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Abstract. This study proposes a method for determining the weight of Decision Makers
(DMs) in Group Multiple Criteria Decision Making (GMCDM) problems with interval
data. Here, an interval weight of each DM was obtained; then, the relative closeness of
each decision to Negative Ideal Solution (NIS) and Positive Ideal Solution (PIS) was then
computed. By using the proposed method, after weighting the decision matrix of each
DM, the alternatives were ranked using interval arithmetic. A comparative example along
with a real-world problem concerning the air quality assessment was given to illustrate the
viability of the proposed method.
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1. Introduction

Multiple Criteria Decision Making (MCDM) problems
are an important �eld of study in management, decision
science, and operations research [1]. This �eld has
attracted the attention of many researchers over the
last decade and many approaches have been presented
so far to solve the MCDM problems [2]. In MCDM
problems, the aggregated performance of alternatives
is measured based on a set of criteria. Based on this
assessment, the alternatives are ranked �rst and then,
those with the best aggregate performance are selected
for implementation [3{8].

The methods employed to assess the aggregate
performance of alternatives are di�erent in terms of the
aggregate functions. For instance, the simple additive
weighting method [9] incorporates a simple aggregate
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function, Technique for Order Preference by Similarity
to Ideal Solution (TOPSIS) [9], and Vlse Kriterijumska
Optimizacija I Kompromisno Resenje (VIKOR) [10]
and an alternative or a compromise solution that can
be close to Positive Ideal Solution (PIS) as much as pos-
sible and as far away from the Negative Ideal Solution
(NIS) as possible is sought. The Analytical Hierarchy
Process (AHP) [11] in which DM provides pairwise
comparison judgments on a ratio scale of 1 to 9. The
Simple Multi-Attribute Rating Technique (SMART)
method [12] is aimed at gathering direct ratings on a
scale of 0 to 100, and the Measuring Attractiveness
by a Categorical Based Evaluation Technique (MAC-
BETH) method [13] requires pairwise comparisons on
an interval. The other method is ELimination Et Choix
Traduisant la REalit�e (ELECTRE), which is presented
in di�erent types. It is worth mentioning that the
study of Govindan and Jespen [14] is a comprehensive
source of ELECTRE and ELECTRE-based methods.
Their study considered di�erent types of ELECTRE
methods and compared, modi�ed, and de�ned the area
of applications of each method. Recently, Ishizaka
and Siraj [15] applied AHP, SMART, and MAGBETH
to a real MCDM problem. The authors investigated
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whether these three methods would really help the DMs
or not. The assessment of public transport satisfaction
was conducted by Nassereddine and Eskandari [16].
For this purpose, the authors employed an integrated
MCDM technique. Their method is a combination of
Delphi, Group AHP (GAHP), and Preference Ranking
Organization METHod for Enrichment of Evaluations
(PROMETHEE). A method based on TOPSIS and
entropy was proposed by Abdollahi et al. [17] to rank
multifarious Demand Response Resources (DRRs). It
is noted that the MCDM models are widely applied to
systems engineering [18{22].

Indeed, most of the above-mentioned methods
include one DM, while real-life problems have di�er-
ent managerial, engineering, social, and other aspects
involving a group of DMs. Studies such as [23{29]
used methods to solve Group Multiple Criteria Decision
Making (GMCDM) problems. These methods were
applied to the cases in which data were exact and had
crisp values. However, in most real-world problems,
decision information is expressed as an interval or fuzzy
number [30].

Nowadays, Fuzzy MCDM (FMCDM) problems
play an important role in industrial and system en-
gineering. An extension of fuzzy VIKOR to solving
supplier selection problem was presented by Mahmoudi
et al. [31]. In the case of this method, a fuzzy
distance measure was proposed to rank the suppliers.
Besides, unequal weights of DMs and the performance
of each supplier under each criterion were represented
by a linguistic variable. Finally, the alternatives were
ranked by the preference ratio method. An MCDM
problem with stochastic and intuitionistic data was
proposed by Hu et al. [32]. The problem of dam
site selection was considered as a Group FMCDM
(GFMCDM) by Minatour et al. [33]. To solve the
problem, the authors integrated Fuzzy AHP (FAHP)
with VIKOR. More recently, Yu et al. [34] provided new
indices to solve MCDM problems. More speci�cally,
they considered the MCDM problems with ranked
criteria. They proposed a solving method based on
digraphs and fuzzy measures.

