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Abstract. Facility location problem is a branch of operations research and computational
geometry. It covers the best allocation of facilities to minimize transportation costs by
considering the factors involved (e.g., avoiding the placement of dangerous materials near
the premises and the facilities of competitors). Given the unique customer characteristics
and the �erce market competition of business-to-consumer e-commerce, the expected
value model and chance-constrained model for uncertain facility location problems were
constructed. Owing to the intricacies of the competitive market, supply capacity, delivery
cost, and customer demand were assumed as uncertain variables. The deterministic
equivalent forms of the models were discussed using the inverse uncertainty distribution
method. A hybrid algorithm was proposed to solve these models. Some numerical
experiments were used to verify the e�ectiveness of the proposed models and method.

© 2021 Sharif University of Technology. All rights reserved.

1. Introduction

Business-to-Consumer (B2C), as one of the three
modes of e-commerce, has become the core force to
promote the online shopping market. The market size
of B2C has exceeded that of Consumer-to-Consumer
(C2C), which was expected to reach 70% by 2018.
However, unlike the conventional commercial distribu-
tion characterized by high volume and small batches,
B2C is no longer a retailer but a direct response to
numerous customers with low demand, rich variety
and scattered locations. Distribution business has
many characteristics including many customers, wide
distribution, many varieties, and small batch, thereby
resulting in a complex logistics system, high cost, low
service levels, and other issues. For online shopping,
customers can only judge the product quality based on
the basic information of products, customer evaluation,
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etc. When the quality assurance is not high, coupled
with the logistics damage, loss, etc., many goods
will be returned. B2C logistics system presents a
totally uncoordinated development trend with the fast-
growing online shopping market, thereby limiting the
further development of enterprises and arousing the
attention of many scholars [1{3].

In recent years, many studies have been con-
ducted on the location problem. Klose and Drexl [4]
reviewed some facility location models and solution
algorithms for distribution system design. Manzini
and Gebennini [5] developed an innovative model for
location assignment problem in a distribution system.
Lau et al. [6] proposed a fuzzy B2C location model and
an improved hybrid algorithm was used to solve this
model. Chen et al. [7] proposed a location-inventory
model with facility destruction and a Lagrangian relax-
ation solution framework. Berman et al. [8] proposed a
location inventory model and a Lagrangian relaxation
algorithm. Tancrez et al. [9] analyzed a three-level
location-inventory problem. It was proved that when
the Distribution Center (DC) ow was �xed, it could
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be decomposed into a closed equation and a linear
programming. Shahabi et al. [10] considered a three-
level location-inventory problem with the correlated
demand. A novel scheme to convert the initial for-
mulation into mixed integer conic programming and
an outer approximation strategy were proposed. The
research on distribution systems has not been enough
as it can signi�cantly a�ect the pro�tability of the
range-saving companies by 5% to 10%. Rashidi et
al. [11] studied a perishable-item location-inventory
problem. A bi-objective mathematical model was
developed and a Pareto-based meta-heuristic method
was employed to solve the model. Lin et al. [12] studied
a multi-classi�cation-yard location problem and used
an e�cient simulated annealing algorithm to solve the
problem. Labb�e et al. [13] considered a hierarchical
location problem with two types of facilities and devel-
oped alternative Benders decomposition algorithms.

B2C e-commerce allows for the direct trade be-
tween enterprises and customers. To save the cost
of distribution, enterprises should operate their own
eet on a line to serve services to many customers.
Under these circumstances, the cost of delivery is hard
to estimate accurately. In recent years, because of
the unpredictability of logistics and distribution sys-
tem, decision-makers have been facing uncertain events
frequently. Accordingly, the facility location problem
in a random environment has aroused huge attention.
Snyder et al. [14] studied a stochastic location model
with risk pooling, which is used to minimize the
expected value of the total cost. Tezenji et al. [15]
developed an integrated model for a facility location-
allocation problem. Genetic Algorithm (GA) and
simulated annealing were employed to solve the mixed-
integer nonlinear program. Markovi�c et al. [16] pro-
posed the �rst multi-period stochastic ow-capturing
model for facility location problem and a Lagrangian
relaxation algorithm. Amiri-Aref et al. [17] proposed
a two-stage stochastic mathematical model for the
location-inventory problem. A linear approximation
was employed to obtain near-optimal solutions.

The fuzzy theory provided by Zadeh [18] can be
an alternative method to address the facility location
problem. Some research studies were conducted in the
area of facility location modeling with fuzzy parameters
[19{23].

