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Abstract. A proper understanding of complex biological networks facilitates a better
perception of those diseases that plague systems and e�cient production of drug targets,
which is one of the major research questions under the personalized medicine. However,
the description of these complexities is challenging due to the associated continuous, high-
dimensional, correlated and very sparse data. The Copula Gaussian Graphical Model
(CGGM), which is based on the representation of the multivariate normal distribution via
marginal and copula terms, is one of the successful modeling approaches to presenting
such types of problematic datasets. This study shows its novelty by using CGGM in
modeling the steady-state activation of biological networks and making inference of the
model parameters under the Bayesian setting. In this regard, the Reversible Jump Markov
Chain Monte Carlo (RJMCMC) algorithm is suggested in order to estimate the plausible
interactions (conditional dependence) between the systems' elements, which are proteins
or genes. Furthermore, the open-source R codes of RJMCMC are generated for CGGM in
di�erent dimensional networks. In this regard, real datasets are applied, and the accuracy
of estimates via F-measure is evaluated. From the results, it is observed that CGGM with
RJMCMC is successful in presenting real and complex systems with higher accuracy.

© 2019 Sharif University of Technology. All rights reserved.

1. Introduction

In recent years, the term network or system has
become one of the most popular concepts in various
sciences, ranging from computer engineering to biology.
Although its property varies in all these disciplines,
which is why it is implemented by means of distinct
assumptions, it should be noted that a common struc-
ture constructs a mechanism specialized for one or more
functions. In terms of biology, a network represents
a set of reactions that describes a particular process
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of a species by means of genomic particles, denoting
genes or proteins and their interactions. Thereby,
understanding such complexity and describing it math-
ematically can open new avenues for researchers for
both understanding various diseases and producing
appropriate treatment under personalized medicine.

Therefore, graphical modeling is one of the very
common tools to represent any dimensional network
where each variable is shown by a node, and the
relationship between two nodes is presented by an undi-
rected edge. The Gaussian Graphical Model (GGM)
is the probabilistic version of the graphical approach,
where nodes, also called states, are described by a
multivariate normal distribution with a p-dimensional
mean vector � = (�1; �2; : : : ; �p) and a (p � p)-
dimensional covariance matrix � for totally p nodes [1].
The precision matrix, which is the inverse of �, also
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denoted by � = ��1, is an expression that represents
the conditional dependence between nodes, such that
the signi�cantly large values show highly possible
dependency between the two related nodes, given the
remaining nodes in the network. In this respect, the
mathematical description of the model is shown below:

Yp = �Y�p + "; (1)

where Yp stands for the state of the pth node, and Y�p
shows the states of all other nodes except the pth node,
respectively. � is the vector of the regression coe�cient
associated with Y�p, " shows p-dimensional vector for
the random error. Accordingly, the distribution of Y
is shown as follows:

f (Yj�;�) = (2�)�n2 det (�)� 1
2

expf�1
2

(Y � �)T��1 (Y � �) g: (2)

Herein, det(:) and (:)T represent the determinant
and the transpose of the given matrix, respectively.
Thus, in the inference of this model, � has a direct
relation with � via � = ��pp=�pp in which ��pp is
the ((p� 1)� p)-dimensional submatrix of � when the
associated term of the pth node is discarded. Thus, the
knowledge of � implies the knowledge of �, resulting
in the information about the conditional dependency
between the related nodes. In the estimation of
�, di�erent methods can be applied. Among many
alternatives, Friedman et al. (2008) [2] considered the
graphical lasso, also known as glasso, approach by infer-
ring the entries of � via the penalized likelihood method
whose penalty constant controls � via l1-norm. On
the other hand, Meinshausen and B�uhlmann (2006) [3]
suggested the neighborhood selection method, which
is fully nonparametric and is based on the threshold
gradient descent algorithm for the estimation of �.
However, the major challenge of all these algorithms
is the computational limitation in the inference of
realistically high-dimensional systems.

