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Abstract. Di�erent optimization methods are available for optimum design of structures
including classical optimization techniques and metaheuristic optimization algorithms.
However, engineers do not generally use optimization techniques to design a structure.
They attempt to decrease the structural weight and increase its performance and e�ciency,
empirically, by changing the variables and controlling the constraints. Based on this
professional engineering design philosophy, in this paper, a simple algorithm, termed the
Constraint Control Method (CCM), is developed and presented whereby optimum design is
achieved gradually by controlling the problem constraints. Starting with oversized sections,
the design was gradually improved by changing sections based on a `control function'
and controlling the constraints to be below the target values. As the constraints moved
towards their targets, the design moved towards an optimum. The general functionality of
the proposed algorithm was �rst demonstrated by solving several linear and nonlinear
mathematical problems, which had exact answers. The performance of the algorithm
was then evaluated through comparing design optimization results of three 2D steel
frame benchmark problems with those of other metaheuristic optimization solutions. The
proposed method led to the minimum structural weight while performing a considerably
small number of structural analyses compared to other optimization methods.
© 2019 Sharif University of Technology. All rights reserved.

1. Introduction

Due to the limitations of space, time, and raw materi-
als, optimization problems are generally solved subject
to di�erent constraints. The optimal response of a
system is obtained if these limitations are maximally
used and the variable which brings all constraints to
their maximum acceptable values will be the optimized
response. The aim of designing structures is to use
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minimum cost and maximum performance. For achiev-
ing this goal, di�erent optimization techniques have
been developed and the performance and applicability
of these optimization methods have been compared.

Before the advent of digital calculation, most
answers to the structural analysis problems would
be reached through analytical equations composed of
in�nite series. Similarly, classical optimization tech-
niques, such as Linear Programming (LP), Non-Linear
Programming (NLP) and Dynamic Programming (DP)
were developed. In many cases, due to the complexity
of relations or lack of availability, application of these
mathematical programming methods to real systems
was not possible. Also, it was soon observed that,
as a result of low speed and reduced e�ciency, these
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methods were not suitable for solving problems with
discrete variables.

Earlier works by Razani [1] and Gallagher and
Zienkiewicz [2] on alternative optimal design meth-
ods of structures utilized the fully-stressed members
concept. They found that when the stresses in the
members reached their full (or allowable) values, the
structure was optimally designed. Later, Patnaik and
Hopkins [3] modi�ed the fully-stressed design technique
to obtain optimal design of frames and trusses. Haftka
and Starnes [4] investigated the application of internal
penalty method for optimization of structures using
the quadratic equation. Baugh et al. [5] and Brill et
al. [6] aimed at reducing the distance between target
(objective) function and selected values by orienting
the latter towards the former. Kripakaran et al. [7] used
an alternative method, combined with the genetic algo-
rithm, to carry out the optimal design of steel moment
resisting frames. Their method started with selecting
the smallest pro�les for all member groups and by
gradually increasing the pro�le sizes, the member
stresses and structural displacements would be brought
to the maximum allowable values. Subsequently, by
reducing the distance between the target point and
the optimum value, the design of the structure was
optimized.

More recent heuristic optimization methods in-
clude the one conducted by Flager et al. [8]. They
presented a method based on Optimal Criteria (OC),
which rendered the optimal designing in a step by
step and gradual manner and applied it to member
sizing optimization. Azad and Hasan�cebi [9] extended
and reformulated the Guided Stochastic Search (GSS)
method to optimally design steel frame structures
based on AISC-LRFD code of practice. Also, Mahallati
Rayeni et al. [10] developed an Improved Multi-
Objective Evolutionary Algorithm (IMOEA) to design
planar steel frames. In this method, constraints were
used as a new objective function in a multi-objective
optimization process.

In order to increase the optimization speed and
e�ciency, many di�erent metaheuristic optimization
techniques have been developed. Most metaheuristic
algorithms have been inspired by nature. They require
a population of answers during the search and need
memory for storing data. Some of the most common
algorithms in this category include Genetic Algorithm
(GA) [11], Ant Colony Optimization (ACO) [12],
Particle Swarm Optimization (PSO) [13], Harmony
Search (HS) [14], Imperialist Competitive Algorithm
(ICA) [15], Honey-Bee Mating Optimization (HBMO)
[16], teaching and learning-based optimization algo-
rithms [17], etc. However, other metaheuristic algo-
rithms, such as Tabu Search (TS) [18] and Simulated
Annealing (SA) methods [19], work on only one answer;
they are not inspired by nature and do not require

memory for recording data. The major problem with
the above algorithms is their inherent inability to
distinguish between the local optima and the global
optima. In recent years, a number of techniques
have been developed to improve their performance in
searching for global optima [20-28]. However, many of
these techniques lead to increased analysis time and
e�ort. Comprehensive reviews of new developments in
metaheuristic optimization approaches for engineering
problems were given by Saka [29], Lamberti and Pap-
palettere [30], and Saka and Do�gan [31].

