
Scientia Iranica A (2019) 26(4), 2258{2275

Sharif University of Technology
Scientia Iranica

Transactions A: Civil Engineering
http://scientiairanica.sharif.edu

Invited Paper

A new higher-order strain-based plane element

M. Rezaiee-Pajand�, N. Gharaei-Moghaddam, and MR. Ramezani

School of Engineering, Ferdowsi University of Mashhad, Mashhad, Iran.

Received 3 March 2019; received in revised form 26 April 2019; accepted 20 May 2019

KEYWORDS
Strain-based
formulation;
Second-order strain
�eld;
Equilibrium condition;
Numerical evaluation;
Drilling degrees of
freedom.

Abstract. This study proposes a new higher-order triangular plane element with drilling
degrees of freedom by considering second-order strain �eld. In addition to the inclusion of
drilling degrees of freedom and utilization of higher-order assumes strains, the satisfaction
of equilibrium equations improves the performance of the suggested element in comparison
to many of the other available elements. Following the proposition of the new element,
a series of benchmark problems are solved to evaluate the performance of the suggested
element. Accuracy and e�ciency of the suggested element are compared with those of
other strain-based plane elements. Detailed discussions are proposed after each benchmark
problem. Finally, based on the attained results, a �nal conclusion about the characteristics
of robust membrane elements is made.

© 2019 Sharif University of Technology. All rights reserved.

1. Introduction

Numerical methods are proved to be powerful and e�ec-
tive computational tools for the analysis of complicated
and practical engineering problems. Various numerical
approaches were developed in the past decades such as
the �nite element method, �nite di�erence technique,
boundary element method, and discrete element ap-
proach. Among these techniques, the �nite element
method has obtained greater popularity due to its
strong mathematical bases and inherent capabilities.
Accordingly, various formulation techniques were de-
veloped in the past decades, and there are thousands
of �nite elements available to analyze di�erent types
of problems and structures. Among the available
approaches to �nite element formulation, the most well-
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known and widely applicable one is the displacement-
based technique. This method, sometimes known
with di�erent terms, such as the classical or sti�ness
approach, is the �rst scheme that is used for the
development of �nite elements [1]. Clear and straight-
forward process and applicability to di�erent types of
problems and structures are the prominent advantages
of the displacement-based formulation for structural
and mechanical applications. However, this process
has various shortcomings. For instance, inaccuracy and
discontinuity of stresses, which are secondary parame-
ters in the sti�ness approach, represent vital de�ciency
in structural applications, where stress is a decisive
parameter in the design practice. Another common
problem of displacement-based �nite elements includes
various locking phenomena, such as shear and mem-
brane locking, which necessitate special treating, often
requiring considerable time and e�ort and reducing the
e�ciency of the method [2,3]. Moreover, in severely
nonlinear problems, the displacement-based elements
usually necessitate utilizing very �ne meshes, which
are inappropriate in terms of e�ciency. To remedy the
mentioned and other shortcomings of the displacement
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approach, other �nite element formulations, such as
the force-based, hybrid or mixed, assumed stress, and
assumed strain, have been developed. Fortunately,
these new procedures have their own advantages and
shortcomings. For example, the force-based formula-
tion performs very well in the linear and nonlinear
analyses of frame structures and, also, provides an
appropriate platform for the development of advanced
frame elements [4-8]. Of note, the force formulation
approach is limited to skeletal structures, and its
application to continuous structures is very di�cult
if not possible. Despite the fact that each method
has di�erent merits and limitations, some approaches
have received greater attention from researchers, while
others have been almost overlooked. One of these
techniques that has received less attention despite its
promising performance is the strain-based or assumed
strain approach. It is proved that the strain-based
approach is very e�ective in removing problems such
as shear parasitic error, mesh sensitivity, and di�erent
locking phenomena. Various authors have utilized this
scheme to develop strain-based plane elements [9-26].
Sabir is one of the pioneers of the development of
strain formulation. In his early work, he proposed
triangular and quadrilateral elements by assuming
linear strain �elds [9]. In another work, Sabir and
Sfendji proposed four-node triangular and rectangular
elements by assuming the linear normal strains and
constant shear strain [10]. In 2003, Tayeh developed
new strain-based triangular and rectangular elements
using a higher-order incomplete second-order �eld for
the element [11]. Belarbi and Bourezane proposed
a new element by incorporating Poisson's ratio in
the assumed strain �eld [12]. Belarbi and Bourezane
performed another study in 2005 and proposed a
triangular strain-based element with the geometry
similar to their previous work, yet with a di�erent
strain �eld [13]. In 2005, Belarbi and Maalem sug-
gested an improved strain-based rectangular element
by considering linear normal strains and constant shear
strain [14]. The �rst generalized quadrilateral plane
element, whose strain �eld satis�es both compatibility
and equilibrium conditions, was proposed by Rezaiee-
Pajand and Yaghoobi [15]. In another study, Rezaiee-
Pajand and Yaghoobi investigated the performance
of two special rectangular variants of the previous
element [16]. A four-node rectangular strain-based
element with incomplete fourth-order normal strains
was proposed by Rebiai and Belounar [17]. Rezaiee-
Pajand and Yaghoobi proposed a �ve-node triangular
element with a complete linear strain �eld [18]. To
propose a new �nite element, they utilized the complete
linear strain �eld of the previous study, yet with an
element of di�erent geometry [19]. In another research
work, Rebiai and Belounar suggested a variant of their
previous element [20]. They considered the strain �eld

