is given
by Eq. (73), shown in Box I.

Hence, y� and B� are the optimal values of y and
B for Case II.
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) y� =

vuut2�
nh�E[G2]+E[G5]y

2E[G4]

i
E [G2] + [E[G2]+E[G5]y]2

4E[G4] + Cmax

o
2�E [G3] + E [�]E [q2] (1� E [p1])

: (73)

Box I

5. Numerical analysis

In order to validate the developed formulation, this
section presents the numerical analysis, gives two ex-
amples, and solves them for two cases, namely with and
without the e�ects of learning in setup cost. Further-
more, this section draws a comparison in terms of any
change in optimal pro�t values between one-way and
two-way inspection plans at the manufacturer's end.

5.1. Examples

This subsection authenticates the hypothesis using two
examples, each solved for the abovementioned cases of
the learning e�ects. Tables 2 and 3 demonstrate the
parameter values for two numerical examples that are
similar to or di�erent from those used in the study
conducted by Wee et al. [38]. Table 4 depicts the
optimal values of the mentioned two examples.

Table 2. Numerical data from the model proposed by Wee et al. [38] for Numerical 1 and Numerical 2.

Description Symbol Numerical 1 Numerical 2 Unit

Production rate ' 2,00,000 1,50,000 Units/cycle
Screening cost during production d1 0.5 0.6 $/unit
Shortage cost cB 10 14 $/unit/year
Screening rate x 1,75,200 1,00,000 Units/year
Setup cost C0 100 120 $/cycle
Purchase cost c 25 30 $/unit
Salvage cost v 16 20 $/unit
Holding cost h 5 6 $/unit/year

Table 3. Other parameters for Numerical 1 and Numerical 2.

Description Symbol Numerical 1 Numerical 2 Unit
Defect proportion A U � (0.4,0.6) U � (0.5,0.15)
Type-I error proportion q1 U � (0.05,0.15) U � (0.2,0.8)
Type-II error proportion q2 U � (0.1,0.3) U � (0.2,0.8)
Rework proportion R U � (0.5,0.7) U � (0.5,0.8)
Probability density function f(�) 1/(0.6 - 0.4) 1/(0.15 - 0.5)
Probability density function f(q1) 1/(0.3 - 0.1) 1/(0.8 - 0.2)
Probability density function f(q2) 1/(0.3 - 0.1) 1/(0.8 - 0.2)
Probability density function f(r) 1/(0.7 - 0.5) 1/(0.8 - 0.5)
Demand rate � 90,000 50,000 Units/year
Shape factor � 0.2 0.3
Rework rate '1 80,000 40,000 Units/cycle
Selling price S 60 70 $/unit
Post-production screening cost d2 0.6 0.7 $/unit
Second screening cost d3 0.7 0.8 $/unit
Type-I error cost cr 10 12 $/unit
Type-II error cost ca 12 12 $/unit
Rework cost cW 8 9 $/unit
Disposal cost u 2 3 $/unit
Maximum setup cost Cmax - - $/cycle
Holding cost during rework h1 6 6 $/unit
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Table 4. Optimal inventory policy under the e�ect of learning.

Description Symbol Numerical 1 Numerical 2 Unit

Production quantity y� 1,648 701 Units/cycle
Backorder quantity B� 267 109 Units/cycle
Expected total pro�t per unit time E[Z�(y;B)] 30,55,994 18,60,999 $/year
Cycle length T � 6.55 4.94 Days

Table 5. Comparison between one-way and two-way inspection plans.

Description Symbol Numerical 1 Numerical 2 Unit

One-way inspection E[Z�(y;B)] 30,39,578 18,10,119 $/year
Two-way inspection E[Z�(y;B)] 30,55,994 18,60,999 $/year

Table 6. Impact of � on optimal replenishment policy.

� Tp� y� B� T � E[Z�(y;B)] % loss

0.1 4.12 2,258.45 366.89 8.98 30,54,899.54 {25.05
0.2 3.01 1,648.97 267.88 6.55 30,55,994.14 {25.09
0.3 2.10 1,149.54 186.74 4.57 30,56,944.69 {25.13
0.4 1.38 756.22 122.85 3.01 30,57,746.91 {25.17
0.5 0.84 461.71 75.01 1.84 30,58,400.44 {25.19
0.6 0.47 255.16 41.45 1.01 30,58,909.70 {25.21
0.7 0.46 251.86 41.64 1.01 30,60,737.84 {25.29
0.8 0.09 47.16 7.66 0.19 30,59,541.11 {25.24

Table 7. Impact of � on optimal replenishment policy.