It is worth mentioning that the methods men-
tioned in the above literature cannot be directly
used to solve the problem of the uncertain B2C e-
commerce facility location. First, the characteristics
of the customer have not been considered, e.g., small
batch demand and geographically dispersed locations.
Second, the above research pieces in the literature
mostly have focused on how to con�gure the location
and quantity of DCs, ignoring their capacity and always
assuming that the capacity is �xed.

It is generally known that the precondition of
using probability theory is that the probability dis-
tribution is available. In a random environment, the
random variables can be estimated based on the histor-
ical data. However, in many facility location problems,
probability distributions are often not available due to
the lack of the accurate data. In this case, experts can
only assess the degree of belief that whether uncertain
events will occur. The degree of belief is largely
determined by a large extent on personal experience.
To deal with the degree of belief, uncertainty theory
was initiated in [24] and re�ned in [25]. Uncertainty
theory is a useful tool for solving such problems in an
uncertain environment. Uncertainty theory is a branch
of axiomatic mathematics for modeling human uncer-
tainty, which has many research results, e.g., uncertain
programming [26{29], uncertain risk analysis [30{32],
uncertain calculus [33{35], and uncertain di�erential
equation [36{38].

The problem of an uncertain facility location in
B2C e-commerce was studied here. In reality, some
factors (e.g., demands and locations of customers,
allocations, and facilities) are usually changing. To
make a better decision, decision-makers may consider
more complex situations. Thus, it is of great practical
implication to study the uncertain facility location
problem. The aim is to minimize the total logistics cost
under an uncertain environment. Moreover, for small-
scale problems, the expected value model and chance-
constrained model are developed. It is proved that the
models can be converted into crisp models. Finally,
an e�cient hybrid intelligent algorithm integrating GA
and Particle Swarm Optimization (PSO) is proposed
based on the theoretical analysis and the characteristics
of the deterministic models.

The rest of the study is organized as follows. Sec-
tion 2 briey introduces the uncertainty theory. Section
3 describes the concern in this study and constructs
two models in the uncertain environment. Section 4
discusses the equivalence of models. Section 5 proposes
a hybrid intelligent algorithm. Section 6 performs
numerical experiments to illustrate the validity of the
proposed models and algorithm.

2. Preliminaries

A brief introduction to uncertainty theory is given. To
describe an uncertain variable which refers to human
uncertainty, Liu [24] established the uncertainty theory,
which has been developed well up to now.

Let � be a nonempty set, L be a �-algebra over
�, and each element � in L be called an event. A
set function M from L to [0; 1] is called an uncertain
measure if it satis�es normality axiom, duality axiom,
subadditivity axiom, and product axiom [24,39].

An uncertain variable is a measurable function �
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from an uncertainty space (�;L;M) to the set R of
real numbers, i.e., for any Borel set B of real numbers
and the set f� 2 Bg = f 2 �j�() 2 Bg is an
event. The distribution � of an uncertain variable �
is de�ned by �(x) = Mf� � xg for any real number
x. The uncertain variables �1; �2; � � � ; �m are said to be
independence [39] if:

M
(

m\
i=1

(�i 2 Bi)
)

= min
1�i�mMf�i 2 Big;

for any Borel sets B1; B2; � � � ; Bn of real numbers.

De�nition 1 [24]. Let � be an uncertain variable and
� 2 (0; 1]. Then,

�sup(�) = supfr j Mf� � rg � �g
is called the �-optimistic value to � and:

�inf(�) = inffr j Mf� � rg � �g
is called the �-pessimistic value to �.

De�nition 2 [24]. An uncertain distribution �(x)
is said to be regular if its inverse function ��1(x)
exists and is unique for each � 2 (0; 1). Then, the
inverse function ��1 is called the inverse uncertainty
distribution of �.

Example 1. Let �1; �2; � � � ; �n be independent and
positive uncertain variables with regular uncertainty
distributions �1;�2; � � � ;�n, respectively. It can be
shown that the product:

� = �1 � �2 � � � � � �n
has an inverse uncertainty distribution as follows:

	�1(�) = ��1
1 (�)� ��1

2 (�)� � � � � ��1
n (�):

Theorem 1 [25]. Assume that �1; �2; � � � ; �n are
independent uncertain variables with regular uncer-
tainty distributions �1;�2; � � � ;�n, respectively. If
f(x1; x2; � � � ; xn) is strictly increasing with respect to
x1; x2; � � � ; xm and strictly decreasing with respect to
xm+1; xm+2; � � � ; xn, then the uncertain variable � =
f(�1; �2; � � � ; �n) has an expected value:

E[�] =
Z 1

0
f(��1

1 (�); � � � ;��1
m (�);��1

m+1(1� �);

� � � ;��1
n (1� �))d�

provided that E[�] exists.
For any real numbers a and b, we have E[a�+b�] =

aE[�] + bE[�]; where � and � are independent of each
other.