of their previous study [17], yet added a new linear
term to the shear strain and changed the dependent
term of the normal strains. Following his previous
research studies, Rebiai et al. suggested a new strain-
based quadrilateral element for linear dynamic analysis
of the plane problems [21]. In an attempt to develop
second-order strain-based elements, Rezaiee-Pajand
and Yaghoobi proposed two quadrilateral strain-based
elements with seven and nine nodes [22]. In 2016,
Hamadi et al. independently proposed a new quadrilat-
eral �nite element [23]. This element is exactly similar
to the element previously proposed by Rezaiee-Pajand
and Yaghoobi in 2012 [15]. In order to analyze geomet-
rically nonlinear plane structures, Rezaiee-Pajand and
Yaghoobi modi�ed their �ve-node quadrilateral ele-
ment [15] by the co-rotational approach [24]. In a more
recent attempt to propose a three-node nine-degree-
of-freedom triangular element, Rebiai suggested a new
strain-based element with an incomplete second-order
strain �eld [25]. Rezaiee-Pajand carried out various
studies to improve the performance of the strain-based
�nite elements. In one of the most recent studies, He
and Gharaei-Moghaddam and Ramezani suggested new
triangular elements [26]. Moreover, they also imposed
the equilibrium condition to specify the dependent
strain states. In addition to the mentioned plane
elements, advantages of strain formulation persuade
researchers to make use of this approach to develop
�nite elements of other types of structures [27-42].

A review of the existing strain-based plane el-
ements shows that there is no membrane element
with a complete second-order assumed strain �eld,
despite the fact that the application of higher-order
�elds leads to highly accurate estimation. Moreover,
it is known that the use of complete strain �elds in
element formulation guarantees locking-free behavior
for strain-based elements [15]. Therefore, in the
present study, a new second-order strain-based element
is proposed to investigate the e�ect of higher-order
strain states and a new distribution model for degrees
of freedom on the accuracy of the resulting element.
The mentioned benchmark problems are resolved using
the new element. Based on the obtained results by
the suggested element and the reviewed membrane
elements, a short discussion is provided after each
problem. The attained results can be used to detect
the most suitable assumptions and con�gurations to
achieve a robust plane �nite element.

2. Basics of the formulation

The main idea of the assumed strain formulation is
to approximate the strain �eld of the element with
an assumed mathematical function. Polynomial Taylor
expansion is a common choice for the assumed function.
In the case of plane problems, the strain �eld consists of
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Box I

three components, namely "x, "y, and 
xy. According
to the concept of Taylor expansion, each of the strain
components can be approximated by a polynomial
function of arbitrary order in the form of Eq. (1) shown
in Box I. Choosing the higher-order terms of Taylor
expansion for the assumed strain �eld would increase
convergence speed and accuracy of the suggested el-
ement and, yet, reduce its numerical e�ciency due
to the addition of more degrees of freedom to the
element. Despite the application of di�erent criteria,
such as pure plain bending test, for choosing the higher-
order terms for strain components, there is no required
condition for this selection, and the only necessity
is to include constant terms in the assumed strain
�eld. However, like the classical displacement-based
formulation, it is advised not to assign priority to any
of the coordinates (x or y). Moreover, it is possible to
select strain components of speci�c order according to
the knowledge of analytic form of the strain �eld.

In any case, when the desired terms are chosen
for the strain components, it is possible to apply any
preferred optimized condition to the assumed strain
�eld. These optimized criteria provide necessary or fa-
vorite properties for the element strain �eld. The most
common criteria include compatibility and equilibrium
conditions. Based on the plane elasticity principle, the
compatibility of the strain �eld is satis�ed, provided
that the following relationship is established between
the strain components:

@2"x
@y2 +

@2"y
@x2 =

@2
xy
@x@y

: (2)

The other common optimized condition is equilibrium.
The equation of equilibrium for the plane problems is
de�ned as follows:(

@�x
@x + @�xy

@y + Fx = 0
@�y
@y + @�xy

@y + Fy = 0
(3)

where Fx and Fy are the body forces in x and y
directions, respectively. �x, �y, and �xy are normal
and shearing stresses, respectively. To rewrite the
equilibrium equation in terms of strain, it is necessary
to relate the stresses to the strains. For the plane
problems, the coming relations connect stresses and
strains to each other:

8><>:�x = 2G"x + �("x + "y)
�x = 2G"y + �("x + "y)
�xy = G
xy

(4)

� is called the Lame constant and is equal to �E
(1+�)(1��)

for the plane stress condition. In the case of plane
strain, this constant is equal to �E

(1+�)(1�2�) . E, G, and
� are the modulus of elasticity, shear modulus, and
Poisson's ratio, respectively. Substituting Eq. (4) in the
equilibrium equation results in the following relations:(

(2G+ �)@"x@x + �@"y@x +G@
xy
@y + Fx = 0

�@"x@y + (2G+ �)@"y@y +G@
xy
@x + Fy = 0

(5)

The inclusion of the optimized condition makes some
of the strain states dependent on the other ones.
When the dependent strain states are determined,
the assumed strain �eld is rewritten in terms of the
independent ones. The next step is to calculate the
associated displacement �eld. For this purpose, the
strain-displacement formulae are utilized:8>><>>:

"x = @u
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2

�
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In these relations, u and v are displacements in x and
y directions, respectively. Based on these equalities,
the displacements in x and y directions are derived by
integrating normal strain components with respect to
their associated coordinates:(

u(x; y) =
R
"xdx+ f1(y)

v(x; y) =
R
"ydx+ f2(y)

(7)