This study aims to implement the Bayesian frame-
work as an alternative to the underlying frequentist and
non-parametric approaches. The suggested method is
implemented in the form of the combination of GGM
and the Gaussian copula [4], resulting in the copula
GGM model. The main advantage of this model is
that it can overcome the modeling problem of high-
dimensional systems by describing the complex GGM
model and its multivariate normal density via pieces
of marginal and copula terms within the copula GGM
representation. CGGM has been already proposed
in the study of Dobra and Lenkoski (2011) [5] to
describe the functional disability data. In that work,
the inference is conducted via the Reversible Jump
Markov Chain Monte Carlo method (RJMCMC). Here,

the novelty of this study lies in adopting this approach
to construct the structure of a biological network and
infer its model parameters. Furthermore, as the second
novelty, this study writes the functional codes via the R
programming language so that the codes can be appli-
cable to all biological networks under the steady-state
condition and distinct dimensions, i.e., the number of
nodes or proteins. Of note, the codes are available upon
request. Accordingly, to compare the performance of
our algorithm with others, three datasets have been
used. Initially, the social survey dataset of Dobra
and Lenkoski (2011) [5], which is also applied as a
benchmark dataset in comparative analyses, has been
implemented [6,7]. Then, an actual biological network,
called cell signaling network, is used, and the results are
interpreted. Lastly, an ovarian cancer dataset, whose
true interactions can be biologically validated from
the literature, should be implemented. Finally, our
�ndings are compared with the outputs of Mohammadi
(2015) [6], where the inference is performed via the
birth-and-death algorithm in place of RJMCMC for the
same CGGM.

Hence, in the process of organizing this study, the
Gaussian graphical model and copulas are introduced
in Section 2. In Section 3, the method of inference is
introduced in detail. Then, in Section 4, the suggested
methods are applied to di�erent datasets. Lastly, our
�ndings are summarized, and some suggestions for the
future works are made in Section 5.

2. Materials and methods

In this part, initially, the general idea of graphical
networks, which is one of the common ways to show
the relationship between factors in a mathematical
model, is explained. Based on the statistical analysis of
biological networks, when the number of genes or other
kinds of variables is large and their correlation matrix
is sparse, the application of a graphical version of
the network may boost readers' imagination about the
structure of genes or variables. In this representation,
the Gaussian copula graphical model is performed as it
enables one to partition a high-dimensional joint dis-
tribution function as pieces of marginal that are bound
by a separate copula term when the data are described
by multivariate normal distribution. By means of
normality, we can also simplify the correlation between
variables due to the property of the conditional inde-
pendency. Finally, by using the RJMCMC algorithm
in the inference of the network, we can bene�t from
the exibility of the Bayesian method when the data
are limited and the dimension of the network is large.

Hence, in the following parts, the mathematical
details of the graphical model, the Gaussian graphical
model, the Gaussian copula approach, and the selected
Bayesian algorithm are presented in order.



H. Farnoudkia and V. Purut�cuo�glu/Scientia Iranica, Transactions E: Industrial Engineering 26 (2019) 2495{2505 2497

2.1. Graphical model
Let a data matrix Y with p variables and n samples be
presented; herein, an attempt is made to obtain the
relationship between Yi and Yj for i 6= j given the
remaining variables. In this type of networks, which
is common in social surveys and biological aspects,
each variable is shown by a node in a graph and the
conditional dependence between two nodes is presented
by an undirected edge. Hereby, if E denotes the
set of available edges under an undirected structure,
(i; j) 2 E equals (j; i) 2 E, showing that Yi and Yj
are conditionally dependent (i; j = 1; 2; : : : ; p and also
Yi?Yj jYV ni;j for V = 1; 2; : : : ; p). This structure is
called the pairwise Markov property [1].

2.1.1. Gaussian graphical model
Now, it is assumed here that vector Y follows a
p-dimensional multivariate normal distribution via
Np
�
0;��1�. Here, � is the inverse of the covariance

matrix, which is also called the precision matrix.
Hence, for n samples, the likelihood function of Y can
be written as follows:�

Y1:nj�� / j�jn2 exp
�
�1

2
tr
�
�TU

��
; (3)

where j:j and tr(:) describe the determinant and the
trace of the given expression, respectively, and �T is
the transpose of the given matrix as used beforehand.
Finally, U is the trace of the YTY matrix. Thus, a
graphical model with V nodes and E edges, (V;E),
for Np

�
0;��1� is presented where V = (1; 2; :::; p) is

called the Gaussian Graphical Model (GGM).