3. Uncertain facility location models

3.1. Description
A distribution system is considered here. There are
a B2C company, several vendors, several potential
DCs, and several customers in the system. The B2C
company orders goods from suppliers, and suppliers
deliver goods to the DCs directly. Di�erent DCs can
cope with di�erent customer zones. To optimize the
entire system, two models of uncertain facility location
problems are established. The objectives are to select
the optimal quantity, location, and capacity of DCs
so that the total cost can be minimized while meeting
the demands of customers. The total cost covers the
supply cost, transportation cost from the supplier to
the DC, installation cost of the DC, inventory cost and
management cost of the DC, and cost of delivery from
the DC to the customer. There are some assumptions
as follows:

� The distribution system includes a group of suppli-
ers and customers with known locations as well as
potential locations for DCs. Each customer can only
obtain the goods from one DC;

� The demand of a customer, the capacity of a sup-
plier, and the delivery cost are considered uncertain
variables. The locations of suppliers and customers
are �xed;

� The planning period includes several transport cy-
cles and the goods are shipped from the supplier to
the DC. Besides, each shipping cycle includes several
similar delivery cycles in which the items are shipped
from the DC to the customer.

3.2. Mathematical models under uncertainty
Before building the mathematical models, parameters
and variables are given as follows:

Indexes and parameters
i Index of supplier, i = 1; 2; � � � ; I
j Index of potential DC; j = 1; 2; � � � ; J
k Index of customer, k = 1; 2; � � � ;K
l Index of commodity, l = 1; 2; � � � ; L
m Index of transport period, m =

1; 2; � � � ;M
n Index of distribution period,

n = 1; 2; � � � ; N
Ail Supply capability of supplier i for the

commodity l
Bjk Unit delivery cost from DC j to

customer k
Cijl Unit shipping cost of the commodity l

from supplier i to DC j
Dkl Demand of customer k for the

commodity l
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Hil Unit supply cost of the commodity l of
supplier i

Sjl Unit management cost of DC j for the
commodity l

Ujl Unit inventory cost of DC j for the
commodity l

wl Volume coe�cient of the commodity l
ql Gravity coe�cient of the commodity l
P Maximum number of selected DCS
Decision variables
xijl Quantity of the commodity l shipping

from supplier i to DC j
yj 1, if DC j is selected; 0, otherwise
zjk 1, if customer k is delivered by DC j;

0, otherwise

The capacity of DC j is denoted by v. Fj(v)
represents the setup cost of DC j. On the whole, the
setup cost will rise with the capacity of the DC. Each
DC has its critical and maximum capacity (Nj and Mj)
and a more reasonable setting is proposed:

Fj(v) =

8><>:Fj0 + Ej0(v �Nj)'; Nj < v �Mj ;
Fj0; 0 < v � Nj ;
0; v = 0:

When v is less than Nj , Fj0 will be the setup cost. Ej0
and � are coe�cients and � 2 (0; 1).

In the problem, the supply capacity Ail, unit
delivery cost Bjk, and the demand of customer Dkl are
considered uncertain independent variables. Supply
capacity cannot be obtained accurately due to the
disruption in the internal organization of suppliers,
imperfect quality system, backward machinery and
equipment, unstable �nancial position, etc. Moreover,
the transportation cost depends upon labor charges,
fuel price, tax charges, etc., each of which uctuates
from time to time. Accordingly, it is not easy to predict
the supply capacity and the exact transportation cost
of a route over a period of time. Demand is usually
not available to retailers, which may be a�ected by
some uncertain factors (e.g., product design defects,
natural disasters, and brand di�erences). If enough
samples are collected to get the distribution of these
parameters, these parameters can be described as
random variables. However, high-tech products are
often rapidly changing, e.g., microprocessors, memory,
and mobile phones. Thus, it is di�cult to obtain
historical data under the demand for these products.

The facility location problem can be modeled in
many ways according to di�erent goals. Expected value
is the average value of uncertain variables, which can
indicate the size of uncertain variables.