In these equations, f1 and f2 are derived by inte-
grating shear strain with respect to the coordinates
and imposing necessary conditions of the rigid body
modes. For a plane problem, there are three rigid
body modes in the displacement �eld, namely uo, vo,
and ro, standing for rigid body displacements in x
and y directions and rigid body rotation, respectively.
According to the displacement-based formulation, the
existence of these terms is a necessary condition to
guarantee the convergence of the resulting �nite ele-
ment. Therefore, these modes are also counted among
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the independent strain states that can be arranged in
a vector arrangement indicated by S. This vector is
called strain state vector. By using the matrix notation
which is traditionally used in �nite element formulation
in structural engineering applications, it is possible to
relate the displacement and strain �elds to the strain
state vector in the subsequent forms:

U = NS :S + eU; (8)

" = BS :S + e"; (9)

where NS and BS are displacement and strain inter-
polation matrices, respectively. ~U and e" are particular
part of the displacement and strain �elds that depend
on the body forces. The element nodal displacements
can be computed by substituting coordinates of the
element nodes in the displacement �eld. Thus, the fol-
lowing relation can be established between the vectors
of nodal displacements and the strain states:

D = A:S + eD = D + eD: (10)

In this equation, D and eD are the nodal displacement
vectors due to body forces. A is the geometric matrix,
which consists of the nodal displacement interpolation
matrices of the element. By considering Eq. (10), it is
possible to construct the succeeding relations between
the displacement and strains �elds of the element with
the nodal displacement vector:

U = NS :S + eU = NS :
�
A�1:D

�
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=
�
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" = BS :S + e" = BS :
�
A�1:D

�
+ e"
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�
BS :A�1�D + e" = B:D + e": (12)

Because the body forces are usually negligible in
comparison with the applied loads, the strains and dis-
placements due to body forces, e" and eU , are neglected.

The last step in the formulation of the �nite
element scheme is to derive the element sti�ness matrix
and the nodal force vector. There are di�erent ap-
proaches to �nding the sti�ness matrix of an element.
For instance, it is possible to utilize the total potential
energy principle. This functional can be written as
follows:

� =
1
2

Z
�T "dv �

Z
UTFdv �DTPext: (13)

In this relation, Pext and F are the applied external
nodal and body forces, respectively. To derive the
element sti�ness matrix and nodal force vector, it is
required to establish a stationary of the functional:
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Accordingly, the element sti�ness matrix and nodal
force vector are derived as follows:
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where Dm is the material matrix:

Dm =
E

1� �2

24 1 � 0
� 1 0
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2

35 : (17)

3. Element formulation

To propose a new strain-based membrane element, it is
assumed that the normal strains have complete second-
order �eld, while the shear strain is approximated using
a linear �eld as shown in Box II.

It is proved that the imposition of compatibility
and equilibrium conditions on the assumed strain
�eld results in a more accurate element with a faster
convergence trend [15]. Moreover, this action reduces
the number of independent strain states in the element
strain �eld. The number of independent strain states
speci�es the number of required degrees of freedom;
therefore, their reduction results in an element with
fewer degrees of freedom, which is more desirable
from a numerical e�ciency standpoint. Accordingly,
enforcing the compatibility and equilibrium criteria on
the assumed strain �eld of Eq. (18) (shown in Box II)
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Box II
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results in the subsequent dependent strain states:8>>>>>>>>>><>>>>>>>>>>:
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The assumed strain �eld in Eq. (18) consists of �fteen
strain states, which, in addition to three rigid body
modes, results in a total of eighteen strain states. As
presented by Eq. (19), seven of these strain states are
dependent on the others; therefore, the element strain
state vector consists of eleven constituents as follows:

S=
�
u0 v0 r0 ("x)0 ("y)0 (
xy)0 ("x;x)0 ("x;y)0

("y;x)0 ("y;y)0 ("x;yy)0

�
(20)

where uo, vo, and ro are the rigid body motions.
By using this vector, the assumed strain �eld of the
element can be rearranged in the succeeding matrix
notations:

" = BS :S; (21)

where the strain interpolation matrix, BS , is de�ned
by Eq. (22) as shown in Box III.

By utilizing the strain-displacement relations and
performing integration of the strain components, the
element displacement �eld in terms of independent
strain states and rigid body modes is obtained. The
displacement �eld can be reported using matrix nota-
tions:

U = NS :S; (23)

where the displacement interpolation matrix is pre-
sented by Eq. (24) as shown in Box IV. The next step
of the formulation is to select element geometry and
degrees of freedom.

First of all, it is required to determine the ge-
ometry of the element. Since many of the available
plane elements formulated by various methods are
quadrilateral, it is preferred to suggest robust triangu-
lar element. Moreover, triangular geometry facilitates
meshing of structures of di�erent shapes. Regarding
the type of the degrees of freedom, for the new element,
both translational and drilling degrees of freedom will
be used. It is well known that the addition of drilling
degrees of freedom to membrane elements is bene�cial
because of three main reasons: (a) It facilitates the
development of shell elements and connection of shell
and membrane element to beam elements, (b) The
drilling degrees of freedom can be added to the element
without the necessity of adding new mid-side nodes,
and (c) It is e�ortless to include these extra degrees
of freedom in the commercial �nite element programs,
which usually can carry six degrees of freedom per
node [43]. Moreover, various studies showed that, in
addition to the mentioned advantages, using drilling
degrees of freedom improved the performance of mem-
brane elements, especially under bending loads [44-48],
and this is the main reason for using drilling degrees of
freedom in the formulation of the new strain-based ele-
ment in the present study. However, since the author's
goal is to investigate e�ects of node distribution and
the type of degrees of freedom on the performance of
strain-based element, the second mentioned advantage
of using drilling degrees of freedoms is violated and,
instead, drillings are considered for new mid-side nodes.
This assumption results in a new element con�guration,
which is not treated previously by researchers. This
element is demonstrated in Figure 1. As can be
seen, the element had seven nodes and eleven degrees
of freedom in agreement with the independent strain
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Figure 1. Seven-node triangular element with an
incomplete second-order strain �eld.