2.2. Gaussian copula
If the normality assumption does not hold for the data
matrix, the copula can solve the problem by combining
data such that their joint distribution is Gaussian with
the same covariance matrix [4,1,8]. For binary and
ordinal categorical data, a continuous latent variable
Z is introduced [5,6,9,10] by de�ning some increasing
thresholds �� = (��;0; ��;1; : : : ; ��;!� ). Therefore:

yj� =
!�X
l=1

l � 1��;l�1<zj����;l ; (4)

for j = 1; 2; :::; n. The relationship between Yij and Zij
satis�es the following constraint.

yij < yik ! zij < zik; zij < zik ! yij � yik: (5)

Then, by de�ning the interaction of the correlation
matrix in terms of � as:

Yi;j (�) =

�
��1�

i;jq
(��1)i;i(��1)j;j

; (6)

and ZVNp
�
0;��1�, a one-to-one correspondence with

observed data can be obtained as follows:

~Zi = Zi=(��1
i;i )

1
2 and

Yi = F�1
�

�
�

~Zi
��

: (7)

In Eq. (6), �i;i and �j;j indicate the diagonal entries of
the ith and jth nodes, respectively. Accordingly, �i;j is
the precision value between the ith and jth nodes. On
the other hand, in Eq. (7), F�1 and � stand for the
inverse of the cumulative distribution functions (cdf)
and cdf of the normal distribution, respectively. Hence,
by standing C(u1; : : : ; upjY ) as the Gaussian copula
with (p � p)-dimensional correlation matrix for the p
random sample from the standard uniform distribution,
we have:

p (Y1 < y1; : : : ; Yp < yp)

= C(F1 (y1) ; : : : ; Fp (yp) jY (�)):

This study decomposes the multivariate normal distri-
bution of the states via the Gaussian copula model
with the normal marginal distributions. This new
probability distribution function is used to calculate
the likelihood within the Bayesian framework. In doing
so, GGM can be performed under any dimensional
systems since the high-dimensional multivariate normal
density can be partitioned via the copula term.

2.3. Reversible jump Markov chain Monte
Carlo method

The Reversible Jump Markov Chain Monte Carlo
method (RJMCMC) is an approach that mostly deals
with the Cholesky decomposition to obtain a positive
de�nite precision matrix due to its conjugate advan-
tages in prior distribution for the precision matrix,
which is considered as the G-Wishart distribution [11]
with a density:

p (�jG)=
1

IG (�;D)
det
�
�
��2

2

�
exp
�
�1

2
tr
�
�TD

��
:

(8)

In this expression, G implies the given graphical
structure of the data. On the other hand, the G-
Wishart prior is a generalized version of the chi-square
distribution and the conjugate with the multivariate
normal density. The sampling algorithm from the
G-Wishart distribution was performed by Lenkoski
(2013) [12]. Thus, the posterior distribution, �, of
the given G is presented as the G-Wishart distribution
with parameters � + n and D + U. In this expression,
� > 2, D = Ip is the p-dimensional identity matrix and

U =
nP
j=1

yjyTj , i.e., the trace of YTY, as de�ned be-

forehand. In Eq. (8), the normalizing constant IG(�;D)
is not always easy to obtain [13]. When G is not a
complete graph and is non-decomposable, this constant
is calculated by a Monte Carlo method. Accordingly,
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a double reversible jump algorithm was introduced by
Lenkoski (2013) [12] to obtain the normalizing constant
of the G-Wishart distribution.

Further, the Cholesky decomposition partitions
the matrix into a lower triangle matrix and its trans-
pose in a way that � = 'T' denotes a chi-square
distribution into the square of the standard normal
distribution. Here, ' is the upper triangle matrix,
in which zero implies no relationship between the two
corresponding elements. Finally, under the normality
of data, two strictly positive precision parameters �p =
�g = 0:1 and RJMCMC are repeated in the following
steps until convergence is achieved [4].