Although the focus on interval numbers has been
lower than fuzzy numbers in uncertain MCDM prob-
lems, useful pieces of researches have been carried
out in this case [35{43]. Yue [35] developed the
TOPSIS method to solve interval GMCDM problems.
In the mentioned paper, two consecutive normalization
steps were taken to normalize the decision matrices,
which could be time consuming in large problems.
Moreover, the relative closeness of each individual
decision from PIS and NIS was obtained as a real
number; therefore, the weight of each DM is an exact
number which is not compatible with the interval
nature of the problem. Besides, transformation of
interval numbers to exact ones leads to loss of some

information. Jahanshahloo et al. [36] developed the
TOPSIS method for solving MCDM problems with
interval numbers. In their research, �rst, the PIS
and NIS were determined by a particular algorithm
and then, the distance of each alternative from the
PIS and the NIS was obtained by interval arithmetic.
Sayadi et al. [37] extended the VIKOR method in
the presence of interval numbers. In their method,
�rst, the PIS and NIS were determined; then, utility
and regret measures and VIKOR index were obtained
for each alternative; �nally, VIKOR indexes including
interval numbers were compared together. For this
purpose, a coe�cient called the optimism level of
DM was introduced, by which interval numbers were
compared and the alternatives were ranked. Dymova
et al. [39] developed interval TOPSIS method, which
is fundamentally di�erent from similar methods. The
�rst di�erence is that the interval numbers are com-
pared; then, the PIS and NIS are determined. The
second di�erence is that the separation measures of
each alternative from the NIS and PIS are taken by
calculating the separation of centers of intervals. Using
this measure does not require Euclidean or Hamming
distance to compute the distance of each alternative
from the PIS and NIS. Rezaei and Salimi [38] pro-
vided a method for ABC inventory classi�cation with
interval numbers. They employed this method to solve
an interval programming problem with the objective
function of minimizing total costs (control and no-
control costs). Hafezalkotob et al. [40] developed
interval Multiplicative Multi-Objective Optimization
based on Ratio Analysis (MULTIMOORA) method. In
their study, the decision matrices were normalized and
weighted. Then, to rank the alternatives, the interval
numbers were compared by their degree of possibility.
Liu and Li [41] considered interval MAGDM problems.
Their method �rst considers an exogenous weight of
each DM. Next, the weight of each DM was obtained
by adjusting these exogenous weights and using Plant
Growth Simulation Algorithm (PGSA). It is noted that
their method ranks the DMs and does not rank the
alternatives. Moreover, the weight of each DM is
strongly in
uenced by the primary exogenous weights
and as a result, the �nal ranking is not unique because
these primary weights are subjective. Wanke et al.
[44] proposed an integrated FMCDM neural-network
approach to predicting the performance of ASEAN
banks. A hybrid MCDM model including Interval
Rough AHP (IRAHP) and Multi-Attributive Border
Approximation Area Comparison (MABAC) were pro-
posed by Pamu�car et al. [42]. The model was then
employed to solve the GMCDM problem and the weight
of criteria was determined by IRAHP approach. Feng
et al. [43] combined DEMATEL, analytical network
process, and interval VIKOR to solve the product op-
timization problem. Hajek and Froelich [45] proposed
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integrating TOPSIS with interval-valued intuitionis-
tic fuzzy cognitive maps for e�ective group decision
making. Frini and Amor [46] proposed a temporal
outranking method, named MUPOM (MUlti-criteria
multi-Period Outranking Method), which accommo-
dates the requirements of sustainable development and
demonstrates how the paradigm behind outranking
methods can be of use in processing temporal impacts
of decisions. The proposed method is structured
in four phases: multi-criteria aggregation, temporal
aggregation, exploitation, and follow-up.

As mentioned, sometimes, information of
decision-makers or the performance of each alternative
under each criterion is not available as a crisp
number and we just know the range of these values.
This means that the values are available as interval
numbers. Compared to FMCDM papers, there are
fewer papers on interval MCGDM problems. Further,
the whole computations are not completely based on
interval arithmetic in most interval MCGDMs. For
instance, to calculate the distance of each decision
from PIS and NIS, calculations are done as crisp
numbers rather than interval numbers [35]. The
current paper makes �ve major contributions. First,
the proposed approach incorporates the interval data
into the MCDM problems and all calculations are done
in the interval form. Second, given that the primary
information is interval based and since the endogenous
weights are obtained from the primary data, the
weights are obtained as the interval; in addition, this
is more consistent with the interval nature of the
problem and appears more logical. Third, the opinion
of each DM on the performance of alternatives under
criteria is expressed by an interval matrix and the PIS
and NIS are obtained as interval matrices. Fourth, the
ranking order of DMs is obtained using the relative
closeness of each individual decision matrix to the
NIS and the PIS; then, the weight of each DM is
obtained as an interval number. Ultimately, all the
alternatives are ranked after weighting the decision
matrices.