states. The nodal displacement vector can be written
as follows:

D =
�
D2i�1 D2i D2j�1 D2j D2k�1 D2k Dl Dm

Dn D2p�1 D2p
	T : (25)

The drilling degree of freedom is related to displace-
ment components by the following equation:

� =
1
2

�
@v
@x
� @u
@y

�
: (26)

Therefore, it is possible to calculate drilling in terms of
strain states vector as shown in Box V. The required
quantity for the element formulation is the geometric
matrix. According to Figure 1 and the selected degrees
of freedom, the geometric matrix of this element is
derived from the subsequent relation:

A=
�
Nsi Nsj Nsk Tsl Tsm Tsn Nsp

�T :(29)

Now, the element sti�ness matrix and the vector of
nodal forces can be computed by Eqs. (15) and (16).
The accuracy and e�ciency of the suggested element

will be evaluated in the following section using a series
of well-known benchmark problems. Moreover, the
attained results reported by other researchers who
proposed assumed strain membrane elements are also
presented to provide an opportunity for comparison.

4. Numerical evaluation

In this section, a series of benchmark problems are
solved to evaluate the performance of the suggested
element. Table 1 presents a list of the strain-based
elements used for comparison. In addition to the listed
elements, results of the three common displacement-
based elements, namely four-node and eight-node
isoparametric quadrilateral elements (Q4 and Q8) and
Linear Strain Triangular element (LST), are provided
in some problems to compare the performance of the
strain-based formulation with them.

4.1. Cantilever beam with distorted mesh
One of the available tests to examine the performance
of the membrane elements in coarse distorted meshes
under both bending and shear loadings is the cantilever
beam, which is depicted in Figure 2.

This �gure illustrates the geometric character-
istics, loading, and utilized meshes for quadrilateral
elements. The modulus of elasticity and Poisson's ratio
of this beam are 1500 and 0.25, respectively, and its
thickness is equal to 1. The utilized mesh for analysis
using triangular elements is demonstrated in Figure 3.

Figure 2. Cantilever beam with distorted quadrilateral
mesh.

Figure 3. Triangular mesh for analysis of cantilever beam
with distorted mesh.

� = Ts:S; (27)

Ts =
h
0 0 1 0 0 0 (2G+�)y

2G
�(2G+�)x

2G
(2G+�)y

2G
�(2G+�)x

2G �xy
i
: (28)

Box V
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Table 1. List of the plane elements used for comparison.

Description of the element
No. Abbreviation Triangular elements Reference

1 RY-T10 Six-node ten-degree-of-freedom triangular element proposed by
Rezaiee-Pajand and Yaghoobi

[18]

2 RY-T10D Seven-node ten-degree-of-freedom triangular element with
drilling proposed by Rezaiee-Pajand and Yaghoobi

[19]

3 R-T9D Three-node nine-degree-of-freedom
triangular element with drilling proposed by Rebiai

[25]

4 RGR-T10 Five-node ten-degree-of-freedom
triangular element proposed by Rezaiee-Pajand et al.

[26]

5 RGR-T10D Four-node ten-degree-of-freedom triangular
element with drilling proposed by Rezaiee-Pajand et al.

[26]

Quadrilateral elements

1 RY-Q10 Five-node ten-degree-of-freedom quadrilateral
element proposed by Rezaiee-Pajand and Yaghoobi

[15]

2 RY-R10-I First �ve-node ten-degree-of-freedom
rectangular element proposed by Rezaiee-Pajand and Yaghoobi

[16]

3 RY-R10-II Second �ve-node ten-degree-of-freedom
rectangular element proposed by Rezaiee-Pajand and Yaghoobi

[16]

4 RB-R12D Four-node twelve-degree-of-freedom rectangular
element with drilling proposed by Rebiai and Belounar

[17]

5 RB-Q12D Four-node twelve-degree-of-freedom quadrilateral
element with drilling proposed by Rebiai and Belounar

[20]

6 RSB-Q12D Four-node twelve-degree-of-freedom quadrilateral element with
drilling proposed by Rebiai et al.

[21]

7 RY-Q14D Five-node fourteen-degree-of-freedom quadrilateral element with drilling
proposed by Rezaiee-Pajand and Yaghoobi

[22]

7 RY-Q18 Nine-node eighteen-degree-of-freedom quadrilateral
element proposed by Rezaiee-Pajand and Yaghoobi

[22]

As evident, each quadrilateral element is divided by a
dashed line to two triangular elements.

The attained results by the proposed element and
other elements for de
ection of point A and normal
stress at point B are listed in Table 2.

In fact, this test measures the performance of
di�erent elements to analyze structures with distorted
meshes under bending and shear loading conditions.

According to the results, the proposed strain-based
element provides acceptable accuracy. The results were
obtained by RGR-T10 and RGR-T10D with the same
assumed strain �eld, and their di�erence was only
observed in terms of distribution. The type of degrees
of freedom veri�es this conjecture including drilling
degrees of freedom in the plane elements and improves
their performance under in-plane bending.
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Table 2. De
ection of point A and stress at point B of the cantilever beam with distorted mesh.