Due to the above shortcomings, optimization
techniques are rarely used by engineers for design
purposes. Engineers usually arrive at an optimum
design empirically by changing the problem variables
and controlling the constraints. In this paper, an
alternative optimization algorithm is presented based
on the conventional method adopted by the engineers,
which deals with only one answer, does not require
memory for storing data, and is not inspired by nature.
Moreover, although the algorithm is simple, it is a
suitable and e�cient method for optimum design of dis-
crete structural systems such as sway frames. Through
controlling the constraints, the need for relationship be-
tween the target function and constraints is eliminated
by the maximum use of limitations. Starting from
a point and keeping the best response will gradually
orient the solution to the optimal point. The proposed
method is termed `Constraint Control Method (CCM).'
It is based on numerical search and starts with a con-
servative design, which generally satis�es the problem
constraints. Then, through small steps, the solution
is gradually improved by changing the variables and
controlling the problem constraints. As the problem
constraints approach their limit states, the solution
approaches its optimum state. The proposed method
achieves the optimal response with far fewer analyses
than required by the innovative and metaheuristic
methods. In order to illustrate the performance of the
proposed CCM method, �rst, some linear and nonlin-
ear continuous mathematical optimization problems,
which have exact answers, are solved. The proposed
method is then applied to the more practical discrete
problems of optimum design of side-sway steel frames.

2. The proposed Constraint Control Method
(CCM)

Optimization problems are generally solved subject
to certain constraints. The optimum answer to a
system takes place when these constraints are used
to the maximum and the variables which maximize
the value of all constraints are the optimized answer.
In the proposed method, by considering the ratio of
any constraint value to its limit value, the constraints
are transformed into coe�cients ranging from 0 to 1.
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They are, therefore, dimensionless so that they could
be compared with each other and the constraint value
is signi�cant; that is, when the value of the constraint
is zero, the answer is far from the optimum answer and
the constraint value of one is the maximum value which
a constraint could reach.

Based on the aforementioned considerations, the
optimized answer is located on a constraint boundary
(gi = 1) under the condition that other constraints
(g1; :::; gnc) are also equal to 1 [32]. Figure 1 shows
the state of gi constraints of a two-variable (X1; X2)
problem with 3 constraints (gk; gm; gn). According to
the mathematical planning principles [25], it can be
shown that the optimal response lies in one of the
intersections of the constraints boundaries (in Figure 1,
intersection A, B or C).

In the proposed method, �rst, a certain point of
the system in which the constraints have low values
is chosen. Then, through changing the variables (Xi),
controlling constraints (gi), and changing the function
value (Z), all the constraints are gradually directed to-
wards having values approaching unity at which point
the target function (F ) is optimized. In other words,
in minimization, the starting point is to select large
values for the variables and gradually decreasing the
variables, whereas, in maximization, small variables are
�rst selected and by gradually increasing the variables,
we reach optimum solution. in both cases, the starting
constraints have low values, eventually reaching close
to unity.

In each step, all variables are changed by a small
increment (ITR). Then, the variable which has the
highest decrease in the objective function (Z(X)) and
the lowest increase in constraints (gi) among all is
selected. In order to determine this, a parameter
`check' is de�ned. This parameter, given in Eq. (1),

determines which variable in each stage is selected:

check (i) = min
�

�Zi
�g1

;
�Zi
�g2

; : : : :;
�Zi

�gnc

�
= min

�
Z0 � Z
g1�g0

;
Z0�Z
g2�g0

; : : : :;
Z0�Z
gnc�g0

�
;
(1)

control = max (check)

Z (X) = F r where(
r = 1 for minimization
r = �1 for maximization

(2)

where, F is the target function of the problem and
Z(X) is the objective function (Eq. (2)). Also, Z0 and
g0 are respectively the target function and constraints
accepted in the previous step. Eq. (1) is illustrated
graphically in Figure 2, in which by changing a variable
(X), both Z(X) and gi change and the lowest gradient
is selected as parameter check for that variable. Then,
the maximum of the checks of di�erent variables is
selected as the best answer in that step. The control
parameter in each step is equal to the maximum check
value of the previous step. The response in any step is
considered to be the best if the check value is greater
than the control value in that step.

In addition to gi constraints, in most problems,
another set of speci�c constraints (gs) may also be
needed so that a speci�c range of variables (a; b) could
be de�ned, according to Eq. (3):

a � Xi � b) 0 � gs (i) =
Xi � a
b� a � 1: (3)

Figure 1. (a) Optimal points for a two-variable (X1, X2) problem with three constraints. (b) Changes in the objective
function and constraints for one unit of change in the variable.
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Figure 2. Schematic representation of evaluating check(i) (Eq. (1)).

If gi and gs constraints become higher than 1 or lower
than 0, the target function is penalized according to
Eq. (4):

Z =

(
Z (X) if 0 � gi; gs � 1
Z (X) :

�
1 + gi2

�
if gi > 1 or gi < 0

(4)

The general procedure for the proposed Con-
straint Control Method (CCM) is as follows:

1. Determine the target function (F ); the number
of variables, n; the problem constraints, gi; and
speci�c constraints, gs. De�ne the value of ITR for
gradual change of the variables and set the value
of r (r = 1 for minimization and r = �1 for
maximization);

2. As the start, assign values to di�erent variables, Xi,
such that gi constraints are small, then, calculate
gi and gs;

3. Evaluate F and calculate Z(X) and Z from Eqs. (2)
and (4);

4. Set XOPT , Z0, and g0 equal to X, Z, and g,
respectively, and set the analysis number, NA = 1;

5. Set variable counter j = 0;
6. j = j + 1, set X equal to XOPT ;
7. Evaluate X(j) = X(j) � r � ITR and calculate gi,

gs, F , Z(X), and Z; then, NA = NA+ 1;
8. Calculate check(i) from Eq. (1);
9. If check(i) > control, set XOPT , Z0, and g0 equal

to X, Z, and gi, respectively, and repeat stage 7;
otherwise, go to the next step;

10. If j < n, repeat stage 6; otherwise, calculate control
from Eq. (1);

11. If control � 0, repeat stage 5; otherwise, terminate
the algorithm.

A owchart, summarizing the proposed algo-
rithm, is also shown in Figure 3.