� y� B� T � E:T:C:U:� E:T:R:U:� E[Z�(y;B)]

0.01 1,681.62 272.75 6.79 23,07,399.23 54,04,698.80 30,97,299.57
0.03 1,664.67 270.26 6.67 23,37,406.30 54,14,210.53 30,76,804.23
0.05 1,648.98 267.88 6.55 23,67,883.41 54,23,877.55 30,55,994.14
0.07 1,634.43 265.60 6.44 23,98,841.05 54,33,703.70 30,34,862.66
0.09 1,620.97 263.41 6.34 24,30,289.94 54,43,692.95 30,13,403.01

5.2. Comparison of pro�t values between
one-way and two-way inspection plans

This subsection draws a contrast regarding the ex-
pected total pro�t per unit time for the abovemen-
tioned two cases when both are solved with and without
the two-way inspection plans.

Table 5 shows that it is of great �nancial interest
for the manufacturer to practice the second inspection
before taking the �nal decision of salvaging the defec-
tives or sending the lot for rework. Another intuitive
reason to opt for the second inspection plan is that
it is easier to deliver a quality error-free inspection to
a smaller batch of only accumulated defectives rather
than to the whole production lot. In this respect,
a small investment in this direction pays back with
higher returns. By extracting the complete fraction
of wrongly classi�ed perfect items as defective, the
manufacturer is able to reduce their �nancial losses

caused by committing Type-I error as its e�ect gets
nulli�ed by the re-inspection. Therefore, even by
assuming inspection errors in the model, their impacts
are pro�ciently controlled.

6. Sensitivity analysis

The present section presents the robustness of the
developed model by observing the changes in the
objective values while the model parameters alter.

The outcome of changes in the defect parameters
�, q1, q2, and r and the shape parameter � is ob-
served in the optimal production quantity (y�), optimal
backorder quantity (B�), optimal cycle length (T �),
optimal total cost per unit time (T:C:U:�), and optimal
expected total pro�t per unit time E[Z�(y;B)], as
shown in the following.

Tables 6 to 10 provide the managerial insights.
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Table 8. Impact of q1 on optimal replenishment policy.

q1 y� B� T � E:T:C:U:� E:T:R:U:� E[Z�(y;B)]

0 1,648.97 267.88 6.55 23,58,548.20 54,23,877.55 30,65,329.35
0.01 1,648.98 267.88 6.55 23,67,883.41 54,23,877.55 30,55,994.14
0.02 1,648.97 267.88 6.55 23,77,218.61 54,23,877.55 30,46,658.94
0.03 1,648.97 267.88 6.55 23,86,553.82 54,23,877.55 30,37,323.74
0.04 1,648.97 267.88 6.55 23,95,889.02 54,23,877.55 30,27,988.53

Table 9. Impact of q2 on optimal replenishment policy.

q2 y� B� T � E:T:C:U:� E:T:R:U:� E[Z�(y;B)]

0 1,651.19 268.24 6.56 23,66,777.24 54,29,387.76 30,62,610.51
0.01 1,650.08 268.06 6.56 23,67,330.33 54,26,632.65 30,59,302.33
0.03 1,647.87 267.70 6.55 23,68,436.49 54,21,122.45 30,52,685.96
0.02 1,648.98 267.88 6.55 23,67,883.41 54,23,877.55 30,55,994.14
0.04 1,646.77 267.52 6.54 23,68,989.57 54,18,367.35 30,49,377.78

Table 10. Impact of r on optimal replenishment policy.

r y� B� T � E:T:C:U:� E:T:R:U:� E[Z�(y;B)]