Load P Load M

Element
Vertical

Displacement
of point A

Stress at
point B

Vertical
Displacement

of point A

Stress at
point B

Quadrilateral elements
Q8 100.40 �3354 98.40 �2428

Q4 50.70 �2448 45.70 �1761

SSQUAD 102.79 | 100.00 |

Triangular elements
RGR-T10 103.65 �4213 98.50 �2832

RGR-T10D 101.83 �4020 100.00 �3000

Proposed element 103.92 {4081 100.70 -2983

Analytical solution 102.60 �4050 100.00 �3000

4.2. Cantilever beam under parabolic shear
loading

To investigate the performance of the elements in ana-
lyzing structures under distributed surface traction, the
cantilever beam demonstrated in Figure 4 is analyzed.
This beam is made of elastic material with modulus of
elasticity and Poisson's ratio equal to 3000 and 0.25,
respectively, and its thickness is taken to be 1 unit.
The beam is loaded by parabolic distributed traction
at its free end, which is equal to 40 units.

This benchmark problem evaluates the e�ciency
of the elements in the analysis of structures using coarse
meshes. As evident in Figure 4, the beam is discretized
by four quadrilateral elements. In the case of triangular
elements, eight elements are used in which the utilized
mesh is demonstrated in Figure 5. However, results of
some of the reviewed elements are reported for regular
mesh.

Table 3 presents the obtained responses by the
mentioned membrane elements for de
ections at the

Figure 4. Cantilever beam under parabolic shear loading.

Figure 5. Triangular mesh for analysis of cantilever beam
under parabolic shear loading.

tip of the beam. Felippa reported the near-exact tip
de
ection of the beam equal to 0.35601 [49].

Based on the reported results, RGR-T10 and RY-
Q14D are the most accurate elements in this problem
with only 0.03% error in their estimations. The
suggested element in this study is in the second place
with less than 1% error.

4.3. Cook's skew beam
Cook trapezoidal beam is one of the most funda-
mental tests for checking shear displacements in non-
rectangular geometry. Figure 6 demonstrates this
beam under uniformly distributed tip loading. This
beam has unit thickness and is made of materials whose
Young's modulus and Poisson's ratio are 1 and 1/3,
respectively.

Many researchers have also implemented this

Figure 6. Cook's skew beam under uniform tip loading.
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Table 3. Tip de
ection of cantilever beam under parabolic shear.

Element Vertical displacement Relative error

Q
ua

dr
ila

te
ra

le
le

m
en

ts
Q4 0.21290 �40:19
Q8 0.34790 �2:28
RY-Q10 0.35280 �0:90
RY-R10-I 0.32724� �8:08
RY-R10-II 0.33027� �7:23
RB-R12D 0.34120� �4:16
RSB-Q12D 0.33470� �5:98
RY-Q14D 0.35590 �0:03
RY-Q18 0.35230 �1:04

T
ri

an
gu

la
r

el
em

en
ts LST 0.34770 �2:33

RY-T10 0.35031� �1:60
RY-T10D 0.34680 �2:59
RGR-T10 0.35610 0.03
RGR-T10D 0.34680 �2:59
Proposed element 0.35850 0.70

Near-exact solution 0.35601
�The results are attained from a regular mesh.

Figure 7. Utilized meshes for analysis of Cook's skew
beam.

benchmark to challenge the convergence of their el-
ements. Here, four di�erent meshes, namely meshes
2�2, 4�4, 8�8, and 16�16, are used. These meshes are
demonstrated in Figure 7. The results of the de
ection
at point C are presented in Table 4. It should be noted
that the near-exact solution to this problem is reported
equal to 23.96 [49].

Outcomes of this problem are again in complete

Table 4. De
ection of point C of the Cook's beam.

Mesh

Element 2� 2 4� 4 8� 8 16� 16

Q
ua

dr
ila

te
ra

le
le

m
en

ts Q4 11.80 18.29 22.08 23.43

RY-Q10 25.65 24.27 24.01 23.96

RB-Q12D 17.87 23.37 23.38 23.50

RY-Q14D 27.61 30.48 31.85 32.44

RY-Q18 23.45 23.70 23.86 23.92

T
ri

an
gu

la
r

el
em

en
ts RY-T10 20.94 23.84 24.18 24.13

RY-T10D 25.82 27.19 27.23 27.09

R-T9D 18.78 23.94 23.94 23.94

RGR-T10 21.18 23.03 23.69 23.95

RGR-T10D 19.06 22.85 23.14 23.87

RGR-T11D 26.00 24.39 24.01 23.97

Near-exact solution 23.96

agreement with the �ndings of previous numerical ex-
amples and, once more, the proposed element is among
the best performing elements. The other elements that
provide accurate estimations are RY-Q10, RGR-T10,
and R-T9D. It is somehow unexpected that R-T9D is
able to compute a very accurate response by a very
coarse mesh of 4 � 4. As is evident, the convergence
trend of di�erent elements is not similar. While most
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of the elements converge to the exact response asymp-
totically from below, the proposed element approaches
the accurate response from above. In addition, there
are elements such as RY-T10 and RY-T10D that
show non-uniform convergence behavior and, even, RY-
Q14D goes beyond the response. Nevertheless, most
of the strain-based elements demonstrate reasonable
performance in this benchmark problem.

4.4. Thick curved beam
In order to appraise the ability of �nite elements,
especially triangular ones, to analyze curvy structures,
many of the previous researchers have evaluated per-
formance of their proposed element in the analysis of
the curved beams, as demonstrated in Figure 8. This
beam is loaded by the shear load P = 600 at its tip.

The modulus of elasticity, poison's ratio, and
thickness of this beam are 1000, 0, and 1, respectively.
As depicted in Figure 8, four quadrilateral elements are
used to mesh this structure. In the case of triangular
elements, eight elements are used, as demonstrated in
Figure 9.

The exact vertical displacement of point A under

Figure 8. Thick curved beam with quadrilateral mesh.

Figure 9. The triangular mesh for analysis of thick
curved beam.

Table 5. De
ection of point A of thick curved beam.