Figure 3. Flowchart of the proposed CCM algorithm.

3. Application of the CCM to mathematical
optimization problems

In this section, several mathematical optimization
problems, which have clear and exact answers, are
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solved using the proposed CCM algorithm so that the
functionality and accuracy of this method are explored.

Example 1. Determine the minimum value of
Z (linear problem)8>>>>>><>>>>>>:

Min Z = x1 + x2

subject to
2:x1 + 4:x2 � 18) g1 = 18

2:x1+4:x2
� 1:0

4:x1 + 3:x2 � 26) g2 = 26
4:x1+3:x2

� 1:0
xi � 0) gsi = 1

1+xi � 1:0

The exact solution to the above problem is x1 = 5,
x2 = 2. To show the robustness of the algorithm,
three di�erent runs are conducted, starting at di�erent
points, O1, O2, and O3, and selecting a di�erent ITR
value for each run (1, 0.5, and 0.1 for O1, O2, and
O3 runs, respectively). In Table 1, values of the
constraints and the target function for the intersection
points (points A, B, C, D, and E in Figure 4) and the 3
stating points are listed. It is evident in Figure 4 that
all three runs converge to the minimum value (point E).
This indicates that the CCM solution accuracy and
convergence are not sensitive to the starting point, nor,
in this particular example, to the value of ITR, as
all three runs have converged to the exact solution.
However, in general, the lower the value of ITR, the
more accurate the solution will be. Table 2 presents
the computational process of CCM in reaching the
optimum answer for the run with the starting point
O1 and ITR = 1.

Example 2. Determine the maximum value of
Z (linear problem)8>>><>>>:

Max Z = 40:x1 + 50:x2

subject to
4:x1 + 3:x2 � 120) g1 = 4:x1+3:x2

120 � 1:0
x1 + 2:x2 � 40) g2 = x1+2:x2

40 � 1:0

The problem constraints and the convergence
history of the CCM algorithm in reaching the optimal

Table 1. Values of constraints and target function for
di�erent points of the linear (Example 1).

Point(s) g1 g2 Z

O1, O2, O3 Small Small Large
A 1 < 1:0 9
B > 1:0 1 Unjusti�ed
C 1 > 1:0 Unjusti�ed
D < 1:0 1 8.667
E 1 1 7

Figure 4. The constraints and convergence histories of
the three runs for the linear (Example 1).

Figure 5. The constraints and convergence history of the
CCM run for the linear (Example 2).

Table 2. The computational process of CCM algorithm
for the linear (Example 1).

Step x1 x2 g1 g2 Z Check Control

1 10 10 0.3 0.371 20 { Inf
2 10 9 0.321 0.388 19 60.13 60.13
3 10 8 0.346 0.406 18 54.97 54.97
4 10 7 0.375 0.426 17 50.05 50.05
5 10 6 0.409 0.448 16 45.36 45.36
6 10 5 0.45 0.473 15 40.9 40.9
7 9 5 0.474 0.51 14 26.97 26.97
8 9 4 0.529 0.542 13 31.38 26.97
9 8 4 0.563 0.591 12 20.31 20.31
10 7 4 0.6 0.65 11 16.92 16.92
11 7 3 0.692 0.703 10 18.97 16.92
12 6 3 0.75 0.788 9 11.74 11.74
13 5 3 0.818 0.897 8 9.202 9.202
14 5 2 1 1 7 5.5 5.5

answer for this problem are plotted in Figure 5. One
run is conducted starting from point O (0, 0) (see
Figure 5). The exact solution to this problem is x1 =
24, x2 = 8 (Point E in Figure 5). The computational
process of CCM in reaching the optimum answer is
presented in Table 3. The optimum value obtained
through CCM matches the exact optimal value.
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Table 3. The computational process of CCM algorithm for the linear (Example 2).