The aim to minimize the total cost (transport,
setup, delivery, supply, management, and inventory)

under the criterion of expected value. The model is as
follows:

minE

(
m
X
i2I

X
l2L

Hil
X
j2J

xijl +m
X
i2I

X
j2J

X
l2L

Cijlxijl

+
X
j2J

Fj

 X
i2I

X
l2L

wlxijl

!
m
X
i2I

X
j2J

X
l2L

nX
�=1

Ujl
xijl
n
� +m

X
j2J

X
l2L

 X
i2I

xijl

!�
Sjl

+
X
j2J

X
k2K

Bjkzjk

 X
l2L

qlDkl

!)
; (1)

subject to:

E

"
m
X
j2J

xijl �Ail
#
� 0; i 2 I; l 2 L; (2)

E

"
m
X
i2I

xijl �X
k2K

Dklzjk

#
= 0; j 2 J; l 2 L; (3)

X
i2I

X
l2L

wlxijl �Mjyj � 0; j 2 J; (4)

X
j2J

yj � P � 0; (5)

X
j2J

zjk = 1; k 2 K; (6)

X
k

zjk � ryj � 0; j 2 J; (7)

xijl � 0; yj = f0; 1g; zjk = f0; 1g; i 2 I;
j 2 J; l 2 L: (8)

Inequation (2) ensures that the goods supplied by
the supplier do not exceed their ability. Eq. (3) ensures
that the input of each DC is equal to the output.
Inequation (4) indicates that each DC cannot exceed
its maximum capacity limit. Inequation (5) ensures
that the selected DCs would not exceed the maximum
number. Eq. (6) ensures that each customer can only
obtain the goods from one DC. Inequation (7) ensures
that each DC can deliver goods to customers.

In practice, the decision-maker always considers
the risk and �nds an upper bound to make an optimal
schedule plan. Under di�erent conditions, con�dence
levels � are given. The decision-maker should deter-
mine target f such that a solution x� could satisfy
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Mff(x) � fg � �. For instance, set � = 0:9, the
decision-maker should determine a target f and then,
choose a solution x that satis�es Mff(x) � fg � 0:9.
This suggests that if the decision-maker chooses x, the
total cost will be lower than f at least 90%.

Accordingly, a chance-constrained model is con-
ceived.

min f (9)

subject to:

M
(
m
X
i2I

X
l2L

Hil
X
j2J

xijl +m
X
i2I

X
j2J

X
l2L

Cijlxijl

+
X
j2J

Fj

 X
i2I

X
l2L

wlxijl

!
+m

X
i2I

X
j2J

X
l2L

nX
�=1

Ujl
xijl
n
� +m

X
j2J

X
l2L

 X
i2I

xijl

!�
Sjl

+
X
j2J

X
k2K

Bjkzjk

 X
l2L

qlDkl

!
� f

)
� �; (10)

M
(
m
X
j2J

xijl � Ail
)
� �1; i 2 I; l 2 L; (11)

M
(
m
X
i2I

xijl =
X
k2K

Dklzjk

)
� �2; j 2 J; l 2 L;

(12)X
i2I

X
l2L

wlxijl �Mjyj � 0; j 2 J; (13)

X
j2J

yj � P � 0; (14)

X
j2J

zjk = 1; k 2 K; (15)

X
k

zjk � ryj � 0; j 2 J; (16)

xijl � 0; yj = f0; 1g; zjk = f0; 1g; (17)

i 2 I; j 2 J; l 2 L;
where �, �1; �2 are the preset con�dence levels.

The model aims to solve the pessimistic value.
Constraints (11) and (12) ensure that the conditions
hold at con�dence levels �1 and �2.

There are many uncertain variables in the above
models. To solve the two models, the uncertain
inverse distribution technique in accordance with the
uncertainty theory is to be introduced and discussed in
the next section.

4. Equivalence proof

In many uncertain programming literatures pieces,
various optimization methods are used to �nd an
approximate optimal solution. The following will
demonstrate that the two uncertain models can be
converted into deterministic forms.

Theorem 2. The expected value model is equivalent to
the following model:

min

(
m
X
i2I

X
l2L

Hil
X
j2J

xijl +m
X
i2I

X
j2J

X
l2L

Cijlxijl

+
X
j2J

Fj

 X
i2I

X
l2L

wlxijl

!
+m

X
i2I

X
j2J

X
l2L

nX
�=1

Ujl
xijl
n
� +m

X
j2J

X
l2L

 X
i2I

xijl

!�
Sjl

+
X
j2J

X
k2K

X
l2L

zjkqlE[BjkDkl]

)
;

subject to:

m
X
j2J

xijl �
Z 1

0
��1
Ail(�)d�; i 2 I; l 2 L; (18)

m
X
i2I

xijl =
X
k2K

zjk
Z 1

0
��1
Dkl(�)d�; j 2 J; l 2 L;

X
i2I

X
l2L

wlxijl �Mjyj � 0; j 2 J
X
j2J

yj � P � 0;

X
j2J

zjk = 1; k 2 K;
X
k

zjk � ryj � 0; j 2 J;

xijl � 0; yj = f0; 1g; zjk = f0; 1g;
i 2 I; j 2 J; l 2 L:

Proof: According to the nature of expected value, the
conclusion is easy to draw.