2.3.1. Resampling the latent data
In the �rst stage of the RJMCMC algorithm, the
latent variable Z is used instead of Y if Y's are not
normal [5,3]. Here, Z is an (n� p)-dimensional matrix
and, for each column, which is related to each node,
we calculate its minimum L and its maximum U as
the vectors of p elements.

In this step, by using matrix � and vectors L and
U, other Zi's are generated from truncated normal in
the Li and Ui distributions in the following form:

ZijZini � N ��i; �2
i
�
; (9)

where:

�i = � X
y2bd(i)

�i;y
�i;i

zy;j ;

for:
bd (i) = fy 2 (1; : : : ; p) : (i; j) 2 Eg ;

when:

E = f(i; j) j�i;y 6= 0; i 6= yg; �2
i =

1
�i;i

;

and:

�i;i =
1
�i;i

:

In the second step, these zi;j 's will be used.

2.3.2. Resampling the Precision Matrix
In this step, matrix � is calculated by using the latent
variables from the previous stage, and the Cholesky
decomposition of matrix � is applied. For non-zero
diagonal elements, a Metropolis-Hasting update [2]
of ' is done by sampling a  value from a normal
distribution truncated below at zero with a mean 'i;i
and a variance �2

p. Then,  is replaced by the related
diagonal elements of ' and ' and transformed to '0
with a probability minfRp; 1g, where:

Rp =
�
�
'i;i
�p

�

�p

(

'i;i

)�+n+nb(i)�1R0p; (10)

denoting that:

R
0
p = expf�1

2
tr(�0 � �)T

�
D + tr

�
ZTZ

��g: (11)

In addition, the candidate value �0 = '0T'0 results in
� = 'T'.

For non-diagonal elements of ', a new  is sam-
pled from N(�i; �2

g). In these cases, ' is transformed
to '0 with a probability minfR0p; 1g.
2.3.3. Resampling the graph
In the third step, only one element of the Cholesky
matrix 'i;j , which is obtained in the previous step, is
selected randomly. If there is no edge between Yi and
Yj , it will be changed by a value from N('i;j ; �2

g) in '
with a probability minfRp; 1g, where:

Rp =�g
p

2�'i;i
IG (�;D)
IG0 (�;D)

� expf�1
2
tr(
�
�0 � �)T

�
D + tr

�
ZTZ

���
+

('0i;j � 'i;j)2

2�2
g

g; (12)

Here, '0 stands for the proposal ' and G0 is a graph in
which all elements coincide with G except Gi;j , which
is supposed to be the edge between related nodes. If
there is an edge between Yi and Yj , it will be replaced
by zero in ' with a probability minfR0p; 1g, where:

R0p =(�g
p

2�'i;i)�1 IG (�;D)
IG0 (�;D)

� expf�1
2
tr(
�
�0 � �)T

�
D + tr

�
ZTZ

���
+

('0i;j � 'i;j)2

2�2
g

g: (13)

In this stage, since the dimensionality of the parameter
space changes by a one-unit increase or one-unit de-
crease, the reversible jump Markov chain methodology
is performed. Then, this graph in the �rst step of
the algorithm is used, and the process continues until
convergence is reached.

3. Applications

In order to evaluate the RJMCMC method in terms of
accuracy and assess its performance for the �rst time in
real biological systems, the code of the R programming
language is originally generated with a function for
each stage by deriving it from the sample precision
matrix as the initial matrix after 200,000 iterations for
three datasets. The �rst case of data is the Rochdale
dataset and is used to conduct comparative analysis
of di�erent inference methods [14]. The second data
are the real data applied to construct the cell signaling
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pathway, and the third data represent the combination
of endometrial and ovarian carcinoma [15-17].