Step x1 x2 g1 g2 Z Check Control

1 0 0 0 0 0 { Inf

2 1 0 0.033333 0.025 40 Inf Inf

3 2 0 0.066667 0.05 80 0.375 0.375

4 3 0 0.1 0.075 120 0.125 0.125

5 3 1 0.125 0.125 170 0.098039 0.098039

6 4 1 0.15833 0.15 210 0.033613 0.033613

7 5 1 0.19167 0.175 250 0.022857 0.022857

8 6 1 0.225 0.2 290 0.016552 0.016552

9 6 2 0.25 0.25 340 0.020284 0.016552

10 7 2 0.28333 0.275 380 0.009288 0.009288

11 8 2 0.31667 0.3 420 0.007519 0.007519

12 9 2 0.35 0.325 460 0.006211 0.006211

13 9 3 0.375 0.375 510 0.008525 0.006211

14 10 3 0.40833 0.4 550 0.004278 0.004278

15 11 3 0.44167 0.425 590 0.003698 0.003698

16 12 3 0.475 0.45 630 0.003228 0.003228

17 12 4 0.5 0.5 680 0.004669 0.003228

18 13 4 0.53333 0.525 720 0.002451 0.002451

19 14 4 0.56667 0.55 760 0.002193 0.002193

20 15 4 0.6 0.575 800 0.001974 0.001974

21 15 5 0.625 0.625 850 0.002941 0.001974

22 16 5 0.65833 0.65 890 0.001586 0.001586

23 17 5 0.69167 0.675 930 0.00145 0.00145

24 18 5 0.725 0.7 970 0.00133 0.00133

25 18 6 0.75 0.75 1020 0.002021 0.00133

26 19 6 0.78333 0.775 1060 0.00111 0.00111

27 20 6 0.81667 0.8 1100 0.001029 0.001029

28 21 6 0.85 0.825 1140 0.000957 0.000957

29 21 7 0.875 0.875 1190 0.001474 0.000957

30 22 7 0.90833 0.9 1230 0.00082 0.00082

31 23 7 0.94167 0.925 1270 0.000768 0.000768

32 24 7 0.975 0.95 1310 0.000721 0.000721

33 24 8 1 1 1360 0.001123 0.000721

Example 3. Determine the maximum value of Z
(nonlinear problem)8>>><>>>:

Max Z = x1:x2

subject to
x1

2 + x2 � 3) g1 = x1
2+x2
3 � 1:0

xi � 0) gs = 1
1+xi � 1:0

The third example is maximization of a nonlinear
problem, selected to show applicability of the proposed
algorithm to solving nonlinear problems. The exact

solution to this problem is: x1 = 1, x2 = 2 (Point E in
Figure 6). As shown in Figure 6, two di�erent runs are
conducted, starting at di�erent points, O1 and O2, and
selecting a di�erent ITR value for each run. Figure 6
indicates that both runs converge to the minimum
value (point E). This shows again that the convergence
of CCM solution is not sensitive to the starting point.
Nevertheless, selecting a lower value for ITR results
in a more accurate solution. However, the lower the
selected value of ITR, the higher the computational
e�ort. Table 4 presents the computational process of



S.F. Mansouri and M.R. Maheri/Scientia Iranica, Transactions A: Civil Engineering 26 (2019) 2241{2257 2247

Figure 6. The constraints and convergence histories of
the two runs for the nonlinear (Example 3).

CCM in reaching the optimum answer for the run with
starting point O1.

Comparing the CCM solutions of the above 3
mathematical problems with their exact solutions, the
e�ciency and robustness of the proposed optimization
algorithm in solving continuous linear and nonlinear
problems are favorably assessed. The algorithm also

provides accurate answers with a high speed for discrete
problems. In the following, the application of this
method to design optimization of moment resisting
steel frames, as discrete problems, is presented.

4. Constraint Control Method (CCM) for
structural optimization

In optimum design of steel structures, the objective
function is to minimize the weight of the structure
W (x) based on Eq. (5) subject to gk(x) constrains
given in Eq. (6). The problem variables, X, here are
groupings of beams and columns.

Minimize : W (x) =
ngX
i=1

�iAi
nmX
j=1

Lj ; (5)

Subject to : gk (x) � 0; k = 1; 2; : : : ; nc (6)

X =
�
x1; : : : xi; :::; xng

	T ;
Table 4. The computational process of CCM algorithm for the nonlinear (Example 3).

Step x1 x2 g1 f(x) Z Check Control
1 0.1 0.1 0.037 0.01 100 { Inf
2 0.2 0.1 0.047 0.02 50 5000 5000
3 0.3 0.1 0.063 0.03 33.33 1000 1000
4 0.3 0.2 0.097 0.06 16.67 500 500
5 0.4 0.2 0.12 0.08 12.5 178.6 178.6
6 0.4 0.3 0.153 0.12 8.333 125 125
7 0.4 0.4 0.187 0.16 6.25 62.5 62.5
8 0.5 0.4 0.217 0.2 5 41.67 41.67
9 0.5 0.5 0.25 0.25 4 30 30
10 0.5 0.6 0.283 0.3 3.333 20 20
11 0.6 0.6 0.32 0.36 2.778 15.15 15.15
12 0.6 0.7 0.353 0.42 2.381 11.91 11.91
13 0.6 0.8 0.387 0.48 2.083 8.929 8.929
14 0.6 0.9 0.42 0.54 1.852 6.944 6.944
15 0.7 0.9 0.463 0.63 1.587 6.105 6.105
16 0.7 1 0.497 0.7 1.429 4.762 4.762
17 0.7 1.1 0.53 0.77 1.299 3.896 3.896
18 0.7 1.2 0.563 0.84 1.19 3.247 3.247
19 0.8 1.2 0.613 0.96 1.042 2.976 2.976
20 0.8 1.3 0.647 1.04 0.962 2.404 2.404
21 0.8 1.4 0.68 1.12 0.893 2.06 2.06
22 0.8 1.5 0.713 1.2 0.833 1.786 1.786
23 0.9 1.5 0.77 1.35 0.741 1.634 1.634
24 0.9 1.6 0.803 1.44 0.694 1.389 1.389
25 0.9 1.7 0.837 1.53 0.654 1.226 1.226
26 0.9 1.8 0.87 1.62 0.617 1.089 1.089
27 0.9 1.9 0.903 1.71 0.585 0.975 0.975
28 1 1.9 0.967 1.9 0.526 0.923 0.923
29 1 2 1 2 0.5 0.789 0.789
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where, X is the design vector, xi are design groups,
ng is the total number of design groups, nm is the
total number of members in each design group, �i is
the member speci�c weight, Ai is the member cross-
sectional area, Lj is the member length, and nc is the
number of constraints. In addition, given that it is
a minimization problem, r = 1 and ITR is one unit
reduction in the size of steel pro�le from the available
table of construction pro�les.