Load P

Element Vertical
displacement

Relative error

Q
ua

dr
ila

te
ra

l
el

em
en

ts

Q8 88.60 �1:66

RY-Q10 86.92 �3:53

RY-Q14D 87.00 �3:44

RY-Q18 86.45 �4:05

T
ri

an
gu

la
r

el
em

en
ts

RY-T10 87.15 �3:27

RY-T10D 87.47 �2:92

RGR-T10 89.39 �0:79

RGR-T10D 84.62 �6:08

RGR-T11D 89.88 -0.24

Analytical solution 90.10

the applied load is equal to 90.10. The attained results
by di�erent elements are presented in Table 5. It
is evident that the suggested element provides the
most accurate estimation with only 0.24% error. After
the proposed element, RGR-T10 with a relative error
of 0.79% is in the second place. It is interesting
to note that, among the quadrilateral elements, the
performance of Q8 is better than those of the strain-
based elements. Nonetheless, since the error of most
of the strain-based elements is less than 5%, which is
negligible by any set of standards for the utilized coarse
mesh, this problem shows that the elements formulated
by the assumed strain approach are suitable options for
e�cient analysis of curved structures and can compete
with isoparametric elements.

4.5. Thin curved beam
To investigate the e�ect of shear lock in curved struc-
tures and, also, the convergence rate to achieve a
precise response, a thin curved beam test is available.
This modulus of elasticity, poison's ratio, and thickness
of this structure demonstrated in Figure 10 are 107,
0.25, and 0.1, respectively. This beam is loaded by a
unit vertical force at its tip.

Three di�erent meshes are used to analyze this
structure, namely 1 � 6, 2 � 12, and 4 � 24. These
meshes are named based on the number of quadrilateral
elements used in them. Of note, to analyze using tri-
angular elements, each quadrilateral element is divided
into two triangular elements. For instance, 1 � 6 is
demonstrated in Figure 11.

The main purpose of solving this problem is to
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Figure 10. Thin curved beam.

Figure 11. The used 1� 6 mesh for analysis of thin
curved beam.

compute tip de
ection of the beam under applied load
and, therefore, investigate the e�ect of locking problem
on the performance of the strain-based elements. The
exact vertical displacement at the tip is reported as
equal to 0.08734 [15]. Table 6 presents the obtained
results by some of the strain-based elements.

It is evident that the mentioned triangular el-
ements, except the proposed one, face the locking
problem in the coarsest mesh and behave too sti�y. In
contrast, the proposed element provides an acceptable
response. In the coarsest mesh, the suggested element
does not lock and only has 5.07% error. This error
is reduced to 0.49% in the �nest mesh. Of note, the
quadrilateral elements provide more accurate estima-
tions in the coarse mesh; however, they become a bit
more 
exible in the �nest mesh and, therefore, go
beyond the exact solution.

4.6. McNeal's beam
McNeal and Harder proposed this benchmark to ex-
amine the sensitivity of the elements to the mesh dis-
tortion and the trapezoidal locking phenomenon [46].
The geometry of this beam and the rectangular, paral-
lelogram, and trapezoidal meshes used for analysis by
quadrilateral elements are depicted in Figure 12. The
utilized meshes for triangular meshes are demonstrated
in Figure 13.

Modulus of elasticity, poison's ratio, and thickness
of the structure are 107, 0.3, and 0.1, respectively. Two
modes of loading are assumed, as depicted in Figure 12.
The derived responses by the strain-based elements are
listed in Table 7.

This test is a di�cult problem for many of the
displacement-based membrane elements, since they
demonstrate high sensitivity to trapezoidal meshes.
For example, the powerful Q8 element with all of its
capabilities faces fatal error for both modes of loading
in trapezoidal mesh. However, as evident from the
results presented in Table 7, most of the strain-based
elements have no problem in this case.

4.7. Higher-order patch test
The beam, which is demonstrated in Figure 14, is the
next numerical example that evaluates the performance
of plane strain-based elements.

Table 6. Tip de
ection of thin curved beam.

Mesh
Element 1� 6 2� 12 4� 24

De
ection Error De
ection Error De
ection Error

Q
ua

dr
ila

te
ra

l
el

em
en

ts

RY-Q10 �0:08901 1.91 �0:08844 1.26 �0:08846 1.28
RY-Q14D �0:08748 0.16 �0:08898 1.87 �0:08925 2.19
RY-Q18 �0:08745 0.12 �0:08840 1.21 �0:08850 1.33

T
ri

an
gu

la
r

el
em

en
ts

RY-T10 0.05634 �35:49 0.08491 �2:78 0.08815 0.93
RGR-T10 �0:06305 �27:81 �0:08493 �2:76 �0:08609 �1:43

RGR-T10D �0:06486 �25:74 �0:08501 �2:67 �0:08650 �0:96
RGR-T11D {0.08291 {5.07 {0.08434 {3.43 {0.08691 {0.49

Analytical solution -0.08734
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Figure 12. McNeal's beam and utilized quadrilateral meshes.

Table 7. Normalized tip de
ection of the McNeal's beam.