3.1. Rochdale data
The Rochdale data are binary (yes/no) data collected
from 665 samples to assess the relationship among
eight factors a�ecting the economic activities speci�c
to women. These eight variables are named as follows:
a (wife economically active), b (age of wife > 38), c
(husband unemployed), d (child � 4), e (wife's educa-
tion at the high-school level or beyond), f (husband's
education at the high-school level or beyond), g (Asian
origin), and h (other household member working). In
the case of analyses, it is claimed that there are at least
two-way interaction e�ects whose minimal su�cient
statistics are the following pair of variables: ffg, ef,
dh, dg, cg, cf, ce, bh, be, bd, ag, ae, ad, acg. Then,
by including variable h, which changes as very fast and
very slow as the two new random variables, the data are
observed in Table 1. More details about this dataset
can be also found in the studies of Whittaker (1990) [1]
and Dobra and Lenkoski (2011) [5]. Hereby, from the
inference of this dataset via RJMCMC, 15 edges are
found: (a; c), (a; d), (a; e), (a; g), (b; d), (b; e), (b;
h), (c; e), (c; f), (c; g), (d; g), (d; h), (e; f), (e; g), and
(f; g). The 14 edges that represent the validated links
from the study of Whittaker (1990) [1] are exactly the
same as what have been obtained from the RJMCMC
codes except (e; g) edge.

As a result, in these analyses, the data are initially
transformed to Gaussian. Then, by applying our
RJMCMC codes, the latent variables Z are resam-
pled based on entries of the initial matrix, which is
considered as the sample covariance matrix in our

study. Next, the precision matrix is resampled by
taking the latent data produced in the �rst step, and
the graph is resampled by only one element, which is
selected randomly from the Cholesky decomposition of
the precision matrix in the second step. This process
continues until convergence is reached. In this example,
this process is iterated up to 1,000,000 times, of which
the �rst 200,000 runs are supposed to be in the burn-
in period. The adjacency matrix is obtained from the
mean of the estimated entries of the precision matrix
and, thereby, represents the estimated structure of the
links, as shown in Table 2.

In this matrix, the entry 1 indicates the link
between the pairs of variables, and the entry 0 implies
no link between them. Further, Figure 1 presents some
examples from the estimated density of selected pairs
in the precision matrix after the burn-in period with
200,000 MCMC runs. In these plots, it is observed
that each estimated density is unimodal, and the model
parameters reach convergence.

Table 2. The adjacency matrix of the Rochdale data
estimated by 1,000,000 RJMCMC iterations, where the
�rst 200,000 runs take place in the burn-in period.

a b c d e f g h
a 0 0 1 1 1 0 1 0
b 0 0 0 1 1 0 0 1
c 1 0 0 0 1 1 1 0
d 1 1 0 0 0 0 1 1
e 1 1 1 0 0 1 1 0
f 0 0 1 0 1 0 1 0
g 1 0 1 1 1 1 0 0
h 0 1 0 1 0 0 0 0

Table 1. The lexicographical ordered Rochdale data [7].

5 0 2 1 5 1 0 0 4 1 0 0 6 0 2 0
8 0 11 0 13 0 1 0 3 0 1 0 26 0 1 0
5 0 2 0 0 0 0 0 0 0 0 0 0 0 1 0
4 0 8 2 6 0 1 0 1 0 1 0 0 0 1 0
17 10 1 1 16 7 0 0 0 2 0 0 10 6 0 0
1 0 2 0 0 0 0 0 1 0 0 0 0 0 0 0
4 7 3 1 1 1 2 0 1 0 0 0 1 0 0 0
0 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0
18 3 2 0 23 4 0 0 22 2 0 0 57 3 0 0
5 1 0 0 11 0 1 0 11 0 0 0 29 2 1 1
3 0 0 0 4 0 0 0 1 0 0 0 0 0 0 0
1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
41 25 0 1 37 26 0 0 15 10 0 0 43 22 0 0
0 0 0 0 2 0 0 0 0 0 0 0 3 0 0 0
2 4 0 0 2 1 0 0 0 1 0 0 2 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
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Figure 1. The density of some of the estimated entries in the precision matrix for the Rochdale data after the 1,000,000
MCMC iterations, where the �rst 200,000 runs take place in the burn-in period.