The weight of each design is penalized (WST )
according to Eq. (7):

WST = W (x) �
 

1 +
ncX
1

�
max f0; gkg2

�!
: (7)

In this study, design groups are selected from W-shape
steel sections of AISC table and sorted based on weight
per unit length (G) such that the �rst section is the
heaviest and the last section is the lightest.

The general procedure of CCM in solving this
type of discrete problem is to start from the heaviest
design associated with the smallest constraint ratios
(violating constraints the least), and step by step
�nding a design with the smallest increases in the
constraint ratios and the largest reduction in structural
weight compared to the design in the previous step. To
achieve this, as it was stated in Section 2, the algorithm
is based on two parameters, `check' and `control'. In
each step, j, and for every design group, i, check(i) is
de�ned according to Eq. (8):

check(i) = min

( �
WOPT �WST (j)

�
(MCR (1)�MCRL (1))

;

: : : ;
�
WOPT �WST (j)

��
MCR(k) �MCRL(k)

� ;
: : : ;

�
WOPT �WST (j)

�
(MCR (nc)�MCRL (nc))

)
; (8)

where, WST (j) is the penalized structural weight in step
j, WOPT is the structural weight of the best solution
up to step j � 1, MCR(k) is the maximum constraint
ratio within each design group for constraint k, and
MCRL(k) is the maximum constraint ratio within each
design group associated with the best solution up to
step j�1. The Constraint Ratio (CR) is de�ned as the
ratio of any constraint value to the maximum allowable
value for that constraint. The control parameter is used
to control the check parameter to ensure that a design
with the smallest increase in the constraint ratios and
the largest reduction in weight is selected. It is de�ned
as the max check parameter for all design groups. i.e.,

control = max (check) :

Since at the start of the algorithm, parameter check(i)
cannot be evaluated, control parameter is initially set
to a large value.

Di�erent steps in the proposed CCM are as
follows:

1. A large number is assigned as the initial value to
the control parameter (control = Inf).

2. The largest design variables (the largest W-shape
section permitted for a design group) are assigned
to members in all groups. This design is termed X.

3. The structure is then analyzed, constraint ratios
are evaluated, and for every constraint k, and the
maximum values of constraint ratios, MCR(k), are
extracted and stored as vector MCR in Eq. (9).
Then, the initial values of MCRL; WOPT , and
XOPT are set respectively to MCR, WST , and X.

MCR=
�
MCR(1); : : : ;MCR(k); : : : ;MCR(nc)

	
:

(9)

4. At this stage, to �nd a new X, one design group
from ng groups of XOPT is randomly selected
and to the members of that group, a new smaller
section from the allowed list of W-shape sections is
assigned. This is repeated for all design groups.
At any round, the selected design groups in the
previous rounds are not selected again. For each
design group, stages 5 and 6 are repeated; then,
the solution moves to stage 7.

5. At this stage, the structure is analyzed and new
WST and MCR are calculated using Eqs. (3)
and (6), respectively. The check(i) parameter is
also calculated using Eq. (4).

6. If check(i) � control, then XOPT = X and
WOPT = WST ; and stages 4 to 6 are repeated. If
check(i) < control, MCRL is set to MCR:

7. At this stage, the control value is calculated ac-
cording to Eq. (5). Then, the solution goes back to
stage 4 and it continues until control = 0. The last
XOPT and WOPT are the optimum design and its
associated structural weight, respectively.

As it can be noted, this method directs the
solution towards the �nal answer by controlling con-
straints or by decreasing the structural weight through
small increases in stress and drift towards their limits.
Figure 7 presents the owchart of the algorithm in
details. In the following, 3 benchmark sway frame
problems are optimized by the proposed method and
the results are compared with those of other solutions
available in the literature.

5. Design examples

The CCM developed in this work is tested in three
2D side-sway steel frame optimization problems. Op-
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Figure 7. Flowchart of the proposed CCM algorithm for optimum design of steel frames.
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(10)

for i = 1; 2; :::; nm
Box I

timized designs are compared with those reported in
the literature using metaheuristic algorithms. In line
with the assumptions made by others in solving these
problems, the shear deformations are ignored. Design
of the frames is subject to stress and relative story drift
constraints. The stress constraint ratio for members

undergoing axial force and bending moment is speci�ed
according to Eq. (10), as shown in Box I, based on the
AISC-LRFD speci�cations [33].

In Eq. (10), Pu is the required axial force and
Pn is the nominal axial capacity. Also, Mnx and Mny
are nominal bending capacities, and Muy and Mux
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are factored bending moments in x and y directions,
respectively; �b is bending strength reduction factor
and � is axial strength reduction factor.

Inter-story drift constraint ratio is speci�ed ac-
cording to Eq. (11):

g2 (x) =
�i

�u
i
� 1 � 0; where; i = 1; :::; ns; (11)

where, �i and �u
i are respectively the inter-story drift

and allowable inter-story drift of story i and ns is the
total number of stories.