0 1,752.79 254.91 6.75 24,25,417.21 54,70,105.26 30,44,688.05

0.5 1,665.80 265.83 6.59 23,77,225.96 54,31,384.62 30,54,158.66

0.6 1,648.97 267.88 6.55 23,67,883.41 54,23,877.55 30,55,994.14

0.7 1,632.35 269.88 6.52 23,58,635.91 54,16,446.70 30,57,810.79

0.8 1,615.93 271.85 6.49 23,49,482.00 54,09,090.91 30,59,608.90

Table 6 shows that with an increase in the value of
shape factor �, the setup of production process is
frequently done, which results in a decrease in the back-
orders (B�) since there is su�cient quantity to satisfy
the demand of the retailer. The production run length
(Tp�), cycle time (T �), lot size (y�), and expected
total cost (T:C:U:�) per unit time are quite sensitive
to the changes in the shape factor. This decrease in
the loss percentage, compared to the traditional EOQ
models, can be justi�ed by the extensive crashing in
the duration of the production run length and setup
cost.

As shown in Table 7, the value for optimal
expected total pro�t per unit time E[Z�(y;B)] shows
a declining trend and an optimal backorder level
(B�), while the optimal values for production quantity
(y�), cycle length (T �), total revenue per unit time
(T:R:U:�), and total cost per unit time (T:C:U:�)
increase as the defect proportion (�) increases. With
an increased proportion of defects in the system, there
will be a higher sale and hence, return of defectives.
This not only brings about considerable monetary loss
for the �rm, but also damages its reputation. However,
due to more sales of scrap items, an increase in the
revenue is observed. On the other hand, the �rm is not

able to compensate for the losses incurred yet. Thus
the overall pro�t of the system decreases. Since the
demand is compensated for only by perfect items, the
manufacturer needs to produce more than the demand,
hence increasing the production quantity. Therefore, it
is advisable for the operations manager to improvise
their production system to substantially reduce the
defect proportion.

According to Table 8, while the proportion of
Type-I error increases (q1), the optimal production
quantity (y�) and expected value of total pro�t per
unit time (Z�(y;B)) show declining trends. However,
total revenue per unit time (T:R:U:�) and total cost
per unit time (T:C:U:�) experience elevation in their
values. Due to Type-I error, the manufacturer endures
a direct �nancial loss since the screening process and
inspection team are not competent enough to carry out
the process without errors. Consequently, there is a
signi�cant fall in the pro�t values as the non-defectives
are sold at a reduced price by mistake. In this scenario,
the manufacturer is unable to achieve the maximum
possible sales. Therefore, it is bene�cial for them to
reduce their production quantity to minimize losses
resulting from misclassi�cation. Revenue indirectly
increases as a result of salvaging of non-defectives in
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a less restrictive inventory. However, any increase in
the total cost dominates the increase in revenue, thus
decreasing the overall pro�t values.

According to Table 9, with increase in the propor-
tion of Type-II error (q2), a considerable decline in the
optimal values of expected total pro�t per unit time
(Z�(y;B)) and total revenue per unit time (T:R:U:�)
is observed, while the cost values show signi�cant
increase. No signi�cant change is observed in the values
of optimal backorder level (B�), optimal production
quantity (y�), and cycle length (T �). Since Type-
II error brings about sales returns, which are either
entertained with full-price refunds or replaced by per-
fect products, it a�ects the revenue part considerably.
Moreover, it also causes penalty and goodwill loss to
the �rm with which the managers are concerned. It
also leads to an increase in the cost components. The
constancy of demands and shortages is justi�ed by the
fact that the manager is able to maintain the demand
despite some sales returns. In this particular scenario,
it is bene�cial for the operation manager to strengthen
their screening team so as to reduce such damaging
screening errors.

As observed in Table 10, with an increase in
the proportion of reworked items (r), the optimal
production quantity (y�), cycle length (T �), total cost
per unit time (T:C:U:�), and total revenue per unit
time (T:R:U:�) decrease, while the optimal values of
the expected total pro�t per unit time (Z�(y;B)) and
optimal backorder level (B�) increase. Logically, there
is a cost associated with the rework process, yet it
is compensated for with an increase in the sales of
perfect items. Therefore, the overall pro�t of the
system increases. As a result of rework process, the
production quantity lessens since the number of perfect
items considerably increases, thereby decreasing the
need for producing more items to meet the demands.
Consequently, the cycle length also decreases.