In the following section, some preliminaries con-
cerning interval numbers and their arithmetic are
given. Section 3 is devoted to the proposed method
and its algorithm. A numerical example taken from
literature is given to compare our method and those
published in literature in Section 4. To demonstrate
relevancy of our method, a real case related to the
assessment of air pollution is provided in this section,
too. Conclusions are given in Section 5.

2. Interval de�nitions and arithmetic

Now, some interval de�nitions and arithmetic are
given. These preliminaries will be used in the next
sections [47{49].

De�nition 1. Interval number a is shown as a =
[al; au], where al and au are real numbers and represent
the lower and upper bounds of a, respectively, and
al � au.

If al > 0, then we say a is positive; if al � 0, then
a is called non-negative. If al = au, then a is a real
number. We show the set of all interval numbers in
R by I(R) I (R). Let a = [al; au] and b = [bl; bu] be
two interval numbers, � be a real number, and � � 0.
Then, we get:

a+ b =
�
al + bl; au + bu

�
;

a� b =
�
al � bu; au � bl� ;

�a =
�
�al; �au

�
;

a � b =[min
�
albl; albu; aubl; aubu

	
;

max
�
albl; albu; aubl; aubu

	
];

a2 =[max
�

0;min
�
alal; alau; auau

		
;

max
�
alal; alau; auau

	
];

If al � 0; then
p
a =

hp
al;
p
au
i
:

De�nition 2. Assume that a = [al; au] and b =
[bl; bu] are two non-negative interval numbers; then, we
de�ne the degree of possibility of a � b as follows:

p (a � b) = max
�

1�max
�
bu � al
la + lb

; 0
�
; 0
�
; (1)

where la = au� al, lb = bu� bl satisfying the following
properties:

a. 0 � p (a � b) � 1,
b. p (a � b) = 0 if and only if au � bl,
c. p (a � b) = 1 if and only if bu � al,
d. p (a � a) = 1

2 ,
e. p (a � b) + p (b � a) = 1.

For comparing and ranking the non-negative interval
numbers ai = [ali; aui ] (i = 1; 2; : : : ; n) in descending
order, the following steps are utilized:

(1) Compare the interval numbers ai (i = 1; 2; : : : ; n)
pairwise by Eq. (1) and let: pij = p (ai � aj)
i; j = 1; 2; : : : ; n:

(2) Construct a matrix called the complementary
matrix as follows:

P = (pij)n�n: (2)

(3) Sum up all components of each row of matrix P
together and let:
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pi =
nX
j=1

pij ; i = 1; 2; : : : ; n: (3)

(4) Rank the interval numbers ai (i = 1; 2; : : : ; n) in
the descending order using pi values.

3. The proposed method

This section presents our method. Here, the opinion
of each DM on the performance of each alternative
under criteria is expressed by a non-negative interval
matrix. Let D = fd1; d2; : : : ; dtg be a group of
DMs and �k =

�
�lk; �uk

�
shows the weight of the kth

(k = 1; 2; : : : ; t) DM, A = fA1; A2; : : : ; Amg (m � 2)
be a set of alternatives, and C = fc1; c2; : : : ; cng be a
set of criteria. Let wj be the weight of the jth criterion

and
nP
j=1

wj = 1; wj � 0; j = 1; 2; : : : ; n. We show

the decision matrix of the kth DM by interval matrix,
Xk =

�
xkij
�
m�n, k = 1; 2; : : : ; t; i = 1; 2; : : : ; m; j =

1; 2; : : : ; n, where xkij =
h
xk(l)
ij ; xk(u)

ij

i
is a non-negative

interval number and xkij shows the opinion of the kth
DM on the performance of the ith alternative under
the jth criterion. Thus, we get:

Xk=
�h
xk(l)
ij ; xk(u)

ij

i�
m�n=266666666664

h
xk(l)

11 ; xk(u)
11

i h
xk(l)

12 ; xk(u)
12

i � � � hxk(l)
1n ; xk(u)

1n

i
h
xk(l)

21 ; xk(u)
21

i h
xk(l)

22 ; xk(u)
22

i � � � hxk(l)
2n ; xk(u)

2n

i
...

...
...