5.1. Two-bay, three-story planar frame
The �rst benchmark problem (see Figure 8) is a
two-bay, three-story frame optimized by Pezeshk et
al. [34] under a single-load case in accordance with
the American Institute of Steel Construction speci�-
cation [33] using GA. This frame was subsequently
designed subject to the same speci�cation by Camp
et al. [35] using an ACO algorithm; by De�gertekin
[36] using HS method; by To�gan [17] using Teaching-
Learning Based Optimization (TLBO) algorithm; by
Safari and Maheri [20,37] using Modi�ed Multi-Deme
GA (MMDGA); and by Maheri and Narimani [23]
using an Enhanced Harmony Search (EHS) algorithm.
In this design problem, construction conditions lead
to a uniformity between beams and columns sections.
Hence, there are two section groups as listed in Table 5.
Beams section is selected from all W-sections lists of
AISC standard table and columns section is limited to
W10-section table. Steel special weight is considered

Figure 8. Geometry and loading details of the two-bay,
three-story frame.

Table 5. Design groups for the two-bay, three-story
frame.

Group Members

1 1, 2, 3, 4, 5, 6, 7, 8, 9

2 10, 11, 12, 13, 14, 15

to be c = 7850 kg
m3 (0:284 Ib

in3 ), Young's modulus is
considered to be E = 200 GPa (29000 ksi), yield stress
is Fy = 248 MPa (36 ksi), and beams unbraced length
coe�cient is 0.167.

The best design achieved by the proposed CCM
weighs 18.792 kips, obtained after only 55 runs. This
design is compared with the designs reported in the
literature using other algorithms in Table 6. It can
be seen that only TLBO and EHS produce lighter
designs (respectively by 5.3% and 4.2%). However,
the proposed CCM reaches the optimum design much
faster than all the other algorithms. The number of
analyses required by CCM for reaching its best design
is only a fraction of the number of analyses carried out
in the other algorithms to achieve their best designs,
this fraction being 3.1% compared to GA and 1.8%,
3%, 31.4%, and 25% compared respectively to ACO,
HS, MMDGA, and EHS algorithms.

In Figure 9, the convergence curve of CCM
solution to this problem is compared with that obtained
by the EHS solution, as one of the best and fastest
metaheuristic solutions available. It can be noted
that CCM shows a relatively uniform and considerably
fast trend towards the optimum design compared to
the EHS algorithm. To graphically observe the state
of stresses in the members, the stress ratios for all
members of the frame are shown in Figure 10. It could
be observed that all the stress ratios are lower than 1.

Figure 9. Weight versus number of analyses for the
two-bay, three-story frame problem.

Figure 10. The stress ratio for elements of the two-bay,
three-story frame problem.
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Table 6. Comparison of optimum designs for the two-bay, three-story frame.

Group no. GA [34] ACO [35] HS [36] TLBO [17] MMDGA [20] EHS [23] CCM
(this study)

Beam W24�62 W24�62 W21�62 W24�62 W24�62 W21� 55 W24�62
Column W10�60 W10�60 W10�54 W10�49 W10�60 W10�68 W10�60

Weight (lb) 18,792 18,792 18,292 17,789 18,792 18,000 18,792
No. of analyses 1800 3000 853 { 175 220 55

Figure 11. Geometry and loading details of the one-bay,
ten-story frame.

5.2. One-bay, ten-story frame
The second benchmark problem is a 2D, one-span,
ten-story frame consisting of 30 members as shown
in Figure 11. This frame was �rst optimized by
Pezeshk et al. [34] using simple GA. It has subsequently
been optimized by Kaveh & Talatahari [38] using the

Table 7. Design groups for the one-bay, ten-story frame.

Group Members

1 1, 2, 4, 5

2 7, 8, 10, 11

3 13, 14, 16, 17

4 19, 20, 22, 23

5 25, 26, 28, 29

6 3, 6, 9

7 12, 15, 18

8 21, 24, 27

9 30

Improved ACO (IACO) algorithm; by To�gan [17] using
TLBO algorithm; by Camp et al. [35] using ACO
algorithm; by De�gertakin [36] using HS algorithm;
by Do�gan & Saka [39] using PSO method; by Safari
& Maheri [20] using MMDGA; and by Maheri and
Narimani [23] using EHS algorithm. The AISC-LRFD
speci�cation [33] has been used for optimum design
of this frame with displacement constraint satisfying
inter-story drift<story height/300. Young's modulus
of E = 29; 000 ksi and yield stress of fy = 36 ksi are
used. The members of this frame are divided into 9
design groups as listed in Table 7. Four beam element
groups are chosen from 267 W-shapes and 5 column
groups selected from only W14 and W12 sections (66
W-shapes). The e�ective length factors of members
are calculated as Kx � 1 [40], whereas the out-of-plane
length factor Ky is assigned 1. For each beam member,
the out-of-plane e�ective length factor is speci�ed to be
Ky = 0:2.

The proposed CCM solution produces a best
design weighing 61.041 kips after 424 runs. This design
is compared with designs reported for other algorithms
in Table 8. It can be observed that the CCM produces
the lightest design except for the EHS algorithm. CCM
design is only 2.5% heavier than that of EHS algorithm,
but it is lighter than GA by 6.7%, ACO by 2.6%,
HS by 1.35%, IACO by 1.28%, PSO by 6.4%, TLBO
by 1.26%, and MMDGA by 0.5%. Furthermore, the
proposed CCM algorithm again reaches the optimum
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Table 8. Comparison of optimum designs for the one-bay, ten-story frame.

Group
no.