E

"X
j2J

X
k2K

Bjkzjk

 X
l2L

qlDkl

!#
=
X
j2J

X
k2K

X
l2L

zjkqlE[BjkDkl]:
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Assume that the uncertain distributions of Bjk and
Dkl are �Bjk(x) and �Dkl(x), respectively. According
to Theorem 1, it yields:

E[BjkDkl] =
Z 1

0
��1
Bjk(�)��1

Dkl(�)d�;

because:

E[Ail] =
Z 1

0
��1
Ail(�)d�;

then, Inequation (18) is equivalent to:

m
X
j2J

xijl �
Z 1

0
��1
Ail(�)d�:

Likewise, the equivalent forms of other constraints can
be obtained.

The theorem is proved.

Theorem 3. The chance-constrained model is equiva-
lent to the following model:

minm
X
i2I

X
l2L

Hil
X
j2J

xijl +m
X
i2I

X
j2J

X
l2L

Cijlxijl

+
X
j2J

Fj

 X
i2I

X
l2L

wlxijl

!
m
X
i2I

X
j2J

X
l2L

nX
�=1

Ujl
xijl
n
� +m

X
j2J

X
l2L

 X
i2I

xijl

!�
Sjl

+
X
j2J

X
k2K

X
l2L

zjkql��1
Bjk(�)��1

Dkl(�); (19)

subject to:

m
X
j2J

xijl � ��1
Ail(1� �1); i 2 I; l 2 L; (20)

m
X
i2I

xijl =
X
k2K

zjk��1
Dkl(�2); j 2 J; l 2 L; (21)

X
i2I

X
l2L

wlxijl �Mjyj � 0; j 2 J;
X
j2J

yj � P � 0;

X
j2J

zjk = 1; k 2 K;
X
k

zjk � ryj � 0; j 2 J;

xijl � 0; yj = f0; 1g; zjk = f0; 1g; i 2 I;
j 2 J; l 2 L;

where ��1
f denotes the inverse uncertainty distribution

of f .

Proof: According to De�nition 1, Inequations (9) and
(10) are equivalent to Inequation (19).

According to the de�nition of uncertain distribu-
tion, it yields:

�1 �M
(
m
X
j2J

xijl � Ail
)

= 1�M
(
m
X
j2J

xijl > Ail

)

= 1� �

 
m
X
j2J

xijl

!
:

By taking inverse distribution on both sides, it yields:

m
X
j2J

xijl � ��1
Ail(1� �1):

Likewise, the equivalent forms of other constraints can
be obtained.

The theorem is proved.
It has always been known that because of the

multiple types of uncertainty, policymakers will face
the problem of multi-dimensional decision variables.
These variables lead to multiple integration problems in
a random environment, thereby making the calculation
more di�cult to achieve. Fortunately, the problem of
multiple integration is avoided by the operation law of
inverse uncertainty distribution. Thus, the proposed
uncertainty model outperforms the stochastic model in
many types of uncertain facility location problems.

5. Hybrid algorithm

It is clear that the two deterministic models are nonlin-
ear and NP-hard and they cannot be solved by exact
methods [4]. Accordingly, it is necessary to �nd an
e�ective algorithm to solve the deterministic forms of
the models. Fortunately, meta-heuristic can e�ectively
solve such complex problems, e.g., GA and PSO. Jiang
et al. [40] proposed an e�ective method called GAPSO-
I to solve the distribution problem in B2C e-commerce.
Inspired by the mentioned process, an improved GA
was proposed according to the characteristics of the
uncertain model. The Hybrid Algorithm (HA) looks
for optimal costs among DCs, customers, and suppliers.
The proposed algorithm HA is given in the following
section.

� Solution representation and initialization: The dis-
tribution between the DC and the customer is
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represented by a natural number. For instance,
there are 4 potential DCs and 6 customers. A
maximum of four DCs can be selected and the
code can be written as [3, 1, 2, 2, 1, 4]. The
column and element represent the customer and DC,
respectively. This code dictates that DC 3 services
customer 1, DC 1 services customer 2, DC 2 services
customer 3, and the rest can be deduced by a
similar analogy. To ensure that each DC is properly
selected, four di�erent codes should appear in the
code. Four numbers 1; 2; 3; 4 are randomly arranged
at six locations and two numbers are randomly
generated at the other two locations. Once the
initial population is determined, the values of yj and
zjk will be determined.