...h
xk(l)
m1 ; x

k(u)
m1

i h
xk(l)
m2 ; x

k(u)
m2

i � � � hxk(l)
mn ; xk(u)

mn

i

377777777775
k = 1; 2; : : : ; t: (4)

First, to normalize the decision matrix, we de�ne:

Rk =
�h
rk(l)
ij ; rk(u)

ij

i�
m�n

k = 1; 2; : : : ; t; i = 1; 2; : : : ;m; j = 1; 2; : : : ; n;
(5)

where:

For bene�t criteria:�
rk(l)
ij ; rk(u)

ij

�
=

264 xk(l)
ij

max
i=1;2;:::;m

�
xk(u)
ij

� ; xk(u)
ij

max
i=1;2;:::;m

�
xk(u)
ij

�375 :
(6)

For cost criteria:

�
rk(l)
ij ;rk(u)

ij

�
=

264 min
i=1; 2; :::;m

�
xk(l)
ij

�
xk(u)
ij

;
min

i=1; 2; :::;m

�
xk(l)
ij

�
xk(l)
ij

375 :
(7)

Clearly,
h
rk(l)
ij ; rk(u)

ij

i
is a non-negative interval

number and rk(u)
ij � 1.

Further, the weighted decision matrices are ob-
tained as follows:

Vk =
�h
vk(l)
ij ; vk(u)

ij

i�
m�n =

�h
wjr

k(l)
ij ; wjr

k(u)
ij

i�
m�n

k=1; 2; : : : ; t; i=1; 2; : : : ;m; j=1; 2; : : : ; n: (8)

Then, the average of weighted matrices is considered
as the PIS. Thus:

A+ =
�h
v+(l)
ij ; v+(u)

ij

i�
m�n ; (9)

where v+(l)
ij = 1

t

tP
k=1

vk(l)
ij and v+(u)

ij = 1
t

tP
k=1

vk(u)
ij .

Next, the NIS is de�ned as follows:

A� =
�h
v�(l)
ij ; v�(u)

ij

i�
m�n ; (10)

in which:

v�(l)
ij = min

k=1; 2; :::; t

n
vk(l)
ij

o
;

and:

v�(u)
ij = max

k=1; 2; :::; t

n
vk(u)
ij

o
:

The separation measures of the decision matrix of
the kth DM from the PIS and NIS, which are interval
numbers, are respectively calculated using the following
formulas:

s+
k =

h
s+(l)
k ; s+(u)

k

i
=

vuut mX
i=1

nX
j=1

h
vk(l)
ij � v+(u)

ij ; vk(u)
ij � v+(l)

ij

i2
k = 1; 2; : : : ; t; (11)

and,

s�k =
h
s�(l)
k ; s�(u)

k

i
=

vuut mX
i=1

nX
j=1

h
vk(l)
ij � v�(u)

ij ; vk(u)
ij � v�(l)

ij

i2
k = 1; 2; : : : ; t: (12)
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Since all components of A+ and A� belong to [0; 1], s+
k

and s�k belong to [0; 1], too. A decision matrix that is
farther away from the NIS and the closer to the PIS
is preferred. However, the decision matrix which is
closer to the PIS is not essentially the same as that
being farther away from the NIS [50]. Thus, we should
calculate the relative closeness of each decision matrix
with respect to the PIS. Since the main idea of the
proposed method is taken from TOPSIS, the relative
closeness of the kth decision matrix with respect to
the PIS, which is an interval number, is calculated as
follows:

RCk =
�
RClk; RC

u
k
�

k = 1; 2; : : : ; t; (13)

where:

RClk=
s�(l)
k + 2

s�(u)
k + s+(u)

k + 4
; RCuk =

s�(u)
k + 2

s�(l)
k + s+(l)

k + 4
:

Clearly, RCk 2 (0; 1] .

Remark 1. In the above formulas, two units are
added to the interval numbers s+

k and s�k to prevent
the dominator from being zero.

Now, the interval weight of the kth (k = 1; 2;
: : : ; t) DM is de�ned as follows:

�k =
�
�lk; �

u
k
�
; k = 1; 2; : : : ; t; (14)

where:

�lk =
RClk
tP

k=1
RCuk

and �uk =
RCuk
tP

k=1
RClk

:

Thus, the weight of each DM is obtained as an interval
number, which is more reasonable. Nevertheless, if one
needs to rank the DMs, the complementary matrix P is
used to rank all DMs in descending order by employing
RCk values. For this purpose, each decision matrix is
weighted as follows:

Vk =
�h
�lkv

k(l)
ij ; �ukv

k(u)
ij

i�
m�n

k=1; 2; : : : ; t; i=1; 2; : : : ;m; j=1; 2; : : : ; n:
(15)

Then, the collective matrix V is constructed by:

V =
tX

k=1

Vk =
��
vlij ; v

u
ij
��
m�n

i = 1; 2; : : : ; m; j = 1; 2; : : : ; n: (16)

Given that each row of matrix V corresponds to an
alternative, these rows should be compared with each
other. For this purpose, we de�ne:

Vi =
�
vli; v

u
i
�
; i = 1; 2; : : : ; m; (17)

where:

vli =
nX
j=1

vlij and vui =
nX
j=1

vuij :

Now, as mentioned in Section 2, the interval numbers
Vi are compared. Therefore, the complimentary matrix
P is derived using Eq. (1) as follows:

P = (pij)m�m i; j = 1; 2; : : : ; m; (18)

where,

pij = p (Vi � Vj) :
Then, summing up all elements in each row of matrix
P yields:

pi =
mX
j=1

pij i = 1; 2; : : : ; m: (19)

Ultimately, all alternatives are ranked based on
pi (i = 1; 2; : : : ; m) values in the descending order.