7. Conclusion

In the current manufacturing scenario, the main chal-
lenge is to establish an e�cient inventory model that
considers the major and minor concerns of the sys-
tem. The problems associated with the production
system are mainly associated with the production of
defectives, screening, and management. To this end,
the present paper developed an inventory model for
�nite production system, which was presumed to be
imperfect and produce defectives at a uniform rate.
To supply only good products to the customers, the
screening process plays a key role for the manufacturer.
In contrast to the previous studies, the present model
was explored at two stages of inspection practices,
with screening errors incorporated only in the �rst
stage. To validate the hypothesis, the numerical section

presented a comparison of the optimal pro�t values
in the presence of one-way and two-way inspection
techniques. Various managerial implications obtained
are as follows:

� The results showed that the losses resulting from the
manufacturer's performance through discarding the
perfect items by mistake (an outcome of Type-I er-
ror) in the �rst inspection process were compensated
for by means of a small investment in the second
inspection error-free process;

� With a closer scrutiny of the second stage of in-
spection, the manufacturer was able to completely
extract the misclassi�ed perfect items before making
the �nal decision for rework and thus, avoid some
undue expenses related to rework cost or unneces-
sary salvaging;

� Even in prevailing imperfect quality and screening
environment, the manufacturer was able to raise
the revenue by selling a larger number of perfect
items at the markup price using the scenario of
no-second-time inspection. In this regard, the
model successfully diminished the relatively harmful
impact of Type-I error as compared to the e�ect of
Type-II error;

� In addition, in an attempt made to cut down the
escalating cost components, the process of learning
helped the manufacturer reduce the setup cost of
the production system in the present model. Eco-
nomically, it made sense to employ the process of
learning to enhance the organization's performance,
authenticated by a decrease in loss percentage;

� In general, it is advisable for the manufacturer
to reduce the percentage of defectives through a
correct/careful production process since they signif-
icantly increased the defect-related costs.

The model puts forth some very interesting and use-
ful scenarios including Type-I and Type-II inspection
errors, revenue management through two-way inspec-
tion, reduction in setup costs through time-dependent
learning, rework operations, etc. Therefore, the present
model is preferable to other models that do not include
such practical settings since it holds wide applicability
in real-time manufacturing industries.

8. Suggestions for further research and
research limitations

The model can be extended in a number of ways
through adopting varying demand patterns. In addi-
tion, it would be interesting to develop an integrated
vendor-buyer model in this direction. The model can
also be extended to deteriorating products, taking into
account the impact of preservation technology. Con-
sideration of environmental factors in transportation
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and production would be another worthy contribution.
Finally, the presented model is restricted by limited
storage space for the manufacturer with various exact
cash ows, which can be a major consideration for
further research.
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Appendix A

The following section presents various mathematical
expressions used in the model:

p1 = � (1� r) ; (A.1)

p2 = �r; (A.2)

p3 = (1� �) q1; (A.3)

G1 = s (1� �) + s�r + v� (1� r)� Cp

�d1

�
�

� (1� �)

�
� d2

(�� �)
�

�d3 [�+ (1� �) q1]� Cw�r � Cr (1� �) q1

�Ca�q2 � u� (1� r) ; (A.4)

G2 = �d2

�
[�� (1� p1)x]
(1� p1)x� � �
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;
(A.5)
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Appendix B

The following section represents the expected value of
the mathematical expressions used in the model:

E [p1] = E [�] (1� E [r]) ; (B.1)

E [p2] = E [�]E [r] ; (B.2)

E [p3] = (1� E [�])E [q1] ; (B.3)

E [G1] = s (1� E [�]) + sE [�]E [r]

+vE [�] (1� E [r])� Cp
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Appendix C

Case I: TP < TM .