� Fitness function: Use the objective function as a
�tness function:

fE =
X
j2J

X
k2K

X
l2L

zjkqlE[BjkDkl];

fP =
X
j2J

X
k2K

X
l2L

zjkql��1
Bjk(�)��1

Dkl(�):

For the remaining sub-models:

minG(xijl);

subject to:

m
X
j2J

xijl �
Z 1

0
��1
Ail(�)d�; i 2 I; l 2 L;

m
X
i2I

xijl =
X
k2K

zjk
Z 1

0
��1
Dkl(�)d�; j 2 J; l 2 L;

X
i2I

X
l2L

wlxijl �Mjyj � 0; j 2 J;

xijl � 0; i 2 I; j 2 J; l 2 L;

minG(xijl)

subject to:

m
X
j2J

xijl � ��1
Ail(1� �1); i 2 I; l 2 L;

m
X
i2I

xijl =
X
k2K

zjk��1
Dkl(�2); j 2 J; l 2 L;

X
i2I

X
l2L

wlxijl �Mjyj � 0; j 2 J;

xijl � 0; i 2 I; j 2 J; l 2 L;

where:

G(xijl) = m
X
i2I

X
l2L

Hil
X
j2J

xijl

+m
X
i2I

X
j2J

X
l2L
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Sjl:

Obviously, only decision variables xijl are cov-
ered in the sub-model. Since G(xijl) is nonlinear,
conventional algorithms (e.g., branch and bound)
cannot solve this problem well. PSO has aroused
increasing attention for its easy implementation in
recent years. A PSO is proposed to solve the sub-
model as follows.

The position of the ith particle is denoted
by Xi = (Xi1; Xi2; � � � ; XiDim), which is used
to represent the three-dimensional subscript vari-
able xijl, and the velocity is denoted by Vi =
(Vi1; Vi2; � � � ; ViDim). Dim = i � j � l. Let
P besti and Gbest be the local and global extrema,
respectively. The inertia weight is w. The cognition
coe�cient is c1 and the social coe�cient is c2, and
rand1; rand2 � U(0; 1).

The update formula is as follows:

Vi(t+1)=wVi(t)+c1�rand1(0; 1)�(P besti �Xi(t))

+c2 � rand2(0; 1)� (Gbest �Xi(t));

Xi(t+ 1) = Xi(t) + Vi(t+ 1):

If a criterion is met, stop; otherwise, perform
another iteration.

� Selection operator: Selection process is based on the
evaluation function of the population (the roulette
wheel selection).

� Crossover process: Crossover is the process of pro-
ducing o�spring. To search solution space more
fully, cross is used to produce better o�spring. Two-
point crossover method is used. The crossover
probability is pc 2 (0; 1). Two cutting points
are randomly assigned. Genes beyond the cutting
points in parents 1 and 2 are directly duplicated
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Figure 1. The schematic diagram of two-point crossover
operation.

to the o�spring. Figure 1 shows the crossover
operation.

However, infeasible solutions can arise from
the crossover process. For instance, the number of
DCs is 4. Figure 1 is an example of an infeasible
solution. The solution does not satisfy Eq. (5). In
this case, 6 DCs are selected. The repair method is
as follows:

Step 1: The number of DCs is denoted by
Q;
Step 2: If Q � P , the solution is fea-
sible; otherwise, if Q > P , Q = Q �
P .
Step 3: Select two di�erent genes from the
chromosomes randomly and then, let them
take the same value. For instance, among the
solutions [3; 1; 2; 4; 3; 6; 1; 4; 2; 5], select 3 and 1
and then, turn them into [3; 3; 2; 4; 3; 6; 3; 4; 2; 5]
or [1; 1; 2; 4; 1; 6; 1; 4; 2; 5]. Repeat this iterative
process Q times until a feasible solution can be
obtained.

� Mutation process: The function of the mutation
operator is to avoid the premature from falling
into the local optimal. Inversion mutation is used
to produce a feasible solution. The method is
given in Figure 2. The reversal mutation is ac-

Figure 2. The schematic diagram of mutation operation.

complished by randomly selecting two positions and
the genes between the two locations are reversed.

� Termination: If the maximum number of iterations
is reached, stop; otherwise, circulate the selection
process.

6. Numerical experiment

Some numerical examples are given in this section.
Assume that there are 4 suppliers, 6 potential

DCs, 14 customers, and two types of commodities.

w1 = 0:7; w2 = 0:5; q1 = 100; q2 = 90;

m = 18; n = 12; P = 5; � = 0:5;

Ej0 = 12000; � = �1 = �2 = 0:9:

Other parameters are randomly generated (Tables 1
and 2). Assume that all uncertain variables follow the
zigzag distribution.