Remark 2. Let wk be the exogenous weight of the
kth DM; then, the value of �k is modi�ed as follows:

�k =
�
�lk; �

u
k
�

k = 1; 2; : : : ; t; (20)

where,

�lk =
RClkwk
tP

k=1
RCukwk

and �uk =
RCukwk
tP

k=1
RClkwk

:

Brie
y, the algorithm of the proposed method is sum-
marized by the following steps:

Step 1. Convert interval matrix Xk (k = 1; 2; : : : ; t)
(decision matrix of the kth DM) to interval matrix Rk
by Eqs. (5){(7);

Step 2. Compute weighted interval matrix Vk by
Eq. (8);

Step 3. Employ Eqs. (9) and (10) to compute the
PIS and NIS, respectively;

Step 4. Compute the separation measures of decision
matrix of the kth (k = 1; 2; :::; t) DM from the PIS and
NIS by Eqs. (11) and (12), respectively;

Step 5. Obtain the relative closeness of decision
matrix of the kth (k = 1; 2; :::; t) DM with respect to
the PIS by Eq. (13) and rank all DMs in descending
order by RCk values;

Step 6. Apply Eq. (14) to determine the weight of
the kth (k = 1; 2; :::; t) DM;
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Step 7. Weigh the decision matrices using Eq. (15);

Step 8. Utilize Eq. (16) to construct collective ma-
trix V ;

Step 9. Calculate interval numbers Vi(i = 1; 2; : : : ;
m) using Eq. (17);

Step 10. Employ Eq. (18) and construct the
complimentary matrix to compare interval numbers
Vi (i = 1; 2; : : : ; m);

Step 11. Calculate Pi (i = 1; 2; : : : ; m) values using
Eq. (19) and rank the alternatives.

4. Illustrative examples

In this section, a comparative example along with a
real case is given to clarify the proposed method.

Example 1. We reconsider the example presented in
Liu and Li [41] with six alternatives, four criteria, and
four DMs. The judgment information of four DMs is
shown in Tables 1{4.

Liu and Li (2015) �rst considered an exogenous
weight of each DM. Based on �ndings of Liu and Li [41],
the subjective weights are w1 = 0:3; w2 = 0:4; w3 =
0:1, and w4 = 0:2. Then, the weight of each DM
is obtained by adjusting these exogenous weights and
using PGSA. Their method ranks the DMs and does
not rank the alternatives. Now, the proposed method
is applied assuming the same importance of all DMs.
After taking the steps of the proposed method and

Table 1. Decision matrix, X1, for Example 1.

Alternative c1 c2 c3 c4

A1 [1:8; 2:2] [1:2; 1:8] [1:8; 2:3] [5:4; 5:6]
A2 [2:5; 2:7] [2:8; 3:0] [1:8; 2:0] [6:5; 6:6]
A3 [1:8; 2:3] [1:6; 2:0] [1:9; 2:3] [4:4; 4:6]
A4 [2:0; 2:4] [1:5; 2:1] [1:8; 2:3] [4:9; 5:1]
A5 [1:2; 1:8] [1:7; 2:5] [1:7; 2:3] [5:3; 5:7]
A6 [2:3; 2:6] [2:3; 2:9] [1:6; 2:2] [5:9; 6:3]

Table 2. Decision matrix, X2, for Example 1.

Alternative c1 c2 c3 c4

A1 [1:6; 2:0] [1:3; 1:9] [1:9; 2:4] [5:3; 5:8]
A2 [2:2; 2:6] [2:9; 3:1] [1:9; 2:1] [6:7; 6:8]
A3 [1:5; 2:1] [1:9; 2:4] [2:0; 2:4] [4:6; 4:8]
A4 [2:0; 2:4] [1:6; 2:2] [1:9; 2:5] [5:1; 5:3]
A5 [2:1; 2:3] [1:8; 2:7] [1:8; 2:3] [4:3; 4:9]
A6 [3:1; 3:3] [2:1; 3:4] [2:1; 2:4] [5:5; 5:8]

Table 3. Decision matrix, X3, for Example 1.