Table 3. The adjacency matrix of the cell signaling
pathway data estimated by the 1,000,000 iterations of the
birth-and-death algorithm [23], where the �rst 200,000
runs take place in the burn-in period.

a b c d e f g h
a 0 1 1 1 1 0 1 1
b 1 0 0 1 1 1 1 1
c 1 0 0 0 1 1 0 1
d 1 1 0 0 1 0 0 0
e 1 1 1 1 0 1 1 0
f 0 1 1 0 1 0 1 1
g 1 1 0 0 1 1 0 0
h 1 1 1 0 0 1 0 0

Furthermore, in order to check the accuracy of
our estimates and codes, the F1-score, also known as
F -measure, is computed as shown below, and the ob-
tained results are compared with the estimated param-
eters by the birth-and-death method. This method has
been suggested as an alternative to RJMCMC in the
literature, and its R coding has been developed under
the BDgraph package [9]. The estimated adjacency
matrix is presented by the birth-and-death method, as
shown in Table 3.

F1{ score =
2TP

2TP + FP + FN
; (14)

where TP , FP , and FN represent the values of the
True Positive, False Positive, and the False Negative,

respectively. The F1-score is always between 0 and
1, where 1 is its perfection level. Hence, by taking
the same number of the MCMC iterations from both
methods, F1-score = 0.96 is obtained where TP = 14,
FP = 1, and FN = 0 in the RJMCMC iterations.
Furthermore, the same measures are found as in F1-
score = 0.69, where TP = 11, FP = 7, and FN = 3
by using the birth-and-death algorithm for the same
dataset. Therefore, it can be concluded that the
RJMCMC method is successful in the inference of the
copula GGM, and the estimated links found by our
open-source R code validate the true links about the
data.

3.2. Cell signaling data
For the second application, a real cell signaling dataset
that contains 11 phosphoproteins and phospholipids is
used under various experimental conditions in human
primary naive CD4+T cells that are measured on 11672
red blood cells [18]. In the inference of this system, our
RJMCMC codes and the birth-and-death algorithm are
run for 10,000 iterations. Then, the estimated systems
from both approaches are compared with respect to
the F1-score based on the true structure of the system
in the study of Sachs et al. (2005) [18]. In this
assessment, the directed true network is converted into
the undirected one since the copula GGM approach
is designed for the undirected graphs. Thereby, from
the �ndings of RJMCMC with 10,000 iterations based
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Figure 2. The density of some of the estimated entries in the precision matrix for the cell-signaling data after the 10,000
MCMC iterations, where the �rst 2,000 runs take place in the burn-in period. PIP2-PIP3, Plcy-PIP2, and Raf-Mek in
lexicographical order.

Table 4. The adjacency matrix of the ovarian cancer data estimated by the 10,000 RJMCMC iterations, where the �rst
2,000 runs take place in the burn-in period.

MAP2K1 MK01 CEBPB CTNNB1 TFAM TP53 PDIA3 IMP3 ERBB2 CHD4 MBD3

MAP2K1 1 1 1 1 1 1 1 1 1 1 1

MK01 1 1 1 1 1 1 1 1 1 1 1

CEBPB 1 1 1 1 1 1 1 1 1 1 1

CTNNB1 1 1 1 1 1 1 1 1 1 1 1

TFAM 1 1 1 1 1 1 1 1 1 1 1

TP53 1 1 1 1 1 1 1 1 1 1 1

PDIA3 1 1 1 1 1 1 1 1 1 1 1

IMP3 1 1 1 1 1 1 1 1 1 1 1

ERBB2 1 1 1 1 1 1 1 1 1 1 1

CHD4 1 1 1 1 1 1 1 1 1 1 1

MBD3 1 1 1 1 1 1 1 1 1 1 1

on the 2,000 runs taking place the burn-in period, we
obtain F1-score as F1-score = 0.63, where TP = 8,
FP = 10, and FN = 11. Eight nodes, found by our
codes compatible with the true network, include Raf-
Mek, Erk-Mek, PIP2-PLCY-, PIP3-PIP2, Erk-Akt,
Erk-PKA, Raf-PKC, and PKC-Mek. The density plots
of the estimated links after the burn-in are also shown
in Figure 2. On the other hand, the values of the
birth-and-death algorithm are computed as F1-score =
0.50, while TP = 7, FP = 1, and FN = 13. Based
on these outputs, it is seen that RJMCMC enjoys
better accuracy than the birth-and-death method for
this dataset.