The error of objective value often serves as a
crucial tool to assess the merits of algorithms. Its
expression:

Error =
objective value� the optimal value

the optimal value
�100%:

The robustness of the HA is tested with GA and
PSO under di�erent parameters. First, the chance-
constrained model is tested. The results are listed in
Table 3.

Table 1. Parameters from suppliers to Distribution Centers (DCs).

DC
Cijl 1 2 3 4 5 6 Hil Ail
Supplier 1 10 9 15 13 12 16 100 (3100; 3200; 3300)
Supplier 2 8 13 11 15 10 18 95 (3500; 3600; 3700)
Supplier 3 11 14 13 9 15 10 105 (3100; 3200; 3300)
Supplier 4 9 17 16 10 11 12 110 (3800; 3900; 4000)
Ujl 16 8 10 11 9 13
Sjl 15 10 13 16 18 14
Mj 13 12 9 18 15 8
Nj 12 8 10 13 9 15
Fj0 3000 2800 3400 3200 3500 3600
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Table 2. Unit delivery cost from Distribution Centers (DCs) to customers.

Customer
Bjk 1 2 3 4 5 6 7
1 (4,5,6) (3,4,5) (7,8,9) (6,7,8) (8,9,10) (11,12,13) (8,9,10)
2 (3,4,5) (7,8,9) (8,9,10) (3,4,5) (11,12,13) (7,8,9) (4,5,6)
3 (7,8,9) (3,4,5) (4,5,6) (2,3,4) (8,9,10) (11,12,13) (6,7,8)
4 (3,4,5) (8,9,10) (6,7,8) (11,12,13) (7,8,9) (2,3,4) (7,8,9)
5 (2,3,4) (4,5,6) (4,5,6) (3,4,5) (8,9,10) (9,10,11) (3,4,5)
6 (7,8,9) (7,8,9) (2,3,4) (4,5,6) (6,7,8) (6,7,8) (9,10,11)

8 9 10 11 12 13 14
1 (7,8,9) (2,3,4) (8,9,10) (4,5,6) (9,10,11) (6,7,8) (8,9,10)
2 (6,7,8) (3,4,5) (6,7,8) (6,7,8) (8,9,10) (2,3,4) (3,4,5)
3 (4,5,6) (7,8,9) (9,10,11) (4,5,6) (2,3,4) (3,4,5) (6,7,8)
4 (9,10,11) (10,11,12) (6,7,8) (8,9,10) (7,8,9) (2,3,4) (7,8,9)
5 (10,11,12) (4,5,6) (3,4,5) (3,4,5) (3,4,5) (9,10,11) (3,4,5)
6 (11,12,13) (7,8,9) (8,9,10) (4,5,6) (6,7,8) (6,7,8) (9,10,11)

Table 3. Solutions under di�erent parameters (chance-constrained model).

GA PSO Optimal solution Error
No. Size max ite pc pm Size max ite
1 20 1000 0.8 0.15 20 30 16941223.79 0.08795
2 20 1000 0.75 0.2 15 40 16959746.51 0.03667
3 20 1000 0.7 0.25 10 50 16988966.17 0.02642
4 30 800 0.8 0.15 20 30 16936121.63 0.06531
5 30 800 0.75 0.2 15 40 16955874.32 0.02594
6 30 800 0.7 0.25 10 50 16972242.36 0.01098
7 40 500 0.8 0.15 20 30 16945951.05 0.05611
8 40 500 0.75 0.2 15 40 16962013.18 0.01653
9 40 500 0.7 0.25 10 50 16989477.31 0.00893

The errors are not larger than 0.08795 under
di�erent parameters. Besides, the mean value is
16961290.7 and the average error is 0.037204. This
suggests that the changes in the parameters slightly
a�ect the optimal value and it is therefore indicated
that the proposed algorithm exhibits good robustness.
In contrast, the optimal value is in the fourth order, as
shown in Table 3.

GAPSO [40] is also an e�ective algorithm for this
kind of problem. Two measures (objective value and
CPU time) are used to assess the e�ectiveness of the
HA and GAPSO. The comparative results are listed in
Tables 4 and 5. According to the results in two tables,
HA generally outperforms GAPSO. The CPU time of
HA is slightly less than that of the GAPSO. The CPU
times of the two algorithms are perfectly acceptable in
practice. Moreover, the objective values vary slightly
with the modeling angle.

To study the sensitivity of �; �i; i = 1; 2 in the
chance-constrained model, another supplementary test
is performed and the results are listed in Figure 3. The
step size of the con�dence level is taken as 0.2. Figure 3
implies the objective function is nondecreasing with

Figure 3. Sensitivity analysis.