Alternative c1 c2 c3 c4

A1 [1.0, 1.0] [1.0, 1.5] [1.3, 2.0] [4.8, 5.2]
A2 [1.6, 1.6] [2.4, 2.5] [1.3, 1.7] [6.0, 6.1]
A3 [1.1, 1.5] [1.3, 2.0] [1.5, 1.8] [4.1, 4.2]
A4 [1.6, 2.0] [1.1, 1.7] [1.3, 2.0] [4.6, 4.9]
A5 [1.7, 2.3] [1.3, 1.8] [1.6, 2.1] [5.4, 5.8]
A6 [2.1, 2.8] [2.2, 3.2] [1.7, 2.4] [4.6, 6.1]

Table 4. Decision matrix, X4, for Example 1.

Alternative c1 c2 c3 c4

A1 [1:6; 2:0] [1:3; 1:9] [1:9; 2:4] [5:3; 5:8]
A2 [2:2; 2:6] [2:9; 3:1] [1:9; 2:1] [6:7; 6:8]
A3 [1:5; 2:1] [1:9; 2:4] [2:0; 2:4] [4:6; 4:8]
A4 [2:0; 2:4] [1:6; 2:2] [1:9; 2:5] [5:1; 5:3]
A5 [1:8; 2:7] [2:1; 2:7] [1:7; 2:2] [4:8; 5:3]
A6 [2:5; 2:9] [1:4; 3:1] [1:8; 2:4] [5:1; 6:2]

Table 5. Comparison of the present method with Liu and
Li method.

DM Proposed method Liu and Li method
Weight Ranking Weight Ranking

d1 [0:21436; 0:41871] 2 0.2762 2
d2 [0:29175; 0:55131] 1 0.3677 1
d3 [0:07074; 0:13911] 4 0.0948 4
d4 [0:14348; 0:27911] 3 0.2613 3

obtaining RCk =
�
RClk; RCuk

�
; k = 1; 2; 3; 4, we

insert the primary exogenous weights (w1 = 0:3; w2 =
0:4; w3 = 0:1; w4 = 0:2), by Eq. (20). As seen in
Table 5, the ranking of DMs using both methods is
the same; however, as mentioned, primary exogenous
weights are very in
uential in the method of Liu and Li
and it is necessary to determine those at the beginning
of the procedure. It is noteworthy that the proposed
method is not dependent on choosing the primary
weights.

Example 2. Air pollution, due to its harmful con-
sequences, has become one of the most tangible and
perilous environmental problems. In Iran, 45,000
people die annually due to air pollution. Tehran is
the largest city and capital of Iran with a population
of about 8 million and an area of about 730 km2.
Tehran is one of the most polluted cities in the world.
The statistics show that the number of respiratory
patients increases by 60% on the days when Tehran
air pollution is high. The most important factor
associated with exacerbation of cardiovascular and
pulmonary diseases is the increase of pollutants O3,
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CO and suspended particulate matters. Air pollution
in Tehran, on average, leads to a 5-year reduction in the
life expectancy of the people of Tehran. Here, we eval-
uated the air pollution in Tehran for three consecutive
days in November 2017, and the data were obtained
from �ve air-quality monitoring stations located in
di�erent parts of the city. These stations measure
the suspended particulate matters PM2:5, PM10 and
pollutants O3, CO. We considered the stations as DMs
(t = 5), three consecutive days as alternatives (m = 3),
and suspended particulate matters and pollutants as
criteria (n = 4). The information obtained from
�ve air-quality monitoring stations located in di�erent
parts of the city for three consecutive days is shown in
Tables 6{10.

In Step 1, since all criteria are of cost type,
normalize the matrices using Eq. (7). The weights of
PM2:5, PM10, O3, and CO are considered as 0.3, 0.3,

Table 6. Data related to Aqdasieh station (X1).

Alternative PM2:5 PM10 O3 CO

A1 [95; 104] [47; 50] [71; 73] [19; 28]

A2 [94; 96] [53; 54] [93; 99] [22; 29]

A3 [71; 72] [56; 57] [90; 91] [30; 31]

Table 7. Data related to Rose Park station (X2).

Alternative PM2:5 PM10 O3 CO

A1 [71; 74] [58; 59] [37; 38] [13; 26]
A2 [62; 63] [59; 60] [37; 40] [21; 29]
A3 [67; 78] [63; 64] [54; 55] [26; 28]

Table 8. Data related to Pounak station (X3).

Alternative PM2:5 PM10 O3 CO

A1 [85; 86] [60; 63] [72; 73] [18; 20]
A2 [82; 83] [60; 62] [69; 70] [30; 31]
A3 [82; 83] [66; 68] [72; 73] [36; 39]

Table 9. Data related to Pirouzi station (X4).