3.3. Ovarian cancer data
In this analysis, we speci�cally deal with gynecologic
cancer including the ovarian, cervix, and endometrial
cancers. This type of cancer is the second most
prevalent cancer in women in the world after breast
cancer. In our study, we initially search the biological
literature and detect 11 core genes, which are active in
gynecologic cancer [15-17]. These genes are named as
MPK2K1, MK01, CEBPB, CTNNB1, TFAM, TP53,

PDIA3, IMP3, ERBB2, CHD4, and MBD3. Then,
based on the ArrayExpress database, an A�ymetix
dataset is considered and collected under the ovarian
cancer, and the observations belonging to the underly-
ing 11 genes are selected.

In the data, each gene has 14 samples and the
true network composed of these genes is complete, i.e.,
its adjacency matrix has the value of one in all entries.
The estimated adjacency matrix from RJMCMC and
BDMCMC is presented in Tables 4 and 5, respectively.
In the estimation, similar to previous analyses, 10,000
MCMC iterations are conducted, and the �rst 2,000
runs are discarded in the burn-in period. From the
outcomes, we calculate F1-score = 1 for RJMCMC and
F1-score = 0.79 for BDMCMC. Thereby, as observed
from other analyses, the �ndings show that RJMCMC
outperforms BDMCMC with higher accuracy.

4. Results and discussion

This study extended the idea of the Copula GGM
(CGGM) model in the description of biological net-
works since GGM is one of the successful probabilistic



2502 H. Farnoudkia and V. Purut�cuo�glu/Scientia Iranica, Transactions E: Industrial Engineering 26 (2019) 2495{2505

Table 5. The adjacency matrix of the ovarian cancer data estimated by the 10,000 BDMCMC iterations, where the �rst
2,000 runs take place in the burn-in period.

MAP2K1 MK01 CEBPB CTNNB1 TFAM TP53 PDIA3 IMP3 ERBB2 CHD4 MBD3

MAP2K1 1 1 1 1 1 0 0 1 0 0 1
MK01 1 1 0 0 0 0 1 1 1 1 1

CEBPB 1 0 1 0 0 1 1 1 1 1 1
CTNNB1 1 0 0 1 1 1 1 1 1 1 1

TFAM 1 0 0 1 1 0 1 1 1 1 0
TP53 0 0 1 0 0 1 0 0 0 1 0

PDIA3 0 1 1 1 1 0 1 0 1 1 0
IMP3 1 1 1 1 1 0 0 1 1 1 1

ERBB2 0 1 1 1 1 0 1 1 1 1 0
CHD4 0 1 1 1 1 1 1 1 1 1 1
MBD3 1 1 1 1 0 0 0 1 0 1 1

modeling approaches for explaining the steady-state
behavior of the biological systems, and the copulas
enable us to separate any high-dimensional joint func-
tion as marginals. Hereby, CGGM can be also used
instead of sole GGM, especially for high-dimensional
systems as it can partition the high-dimensional joint
density into small parts, resulting in simplicity of esti-
mating the model parameters. In the inference of the
underlying model, the Reversible Jump Markov Chain
Monte Carlo (RJMCMC) approach as another alterna-
tive to the birth-and-death (BDMCMC) algorithm for
CGGM is implemented [9,6]. In the computation, the
RJMCMC approach has been adopted to estimate the
biological networks by writing all codes as the open-
source R codes and making all necessary calibrations
in the calculations while converting the implementation
of these techniques into the system's biology. In
the application, the bench-mark Rochdale dataset is
used and applied to compare di�erent modeling and
inference approaches in the system's biology to validate
the performance of the current calculation. Then, we
have also implemented it for the inference of the cell
signaling pathway and the ovarian cancer data. Ac-
cording to the comparative analyses via the BDMCMC
algorithm [9,6], we have observed that RJMCMC gives
more accurate results in all analyses.