Load P Load M

Element Rectangular
mesh

Parallelogram
mesh

Trapezoidal
mesh

Rectangular
mesh

Parallelogram
mesh

Trapezoidal
mesh

Q
ua

dr
ila

te
ra

l
el

em
en

ts

Q4 9.30 3.58 3.06 9.34 3.14 2.21
Q8 95.12 91.94 85.43 100.00 75.94 9.32
RY-Q10 99.30 99.42 99.42 100.00 100.00 100.00
RB-Q12D 99.26 98.69 98.78 99.63 99.26 99.26
RSB-Q12D 100.00 97.59 97.78 100.00 98.89 98.89
RY-Q14D 98.33 98.74 98.79 98.88 99.11 99.19
RY-Q18 100.00 100.00 100.00 100.00 100.00 100.00

T
ri

an
gu

la
r

el
em

en
ts

LST 98.3 97.05 96.12 99.34 99.40 99.22
RY-T10 99.44 94.30 92.11 100.00 100.00 100.01
RY-T10D 99.43 94.94 92.31 100.00 100.00 100.00
R-T9D 99.63 97.87 97.87 99.62 99.25 99.25
RGR-T10 99.41 99.52 99.92 100.00 99.95 100.00
RGR-T10D 99.33 94.12 90.56 100.00 99.98 100.00
RGR-T11D 104.34 102.48 104.99 100.79 100.56 100.94

Analytical solutions 0.1081 0.0054

Figure 13. The utilized triangular meshes for analysis of
McNeal's beam.

This beam with a geometric ratio of 10 is made
of elastic material with modulus of elasticity and
Poisson's ratio equal to 100 and 0, respectively. The
thickness of the beam is taken as 1. Two di�erent
types of meshes, namely regular and distorted, are
demonstrated in Figure 15 and are used.

This test examines the performance of the el-
ements under the pure bending and considering the

Figure 14. Higher-order patch test.

simple support conditions. The attained results by the
strain-based elements are listed in Table 8. It is evident
that, almost, all of the elements can compute the exact
response regardless of the mesh type.

4.8. Thick-walled cylinder
The cylindrical plane strain test of the thick wall under
uniform internal pressure is the eighth problem, which
investigates the e�ect of Poisson's locking on the per-
formance of strain-based elements. Due to symmetry,
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Table 8. Maximum displacements of the higher-order patch test.

Regular mesh Distorted mesh
Element Max U Max V Max U Max V

Q
ua

dr
ila

te
ra

l
el

em
en

ts
RY-Q10 {0.600 1.500 {0.600 1.500
RY-R10-I {0.600 1.500 {0.600 1.500
RB-R12D {0.600 1.500 {0.600 1.500
RB-Q12D {0.594 1.493 {0.592 1.484
RSB-Q12D {0.590 1.500 {0.590 1.490
RY-Q14D {0.600 1.500 {0.600 1.500
RY-Q18 {0.600 1.500 {0.600 1.500

T
ri

an
gu

la
r

el
em

en
ts RY-T10D {0.600 1.500 {0.600 1.500

RGR-T10 {0.600 1.500 {0.600 1.500
RGR-T10D {0.600 1.500 {0.600 1.500
RGR-T11D {0.600 1.500 {0.600 1.500

Analytical solution {0.600 1.500 {0.600 1.500

Figure 15. Utilized regular and distorted meshes.

only a quarter of this cylinder will be analyzed. This
structure and utilized mesh are depicted in Figure 16.

The elastic modulus of the material is 1000, and it
is solved for di�erent values of Poisson's ratio varying

from 0.3 to 0.4999. The exact radial displacements of
this cylinder under internal pressure can be computed
through the following relation [50]:

ur =
(1 + �)pR2

in
E(R2

ex �R2
in)

�
Rex
r

+ (1� 2�)r
�
; (30)

where Rin and Rex are the internal and external radii of
the cylinder. The derived results by di�erent elements
are presented in Table 9. According to the outcomes,
the assumed strain approach results in elements free
from Poisson's locking.

4.9. Theoretical slender beam
The beam depicted in Figure 17 with a length of 100
is made of elastic material with Young's modulus and
Poisson's ratio equal to 106 and 0.3, respectively. This
structure is used to investigate the shear e�ect on the
slender plane problems.

This structure is analyzed using two di�erent
meshes. The obtained results for tip displacements of

Figure 16. Thick-walled cylinder and used mesh.
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Table 9. Normalized radial displacement of the thick walled cylinder at the inner radius.

Poisson's ratio
Element 0.3 0.49 0.499 0.4999

Quadrilateral elements
RY-Q10 0.9799 0.9789 0.9790 0.9794

RY-Q14D 1.1805 1.1839 1.1841 1.1846
RY-Q18 0.9360 0.9576 0.9593 0.9599

Triangular elements RGR-T11D 1.01869 1.0356 1.0361 1.0365
Analytical solution 0.00506 0.00506 0.00504 0.00458

Figure 17. Extremely slender cantilever beam.

the beam are listed in Table 10. The proposed element
and RGR-T10 have the best performance among the
reported elements. It is evident that Q4 su�ers from

Table 10. Tip displacements of slender cantilever beam.

Displacements
Element Mesh Ux �100 Uy

Q
ua

dr
ila

te
ra

le
le

m
en

ts

Q4 1� 100 2.0222 2.6965
2� 200 2.1280 2.8371

RY-Q10 1� 100 3.0046 4.0067
2� 200 2.9991 3.9982

RY-R10-I 1� 100 3.0046 4.0067
2� 200 2.9991 3.9982

RY-R10-II 1� 100 3.0000 4.0002
2� 200 2.9987 3.9976

RY-Q14D 1� 100 3.0000 4.0067
2� 200 3.193 4.2581

RY-Q18 1� 100 2.9983 3.9967
2� 200 2.9989 3.9980

T
ri

an
gu

la
r

el
em

en
ts

RY-T10 1� 100 3.0000 4.0001
2� 200 2.9992 3.9986

RGR-T10 1� 100 3.0000 4.0000
2� 200 3.0000 4.0000

RGR-T10D 1� 100 2.9845 3.9767
2� 200 2.9944 3.9975

RGR-T11D 1� 100 3.0001 4.0003
2� 200 3.0001 4.0001

Analytical solution 3 4

locking problem and, therefore, cannot compute exact
response even using a �ne mesh.