Alternative PM2:5 PM10 O3 CO

A1 [83; 84] [71; 72] [55; 57] [22; 37]
A2 [92; 96] [77; 79] [62; 66] [29; 30]
A3 [92; 95] [81; 83] [80; 81] [25; 28]

Table 10. Data related to Tarbiat Modarres station (X5).

Alternative PM2:5 PM10 O3 CO

A1 [74; 77] [60; 61] [73; 74] [31; 38]
A2 [85; 87] [69; 70] [98; 99] [32; 46]
A3 [90; 92] [78; 79] [99; 100] [21; 36]

0.2, and 0.2, respectively. In Step 2, weigh the matrices
by considering the mentioned weights (Tables 11{15).

In Step 3, determine the PIS (A+) and NIS (A�)
by Eqs. (9) and (10), respectively (Tables 16 and 17).
In Step 4, apply Eqs. (11) and (12) to calculate s+

k and
s�k values, respectively, which are shown in Table 18.
In Step 5, calculate RCk values by Eq. (13) (Table 18);
in this step, rank all DMs in descending order by these
values. In Step 6, apply Eq. (14) to determine �k
values (Table 18). In Step 7, utilize Eq. (15) to weigh
the decision matrices. In Step 8, construct matrix V
by Eq. (16), as shown in Table 19.

In Step 9, calculate interval values Vi (i = 1; 2; 3)
as follows:

V1 = [0:73593; 1:14716] ;

V2 = [0:68847; 1:03565] ;

V3 = [0:66080; 0:99443] :

In Step 10, obtain the complimentary matrix P as
follows:

P =

24 0:5 0:60480 0:65295
0:39520 0:5 0:55059
0:34705 0:44941 0:5

35 :
In Step 11, by summing up all components of each row
of matrix P , we have P1 = 1:75776; P2 = 1:44579, and
P3 = 1:29645. Then, alternatives are ranked based
on Pi (i = 1; 2; 3) values in descending order. Since
P1 > P2 > P3, so we have A1 � A2 � A3. This means
that the best alternative is A1, hence the �rst day has
the best air quality.

As seen in Table 18, s+
k (the distance of decision

of the kth DM from the PIS) and s�k (the distance
of decision of the kth DM from the NIS) could be
employed to rank DMs. The smaller the s+

k value, the
better the decision of the kth DM; in addition, the
larger the s�k value, the better the decision of the kth
DM. Table 18 shows that in ranking DMs based on
\farther away from the NIS is better", the fourth DM
is ranked the last, while the decision of this DM is
closest to the PIS. However, in the ranking based on
RCk values, being closer to the PIS and farther away
from the NIS is considered simultaneously, and a DM
whose decision is closer to the PIS and farther away
from the NIS will be assigned a higher weight and a DM
whose decision is farther away from the PIS and closer
to the NIS will be assigned lower weight, because the
opinions of DMs are either biased (directed) or false.

5. Conclusions

In this study, the interval numbers that include uncer-
tainly in the decision-making process were employed.
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Table 11. Weighted normalized data related to Aqdasieh station (V1).

Alternative PM2:5 PM10 O3 CO

A1 [0:20481; 0:22421] [0:28200; 0:30000] [0:19452; 0:20000] [0:13571; 0:20000]
A2 [0:22188; 0:22660] [0:26111; 0:26604] [0:14343; 0:15269] [0:13103; 0:17273]
A3 [0:29583; 0:30000] [0:24737; 0:25179] [0:15604; 0:15778] [0:12258; 0:12667]

Table 12. Weighted normalized data related to Rose Park station (V2).

Alternative PM2:5 PM10 O3 CO

A1 [0:25135; 0:26197] [0:29492; 0:30000] [0:19474; 0:20000] [0:10000; 0:20000]
A2 [0:29524; 0:30000] [0:29000; 0:29492] [0:18500; 0:20000] [0:08966; 0:12381]
A3 [0:23846; 0:27761] [0:27188; 0:27619] [0:13455; 0:13704] [0:09286; 0:10000]

Table 13. Weighted normalized data related to Pounak station (V3).

Alternative PM2:5 PM10 O3 CO

A1 [0:28605; 0:28941] [0:28571; 0:30000] [0:18904; 0:19167] [0:18000; 0:20000]
A2 [0:29639; 0:30000] [0:29032; 0:30000] [0:19714; 0:20000] [0:11613; 0:12000]
A3 [0:29639; 0:30000] [0:26471; 0:27273] [0:18904; 0:19167] [0:09231; 0:10000]

Table 14. Weighted normalized data related to Pirouzi station (V4).