GA
[34]

ACO
[35]

HS
[36]

IACO
[38]

PSO
[39]

TLBO
[17]

MMDGA
[20]

EHS
[23]

CCM
(this study)

1 W14�233 W14�233 W14�211 W14�233 W33�141 W14�233 W12�230 W14�159 W14�211

2 W14�176 W14�176 W14�176 W14�176 W14�159 W14�176 W14�159 W14�730 W14�145

3 W14�159 W14�145 W14�145 W14�145 W14�132 W14�145 W14�120 W14�61 W14�120

4 W14�99 W14�99 W14�90 W14�90 W14�99 W14�99 W14�90 W12�87 W14�90

5 W12�79 W12�65 W14�61 W12�65 W14�99 W12�65 W12�58 W14�283 W12�58

6 W33�118 W30�108 W33�118 W33�118 W30�116 W30�108 W33�118 W24�68 W36�135

7 W30�90 W30�90 W30�90 W30�90 W21�68 W30�90 W30�108 W14�99 W30�108

8 W27�84 W27�84 W24�76 W24�76 W14�61 W27�84 W24�76 W21�111 W24�76

9 W24�55 W21�44 W18�46 W14�30 W40�183 W21�44 W16�40 W33�201 W18�40

Weight (lb) 65,136 62,610 61,864 61,820 64,948 61,813 61,345 59,514 61,041
Number of

analyses
3000 8300 2690 { 7500 { 1800 1412 424

design much faster than all the other algorithms. The
424 analyses conducted in CCM are only 14% of the
number of analyses in GA, 5.7% of the number of
analyses in PSO, 5% of the number of analyses in
ACO, 11.5% of the number of analyses in HS, 23.6%
of the number of analyses in MMDGA, and 30% of the
number of analyses in EHS method.

The convergence curve for the CCM solution
to this problem is compared with that for the EHS
solution in Figure 12. It can be seen that CCM
has a faster trend towards optimum design than EHS
algorithm. To observe the state of problem constraints
such as story drift and member stresses during solution,
the story ratio, as the ratio of the story drift to its
allowable value, and the stress ratio, as the ratio of
stress to allowable stress, are plotted in Figure 13 and
Figure 14, respectively. These �gures show that both
constraints are well controlled, as all ratios fall below
unity.

Figure 12. Weight versus number of analyses for the
one-bay, ten-story frame problem.

Figure 13. Relative drift in di�erent stories for the
one-bay, ten-story frame problem.

Figure 14. The stress ratio for all elements in the
one-bay, ten-story frame problem.

5.3. Three-bay, twenty-four-story frame
The third benchmark problem is a three-bay, twenty-
four-story steel frame shown in Figure 15. The frame
was �rst designed by Camp et al. [35] using the
ACO algorithm. It was later optimized by De�gertekin
[36] using HS; by Kaveh and Talatahari [38] using
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Figure 15. Geometry and loading details of the
three-bay, twenty-four-story frame.

Improved ACO (IACO); by Kaveh and Talatahari [15]
using the Imperialist Competitive Algorithm (ICA);
by To�gan [17] using TLBO algorithm; by Safari et
al. [20] using MMDGA algorithm; and by Maheri and
Narimani [23] using Enhanced Harmony Search (EHS)
algorithm. The loads are W = 5; 761:85 lb, W1 = 300
lb/ft, W2 = 436 lb/ft, W3 = 474 lb/ft, and W4 = 408
lb/ft (1 lb = 4.448 N).

The frame has been designed using American
Institute of Steel Construction speci�cations [33] under

the inter-story drift displacement constraint (inter-
story drift < story height/300).

The material properties are assigned as: modulus
of elasticity E = 29; 732 ksi and yield stress fy =
33:4 ksi. The e�ective length factors of the members
are calculated at Kx � 1:0 from the approximate
equation proposed by Dumonteil [40]. The out-of-
plane e�ective length factor is Ky = 1:0. All members
are unbraced along their lengths. The members of
this frame are divided into 20 design groups, listed in
Table 9. Each of the 4 beam element groups are chosen
from all of the 267 W-sections, whereas 16 column
member groups are selected from only W14 sections.

The optimum design obtained using the proposed
CCM solution weighs 198.85 kips, obtained after 1119
analyses. This design is compared with other optimum
designs reported in the literature for this test problem
in Table 10. This table shows that, similar to the
previous test problems, the CCM produces the lightest
design, except for the EHS algorithm, being only 2.2%
heavier; but it obtains lighter designs than ACO by
10.87%, HS by 8.05%, IACO by 1.28%, ICA by 6.98%,
TLBO by 2.09%, and MMDGA by 1.54%. Also, the
proposed CCM algorithm reaches the optimum design
much faster than all the other algorithms. The 1119
analyses conducted in CCM are only 7.2% of the
number of analyses in ACO, 32% of the number of
analyses in IACO, 14.9% of the number of analyses in
ICA, 9.3% of the number of analyses in TLBO, 7.6%
of the number of analyses in HS, 23.6% of the number
of analyses in MMDGA, and 88.9% of the number of
analyses in EHS solutions.

The convergence curve for the proposed CCM
solution to this problem is compared with that for EHS
solution in Figure 16. It is noted that, although the
CCM solution is initially slower than EHS solution,
it picks up later and shows a faster trend towards
optimum design. To observe the state of story drift and
member stress constraints during solution, the story
ratio, as the ratio of the story drift to its allowable
value, and the stress ratio, as the ratio of member
stress to allowable stress, are plotted in Figures 17

Figure 16. Weight versus number of analyses for the
three-bay, twenty-four-story frame problem.
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Table 9. Design groups for the three-bay, twenty-four-story frame.