�, �i; i = 1; 2. The result of the sensitivity analysis
allows decision-makers to make most reasonable judg-
ment based on the degree of understanding of actual
problems in an uncertain environment.
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Table 4. Results of the expected value model

GAPSO HA
No. Objective value CPU time (s) Objective value CPU time (s)

1 16895171.59 232.55 16290541.19 232.89
2 16882147.82 233.69 16204577.07 234.06
3 16902643.66 231.74 16250213.49 232.22
4 16930144.03 233.79 16159885.09 231.14
5 16920465.18 231.35 16240957.26 230.01
6 16901315.23 232.91 16300258.66 231.45
7 16963331.57 231.18 16225510.15 230.97
8 16888559.01 232.08 16313300.53 231.63
9 16957885.38 231.89 16302971.88 230.04
10 16824659.97 232.86 16298821.51 231.43

Average 16906632.4 232.4 16258703.7 231.58

Table 5. Comparative results of Hybrid Algorithm (HA) and Genetic Algorithm and Particle Swarm Optimization
(GAPSO) (chance-constrained model).

GAPSO HA
No. Objective value CPU time (s) Objective value CPU time (s)

1 16473861.13 235.06 16089545.97 231.33
2 16685573.54 231.14 15962665.22 232.94
3 16634665.71 229.97 16055453.27 230.87
4 16851349.55 232.05 16145333.63 230.55
5 16542146.03 234.93 16099876.34 231.21
6 16659647.11 234.56 15923112.46 232.96
7 16767988.05 233.28 16025510.76 233.04
8 16821138.21 235.77 16122998.12 231.53
9 16457855.64 232.09 16024656.96 231.14
10 16524975.34 234.63 15898821.03 230.66

Average 16641920 233.35 16034797.4 231.62

Table 6. Large-scale problem (chance-constrained model).

GAPSO HA
No. r Best Ave Worst Time (s) Best Ave Worst Time (s)

1 50 98.99 94.57 91.96 2159.02 100 99.08 97.68 2133.41
2 100 97.95 95.03 92.15 2230.54 100 98.92 97.55 2219.12
3 200 99.04 95.37 92.19 2192.22 100 98.87 97.66 2178.93
4 300 99.26 96.92 92.50 2260.17 100 98.59 97.54 2239.11
5 400 99.21 96.82 92.63 2204.56 100 99.27 97.09 2186.36
6 500 99.52 96.43 91.98 2229.31 100 99.13 98.95 2208.94

To test the proposed algorithm further, the prob-
lem is investigated on a large scale. The uncertain
demands are generated randomly. Since the problem
is more complex on a large scale, the parameters are
set as follows:

popsize = 250;max ite = 500:

Other parameters do not adjust. To avoid random large
errors random, two algorithms are tested 10 times,
respectively. For the sake of comparison, we have:

quality of objective value =
the optimal value
the current value

�100%:

The results of the two algorithms are listed in
Table 6. The result of the expected value model is
similar to that of the chance-constrained model, and
it is omitted. According to the results, these two
algorithms can still solve such problems e�ectively on
a large scale.
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In the above examples, the expected value model
and chance-constrained model are used to solve the
supply chain problem in an uncertain environment.
It is noteworthy that two di�erent styles of models
under di�erent guidelines are proposed in this study.
According to the results of the two examples, there is a
relative di�erence between the two solutions of the two
uncertain models, primarily because the two models are
built from di�erent perspectives, thereby resulting in
di�erent optimal solutions. It is di�cult to generalize
which model is better. In fact, a more suitable model
is determined by the decision-maker and the mastery
of the actual situation.

7. Conclusions

The problem of an uncertain facility location in
Business-to-Consumer (B2C) e-commence was inves-
tigated in this study. Unlike the past, delivery cost
as well as supply and demand were assumed to be
uncertain variables due to the lack of observed data.
To deal with these empirical data, the expected value
model and chance-constrained model were developed.
To overcome the limitation of the capacity of the
Distribution Center (DC), a more reasonable cost
function of DCs was established. The equivalent forms
of these models were obtained in accordance with the
uncertainty theory. An improved Genetic Algorithm
(GA) with Particle Swarm Optimization (PSO) was
proposed to �nd an optimal approximate solution. The
e�ectiveness and e�ciency of the proposed models were
veri�ed by several numerical experiments. Besides,
according to the results of the extensive computational
experiments, the proposed hybrid algorithm is more
competitive and e�cient than GAPSO. Furthermore,
this modeling idea and solution method may also be
suitable for solving other facility location problems.
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