4.10. Cantilever shear wall
An important purpose of formulating e�cient elements
is to analyze practical structures with minimal ele-
ments. Therefore, in order to investigate the e�ciency
of the strain-based elements in practical problems, two
shear walls are examined with the proposed element
and the other strain elements. In the �rst problem, the
shear wall, which is shown in Figure 18, is analyzed.

The modulus of elasticity and Poisson's ratio of
the wall are 2 � 107 and 0.2, respectively. Here,
to reevaluate the accuracy and e�ciency of strain
formulation, as well as the potency of the proposed

Figure 18. The shear wall and the utilized meshes.
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Table 11. Lateral displacement of the top of the shear
wall.

Mesh
Element 1� 5 2� 10 4� 20

Q
ua

dr
ila

te
ra

l
el

em
en

ts

Q8 62.17 80.10 89.17
RY-R10-I 95.91 97.13 98.24
RY-R10-II 95.87 96.99 98.19
RY-Q14D 95.86 127.16 138.61
RY-Q18 96.23 97.04 97.76

T
ri

an
gu

la
r

el
em

en
ts RY-T10 96.86 97.53 98.35

RGR-T10 96.62 97.78 98.12
RGR-T10D 89.60 95.63 95.89
RGR-T11D 96.21 98.56 99.01

Analytical solution 0.0025

element, the conventional element Q8 is brought for
comparison. Further, to investigate the convergence,
two �ner meshes have been used. The normalized
responses are provided in Table 11.

Based on the results presented in Table 11, the
suggested element demonstrates the best performance
among the compared elements. Two interesting out-
comes include lower accuracy of Q8 and inability of

RY-Q14D, which becomes too 
exible when using �ner
meshes. As can be observed, all of the reported strain-
based elements except RGR-T10D have less than 5%
error in their estimations when a coarse 1 � 5 mesh
is used. This �nding again demonstrates the high
e�ciency of the assumed strain approach.

4.11. Shear wall with opening
In the last numerical example, a coupled shear wall is
scrutinized to study the performance of the elements
in the presence of opening. This structure, which
is depicted in Figure 19, is made of elastic material
with modulus of elasticity and Poisson's ratio equal to
2 � 107 and 0.2, respectively. The thickness of this
structure is assumed 0.4. Lateral loads with intensity
of P = 500 is applied to each story level of the left
shear wall. The structure is analyzed by two meshes
consisting of 48 and 192 quadrilateral elements (96
and 384 triangular elements). To achieve the near-
exact solution, the coupled wall is analyzed by 26880
eight-node isoparametric elements (Q8). The obtained
results for lateral displacements at di�erent story levels
are reported in Table 12.

It is evident that the suggested element provides
the most accurate estimations. Based on the re-

Table 12. Lateral story displacements of the coupled shear wall.

Lateral displacement

Element Number of
elements

Story 2 Story 4 Story 6 Story 8

Q
ua

dr
ila

te
ra

l e
le

m
en

ts

Q8 48 elements 0.56 1.53 2.59 3.64
192 elements 0.68 1.82 3.02 4.16

RY-R10-I 48 elements 0.77 2.07 3.40 4.71
192 elements 0.78 2.07 3.44 4.71

RY-R10-II 48 elements 0.69 1.88 3.13 4.28
192 elements 0.74 2.00 3.32 4.65

RY-Q14D 48 elements 0.90 2.62 4.61 6.63
192 elements 1.14 3.22 5.49 7.70

RY-Q18 48 elements 0.76 2.03 3.36 4.61
192 elements 0.80 2.13 3.51 4.81

T
ri

an
gu

la
r

el
em

en
ts

RY-T10 48 elements 0.71 1.92 3.18 4.38
192 elements 0.80 2.12 3.50 4.79

RGR-T10 48 elements 0.76 2.03 3.29 4.54
192 elements 0.85 2.26 3.63 4.96

RGR-T10D 48 elements 0.73 1.94 3.19 4.45
192 elements 0.82 2.14 3.55 4.86

RGR-T11D 48 elements 0.75 2.07 3.26 4.63
192 elements 0.83 2.25 3.56 5.02

Analytical solution 26880 elements 0.90 2.38 3.91 5.35
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Figure 19. The coupled shear wall and the utilized
meshes.

ported results for Q8 element, most of the strain-based
membrane elements are more accurate and e�cient.
However, there is an exception about RY-Q14D, which
becomes too 
exible by using �ner meshes and fails to
converge to the exact response.

5. Conclusion

This study proposed a new triangular strain-based
element with a second-order assumed strain �eld.
Then, a series of well-known benchmark problems
were solved using the proposed element and some of
the other existing membrane elements and common
displacement-based elements such as Q4, Q8, and
LST. The obtained results clearly demonstrated the
superiority of the strain-based formulation in accuracy
and e�ciency against displacement-based membrane
elements. Various problems such as mesh sensitivity,
shear, trapezoidal, and Poisson's locking were investi-
gated, and the attained results showed that almost all
of the plane elements formulated by the assumed strain
approach were free from these shortcomings and could
even compute response practical problems using coarse
mesh of elements. Therefore, the strain-based elements
completely �t with the de�nition of robust �nite el-
ements. It must be added that the newly proposed
triangular plane element is among the best performing
elements in all of the analyzed benchmark problems.
This shows the merit of using higher-order assumed
strain �elds and imposing equilibrium equation on the
opted strain components. The mentioned advantages
make the assumed strain formulation an interesting
alternative for developing robust �nite elements of
di�erent types.
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