Group Members

1 5, 7, 12, 14, 19, 21, 26, 28, 33, 35, 40, 42, 47, 49, 54, 56, 61, 63, 68, 70, 75, 77, 82, 84, 89, 91, 96, 98, 103,
105, 110, 112, 117, 119, 124, 126, 131, 133, 138, 140, 145, 147, 152, 154, 159, 161

2 166, 168

3 6, 13, 20, 27, 34, 41, 48, 55, 62, 69, 76, 83, 90, 97, 104, 111, 118, 125, 132 , 139, 146, 153, 160

4 167
5 1, 4, 8, 11, 15, 18
6 22, 25, 29, 32, 36, 39
7 43, 46, 50, 53, 57, 60
8 64, 67, 71, 74, 78, 81
9 85, 88, 92, 95, 99, 102
10 106, 109, 113, 116, 120, 123
11 127, 130, 134, 137, 141, 144
12 148, 151, 155, 158, 162, 165
13 2, 3, 9, 10, 16, 17
14 23, 24, 30, 31, 37, 38
15 44, 45, 51, 52, 58, 59
16 65, 66, 72, 73, 79, 80
17 86, 87, 93, 94, 100, 101
18 107, 108, 114, 115, 121, 122
19 128, 129, 135, 136, 142, 143
20 149, 150, 156, 157, 163, 164

Table 10. Comparison of optimum designs for the three-bay, twenty-four-story frame.

Group
no.

ACO
[35]

HS
[36]

IACO
[38]

TLBO
[17]

ICA
[15]

MMDGA
[20]

EHS
[23]

CCM
(this study)

1 W30�90 W30�90 W30�99 W30�90 W30�90 W30�90 W10�19 W30�90
2 W8�18 W10�22 W16�26 W8�18 W21�50 W8�15 W12�190 W14�22
3 W24�55 W18�40 W18�35 W24�62 W24�55 W24�55 W6�8.5 W24�55
4 W8�21 W12�16 W14�22 W6�9 W8�28 W10�15 W24�370 W6�9
5 W14�145 W14�176 W14�145 W14�132 W14�109 W14�159 W14�132 W14�145
6 W14�132 W14�176 W14�132 W14�120 W14�159 W14�132 W14�30 W14�109
7 W14�132 W14�132 W14�120 W14�99 W14�120 W14�90 W14�99 W14�90
8 W14�132 W14�109 W14�109 W14�82 W14�90 W14�90 W14�53 W14�68
9 W14�68 W14�82 W14�48 W14�74 W14�74 W14�61 W14�74 W14�53
10 W14�53 W14�74 W14�48 W14�53 W14�68 W14�48 W14�26 W14�34
11 W14�43 W14�34 W14�34 W14�34 W14�30 W14�48 W14�68 W14�22
12 W14�43 W14�22 W14�30 W14�22 W14�38 W14�22 W14�193 W14�22
13 W14�145 W14�145 W14�159 W14�109 W14�159 W14�109 W14�145 W14�90
14 W14�145 W14�132 W14�120 W14�99 W14�132 W14�99 W14�26 W14�109
15 W14�120 W14�109 W14�109 W14�99 W14�99 W14�99 W14�26 W14�99
16 W14�90 W14�82 W14�99 W14�90 W14�82 W14�74 W14�43 W14�99
17 W14�90 W14�61 W14�82 W14�68 W14�68 W14�68 W14�26 W14�82
18 W14�61 W14�48 W14�53 W14�53 W14�48 W14�53 W14�120 W14�68
19 W14�30 W14�30 W14�38 W14�34 W14�34 W14�26 W14�426 W14�48
20 W14�26 W14�22 W14�26 W14�22 W14�22 W14�22 W14�68 W14�22

Weight (lb) 220,465 214,860 217,464 203,008 212,725 201,907 194,400 198,850
Number of analyses 15500 9924 - - 7500 4750 1259 1119
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Figure 17. Drift ratio in di�erent stories for the
three-bay, twenty-four-story frame problem.

Figure 18. The element stress ratio in the three-bay,
twenty-four-story frame problem.

and 18, respectively. These �gures show that, also for
this problem, both constraints are well controlled, as
all ratios fall below unity.

6. Conclusions

Based on conventional engineering design philosophy,
whereby optimum design is achieved gradually by con-
trolling the problem constraints, a simple algorithm,
termed the Constraint Control Method (CCM), was
developed and presented. The functionality of the
proposed algorithm was �rst demonstrated by solving
several linear and nonlinear mathematical problems,
which had precise answers. The performance of the
proposed method was then evaluated through com-
paring design optimization results of three 2D steel
frame benchmark problems with the results from other
metaheuristic optimization solutions. The comparison
led to the following conclusions:

1. This method is appropriate for solving linear and
nonlinear mathematical systems. It can also be
used for both continuous and complex discrete
systems;

2. The advantage of the proposed method, besides its
simple logic and ease of implementation, is that
it does not require mathematical equations and
the optimized values and proper targets could be

reached through the output of computer software
and the CCM;

3. In the linear and nonlinear mathematical problems,
the convergence of CCM solution is not sensitive to
the starting point. However, selecting a lower value
for ITR results in a more accurate solution;

4. In all benchmark steel frame problems, the pro-
posed CCM leads to a design lighter than almost all
the reported metaheuristic optimization solutions,
being only marginally heavier than the EHS solu-
tion;

5. The main advantage of the simple CCM over other
algorithms is in its solution speed, requiring much
smaller number of structural analyses than all the
metaheuristic algorithms in reaching the optimum
solution.
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