Alternative PM2:5 PM10 O3 CO

A1 [0:29643; 0:30000] [0:29583; 0:30000] [0:19298; 0:20000] [0:11892; 0:20000]
A2 [0:25938; 0:27065] [0:26962; 0:27662] [0:16667; 0:17742] [0:14667; 0:15172]
A3 [0:26211; 0:27065] [0:25663; 0:26296] [0:13580; 0:13750] [0:15714; 0:17600]

Table 15. Weighted normalized data related to Tarbiat Modarres station (V5).

Alternative PM2:5 PM10 O3 CO

A1 [0:28831; 0:30000] [0:29508; 0:30000] [0:19730; 0:20000] [0:11053; 0:13548]
A2 [0:25517; 0:26118] [0:25714; 0:26087] [0:14747; 0:14898] [0:09130; 0:13125]
A3 [0:24130; 0:24667] [0:22785; 0:23077] [0:14600; 0:14747] [0:11667; 0:20000]

Table 16. Positive ideal solution (A+).

Alternative PM2:5 PM10 O3 CO

A1 [0:26539; 0:27512] [0:29071; 0:30000] [0:19372; 0:19833] [0:12903; 0:18710]
A2 [0:26561; 0:27168] [0:27364; 0:27969] [0:16794; 0:17582] [0:11496; 0:13990]
A3 [0:26682; 0:27899] [0:25368; 0:25889] [0:15229; 0:15429] [0:11631; 0:14053]

Table 17. Negative ideal solution (A�).

Alternative PM2:5 PM10 O3 CO

A1 [0:20481; 0:30000] [0:28200; 0:30000] [0:18904; 0:20000] [0:10000; 0:20000]
A2 [0:22188; 0:30000] [0:25714; 0:30000] [0:14343; 0:20000] [0:08966; 0:17273]
A3 [0:23846; 0:30000] [0:22785; 0:27619] [0:13455; 0:19167] [0:09231; 0:20000]

Table 18. Decision Makings (DMs) ranking.
Parameter d1 d2 d3 d4 d5 Ranking

S+
k [0.06163, 0.13835] [0.03774, 0.13519] [0.05578, 0.12130] [0.03153, 0.11104] [0.04087, 0.14349] d4 � d2 � d3 � d5 � d1

S�k [0.00000, 0.22159] [0.00000, 0.22849] [0.00000, 0.22936] [0.00000, 0.20152] [0.00000, 0.22408] d3 � d2 � d5 � d1 � d4

RCk [0.45872, 0.54697] [0.45833, 0.55192] [0.45970, 0.54967] [0.46376, 0.54607] [0.45792, 0.55040] d2 � d4 � d3 � d5 � d1

�k [0.16711, 0.23798] [0.16697, 0.24013] [0.16747, 0.23915] [0.16895, 0.23759] [0.16682, 0.23947] d2 � d4 � d3 � d5 � d1



3250 S. Sa�arzadeh et al./Scientia Iranica, Transactions E: Industrial Engineering 27 (2020) 3242{3252

Table 19. Collective decision matrix (V ).

Alternative PM2:5 PM10 O3 CO

A1 [0:22227; 0:32859] [0:24342; 0:35829] [0:16220; 0:23687] [0:10805; 0:22341]
A2 [0:22239; 0:32455] [0:22912; 0:33406] [0:14063; 0:21002] [0:09632; 0:16701]
A3 [0:22342; 0:33317] [0:21243; 0:30920] [0:12750; 0:18427] [0:09746; 0:16778]

Motivated by the abilities of interval numbers, this
paper presented a new approach to solving Group Mul-
tiple Criteria Decision Making (GMCDM) problems in
the presence of interval data. Here, an interval-based
approach to weighing the Decision Makings (DMs) and
ranking the alternatives was proposed. The proposed
model provided more reasonable results since it pro-
duced interval weights that were consistent with given
data. Two illustrative examples were presented to show
the applicability of the proposed procedure. As is clear,
Multiple Criteria Decision Making (MCDM) methods
use various calculation schemes to evaluate the rank of
alternatives. However, little evidence supports the con-
sistency between the alternative chosen by the MCDM
method and the decision-maker's intuitive ideal alter-
native. Therefore, the extension of an operational
validation scheme to examining and comparing the
e�ectiveness of interval MCDM methods is proposed
for future research. Another topic is investigating
the e�ect of weights on the interval MCDM methods.
Moreover, method-oriented parameter settings such as
normalization method and distance function can be
examined. Besides, a supplementary approach can be
developed for situations in which the information is
expressed as fuzzy or interval fuzzy numbers.
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