C1: Proof of �rst condition of concavity is as follows:

@2

@y2E [Z1 (y;B)] � 0

i.e.:

�
1� fE [�] (1� E [r])g

�
�2d2

B
y3 � 2h
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ff1� fE [�] (1� E [r])ggx� �g
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�c0 (2 �1) (2 �2) y(2�3)

'2
�
� 0:

Proof: As 0 � E [�] ; E [r] � 1;) the following
inequalities hold true:

(1� E [r]) � 0) 1� fE [�] (1� E [r])g � 0:

As 0 �2� 1;) the following inequalities hold true:

(2 �1) � 0; (2 �2) � 0:

Also, from model constraints (5) and (7), we have:

[��(1�E [p1])x]�0 and [(1�E [p1])x��]�0;

i.e.:

�� f1� fE [�] (1� E [r])ggx � 0;

f1� fE [�] (1� E [r])ggx� � � 0:

So, the �rst condition of concavity holds true under the
condition of CB � h.

C2: Proof of the second condition of concavity is as
follows:
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i.e.:
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Proof: As 0 � E [�] ; E [r] � 1;) the following
inequalities hold true:

(1� E [r]) � 0) 1� fE [�] (1� E [r])g � 0:

Also, from model constraints (5) and (7), we have:

[�� (1� E [p1])x] � 0 and [(1� E [p1])x� �] � 0:

i.e.:

�� f1� fE [�] (1� E [r])ggx � 0;

f1� fE [�] (1� E [r])ggx� � � 0:

So, the second condition of concavity holds true under
the condition of the relation shown in Box C.I.

C3: Proof of the third condition of concavity is as
follows:�
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Box C.I
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(1� E [r]) � 0) 1� fE [�] (1� E [r])g � 0:

As 0 �2� 1;) the following inequalities hold true:

(2 �1) � 0; (2 �2) � 0:

Also, from model constraints (5) and (7), we have:

[�� (1� E [p1])x] � 0 and [(1� E [p1])x� �] � 0;

i.e.:
�� f1� fE [�] (1� E [r])ggx � 0;

f1� fE [�] (1� E [r])ggx� � � 0:

So, the third condition of concavity holds true under
the condition of:�
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�
:

Hence, the global concavity of the objective func-
tion for Case I has been proved mathematically.

Appendix D

Case II: TM � TP
D1: Proof of the �rst condition of concavity is as
follows:

@2

@y2E [Z1 (y;B)] � 0;

i.e.:
�
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�
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B
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�
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y3

�
� 0:

Proof: As 0 � E [�] ; E [r] � 1;) the following
inequalities hold true:

(1� E [r]) � 0) 1� fE [�] (1� E [r])g � 0:

Also, from model constraints (5) and (7), we have:

[�� (1�E [p1])x] � 0 and [(1� E [p1])x� �] � 0;

i.e.:

�� f1� fE [�] (1� E [r])ggx � 0;

f1� fE [�] (1� E [r])ggx� � � 0:

So, the �rst condition of concavity holds true under the
condition of CB � h.

D2: Proof of the second condition of concavity is as
follows:

@2

@B2E [Z1 (y;B)] � 0;

i.e.:

2�B2
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Proof: As 0 � E [�] ; E [r] � 1;) the following
inequalities hold true:

(1� E [r]) � 0) 1� fE [�] (1� E [r])g � 0:

Also, from model constraints (5) and (7), we have:

[��(1�E [p1])x]�0 and [(1�E [p1])x��]�0;

i.e.:

��f1�fE [�] (1� E [r])ggx�0;

f1� fE [�] (1� E [r])ggx� � � 0:

So, the second condition of concavity holds true under
the condition of the relation shown in Box D.I.:

D3: Proof of the third condition of concavity is as
follows:

CB
h
�
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Box D.I
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+
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���

� 0:

Proof: As 0 � E [�] ; E [r] � 1;) the following
inequalities hold true:

(1� E [r]) � 0) 1� fE [�] (1� E [r])g � 0:

Also, from model constraints (5) and (7), we have:

[��(1�E [p1])x]�0 and [(1�E [p1])x��]�0;

i.e.:

��f1�fE [�] (1�E [r])ggx�0;

f1�fE [�] (1� E [r])ggx� � � 0:

So, the third condition of concavity holds true under
the condition of:�

d2

B

�2

� 4Cmax

y3

�
(h� CB)

�
1
�

+
1

f1� fE [�] (1� E [r])ggx� �
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�2h
[�� f1� fE [�] (1� E [r])ggx]
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�
:

Hence, the global concavity of the objective function
for Case II has been proved mathematically.
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