As the extension of this study, the split-merge
method [19] and the Gibbs sampling [8] are used as
the new alternatives to RJMCMC in selecting the
dimension for the precision matrix. Because even
though these listed methods have been also suggested
in place of RJMCMC theoretically, their application
to real-life and high-dimensional network problems has
not been performed yet. Further, although the accu-
racy of RJMCMC is signi�cantly high, its calculation
via R can be computationally demanding. Hereby,
any improvement in the selection procedure of the
precision matrix can be deemed useful to deal with

the existing challenge during the computational time.
The construction of complex systems via CGGM with
RJMCMC or its new alternates can help us describe
the actual biological activations better and identify any
malfunctions in the systems that cause illnesses.

Furthermore, RJMCMC has been performed for
Time Series CGGM (TSCGGM) [1] so that the mea-
surement based on di�erent time-course data [20,21]
can be applied to estimate the biological networks.
In this model, we are interested in estimating two
matrices: the precision matrix and the autoregressive
coe�cient matrix. The last one shows time dependency
between variables in the vector autoregression VAR(1)
modeling, which can be extended to VAR(p) by our
recommended method. In the study of Abegaz and Wit
(2013) [22], this calculation is done via the penalized
likelihood approach to the state space model. In
addition, we think that this model can be extended by
using the vine rather than the Gaussian copulas [23,24].
In doing so, the strict normality assumption of the
measurements can be relaxed by accepting other non-
normal distributions. Because, in some cases, the
normality assumption or the normalization of the data
can dissemble the structure, particularly in dealing
with a sample of lower size, which is a common
challenge in biological datasets. This question is one
of the major interests in computational and systematic
biology whose applications can be seen from various
biological sciences, ranging from genetics to pharma-
cology.

Furthermore, another powerful alternate to RJM-
CMC in inference of the relationship between variables
can be a Multivariate Adaptive Regression Spline
(MARS), which is, in brief, a non-parametric regression
technique and can be seen as an extension of linear
models that automatically describe nonlinearities and
interactions between variables. From previous studies,
it has been shown that RJMCMC can be used in certain
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parts of MARS [25], and we think that this idea can
be adapted for the construction of biological networks,
too. From the recent literature about the MARS
model, it has been found that the conic version of
MARS, called CMARS [26,27], and its robusti�cation,
called robust CMARS or shortly RCMARS [28,29],
are two other extended versions of MARS to improve
the accuracy of the nonlinear and correlated data.
Among these alternatives, the CMARS model has
been implemented to construct biological networks;
based on the results, it has been observed that the
accuracy of the model can increase in comparison to
the MARS model [30]. Moreover, the CMARS model
is also extended by di�erent bootstrapping regression
methods to obtain the empirical distributions of the
parameters of CMARS [31]. In addition, Yerlikaya-
�Ozkurt et al. (2016) [32] and Taylan et al. (2014) [33]
developed a new scheme to minimize the impact of
outliers on regression estimators of CMARS. On the
other hand, the RCMARS model was applied to build a
precipitation model of the continental central Anatolia
region of Turkey [34]. Then, it is also performed
for the presentation of the regulatory networks [35].
However, the performance of this model has not been
compared yet with CGGM in terms of accuracy and
evaluation of the computational demand of di�erent
biological systems' models. It is supposed here that
such a comparative study can be useful for detecting
the most accurate model that, particularly, �t with
protein-protein interaction data.

Furthermore, all these models from CGGM,
MARS, CMARS, and RCMARS, which can describe
the steady-state activation of the biological systems,
can be extended by considering the randomness in
the nature of the systems. Under this condition, the
stochastic models can be bene�cial. Among alterna-
tives, the di�usion model [36], the discretized version
of the di�usion model [37-40], and the Stochastic Hy-
brid Systems (SHS) [41] are implemented in modeling
biological networks. In these models, SHS is further
extended by adding jumps to describe the abrupt
changes in the data [42,43], whereas the application
of this model to biological networks and the Bayesian
inference of this jump model have not been studied
yet. Hereby, the application of this approach to signal
transaction data has been considered, and an attempt
has been made to adapt RJMCMC for this model. In
the end, such a novelty in SHS can open new avenues
for the representation of the biological systems under
stochastic models.
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