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Abstract. Project scheduling in the resource-constrained situation is one of the key issues
of project-oriented organizations. The aim of Resource-Constrained Project Scheduling
Problem (RCPSP) is to �nd a schedule with minimum makespan by considering precedence
and resource constraints. RCPSP is a combinatorial optimization problem and belongs to
the NP-hard class of problems. The exact methods search the entire search space and
are unable to solve a large-sized project network problem. Thus, metaheuristics are used
to solve this problem in a short computational time. Due to the probabilistic nature
of metaheuristics, it is a challenging problem to make a balance between exploitation and
exploration phases. The literature review shows that embedding of chaos improves both the
convergence speed and the local optima avoidance of metaheuristics. This paper presents a
Chaotic Vibrating Particles System (CVPS) optimization algorithm for solving the RCPSP.
Vibrating Particles System (VPS) is a physics-inspired metaheuristic which mimics the
free vibration of single-degree-of-freedom systems with viscous damping. The performance
and applicability of the CVPS are compared with the standard VPS and �ve well-known
algorithms on three benchmark instances of the RCPSPs. Experimental studies reveal that
the proposed optimization method is a promising alternative to assist project managers in
dealing with RCPSP.

© 2020 Sharif University of Technology. All rights reserved.

1. Introduction

Scheduling of projects, such as product development,
maintenance, construction project, etc., depends on
resource limitations because they expend di�erent
renewable and non-renewable resources during their
execution and these resources are usually limited.
Resource constraints include a limited number of
employees, limited project budget, vehicle capacity,
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etc. Given that `project scheduling' in a resource-
constrained situation is an important and challenging
issue for project-oriented organizations, project man-
agement researchers are particularly interested in the
matter. The purpose of Resource-Constrained Project
Scheduling Problem (RCPSP) is to �nd a schedule
with minimum makespan based on the precedence rela-
tionship between constraints and resource constraints
[1]. RCPSP is a combinatorial optimization problem
and belongs to the NP-hard class of problems [2,3].
A variety of methods including exact methods [4{6],
heuristic [3,7], and metaheuristic [8{10] methods have
been used to solve RCPSP with di�erent assumptions.
Exact methods search the entire search space and are
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computationally infeasible or face the `combinatorial
explosion' problem in solving large-sized project net-
works. Thus, in recent decades, metaheuristics have
been utilized to solve this problem with a manageable
computational time.

In today's extremely competitive world, solving
real-life problems by metaheuristic algorithms has be-
come an interesting topic. Many researchers have tried
to provide the best method for solving the Construction
Engineering Optimization Problems (CEOPs) [8{11].
Many metaheuristics with di�erent philosophies and
characteristics have been developed and applied to
di�erent �elds. The objective of these methods is to
explore the search space e�ciently in order to �nd
global or near-global solutions. These methods are
not problem speci�c and do not require the derivatives
of the objective function; therefore, they have drawn
increasing attention from both academia and industry
[12{14]. Metaheuristics are global optimization meth-
ods that mimic natural phenomena such as Genetic
Algorithm (GA) [15], Particle Swarm Optimization
(PSO) [16], Dolphin Echolocation (DE) [17]), humans
social behavior such as Imperialist Competitive Algo-
rithm (ICA) [18], or physical phenomena such as Mag-
netic Charged System Search (MCSS) [19], Colliding
Bodies Optimization (CBO) [20], Vibrating Particles
System (VPS) [14], and Harmony Search (HS) [21].
Two important characteristics of the metaheuristic op-
timization techniques are exploitation and exploration.
Exploitation serves to search around the current best
solutions and to select the best possible points, and
Exploration allows the optimizer to explore the search
space more e�ciently, often by randomization [22].
Due to the probabilistic nature of the metaheuristics,
making a balance between exploitation and exploration
phased is a challenging problem. Review of the litera-
ture [23{26] reveals that by embedding of chaos, both
the convergence speed and the local optima avoidance
of metaheuristics can be improved. A chaotic system
is a complex system which is intensively sensitive to
initial conditions like social, market, economic, astro-
nomical, or earth's weather system. In these systems,
any change, even small changes, in the beginning will
produce large changes in the future behavior of the
system [27]. Typical features of chaotic systems include
nonlinearity, determinism, irregularity, sensitivity to
initial conditions, and long-term unpredictability [28].

This paper presents a Chaotic Vibrating Par-
ticles System optimization algorithm for solving the
Resource-Constrained Project Scheduling Problem
(CVPS-RCPSP). Vibrating Particles System (VPS) is
a newly developed metaheuristic which mimics the
free vibration of single-degree-of-freedom systems with
viscous damping [14].

After this introduction, the rest of the paper
is organized as follows: the RCPSP is described in

Section 2. The basic VPS algorithm and 10 chaotic
maps are described in Section 3. The proposed
CVPS technique is presented in Section 4. Numerical
examples are studied in Section 5, and the results
are discussed in Section 6. Finally, conclusions are
deduced in Section 7.

2. Resource-Constrained Project Scheduling
Problem (RCPSP)

Due to the usability of resource-constrained problems
in construction project management, these problems
have been investigated extensively by researchers of
this �eld. This paper elaborates on a typical RCPSP
which is de�ned as follows [9].

A project includes the scheduling of j = 1; 2; :::; J
activities that are delineated in an activity-on-node
network G = (V;E), where the nodes and arcs
represent the set of activities V and �nish-to-start
precedence relationship (with zero lag) E, respectively.
The numerator of the activities in the project network
is from 0 to J + 1, where activities 0 and J + 1 are
dummy activities and specify the start and end of
the project and duration of these activities is zero.
Precedence relationships between some of the activities
in the project necessitate that for starting an activity
j, all its predecessors \Pj" must be �nished because
of technological requirements. Activity j requires rj
renewable resource k for each period of operation. The
time that the activity j takes to be executed \Dj"
depends on the amount of its allocated resource. When
the activity j begins, any interruption like changing the
duration or resource amount cannot occur and it must
be continued in sequential periods of Dj . Moreover,
the availability of the kth resource is given by Rk.

The purpose is to achieve a solution with mini-
mum total time, considering precedence relationships
among di�erent activities and resource constraints at
the same time. The objective functions of the RCPSP
model are formulated to minimize the total project
time with the allocation of resources in the entire
project makespan, simultaneously.

When an activity is selected, its corresponding
duration and resource requirement will be assigned.
Afterward, a feasible schedule based on activity infor-
mation and given constraints will be produced. The
outcome of the resulting schedule is the determination
of the project �nish time. The objective of RCPSP
model is to minimize the duration of the project, which
is the �nish time of the last activity fj+1 in a project.
Therefore, the total project duration Ft is given below:

min z = max fj ; j = 1; 2; : : : ; J: (1)

In the above formulation, the objective function min-
imizes the project time Ft. The constraints are
expressed as follows:
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fj �Dj � fi; (i; j) 2 E: (2)

These constraints guarantee the consideration of the
precedence relationships. In this formula, fj is the
�nish time of the activity j, Dj is the duration of
activity j, and fi is the �nish time of the predecessor
of activity j called i.X
i2A

rj;k � Rk; k = 1; 2; : : : ;K;

At = fjjfj �Dj < t � fjg : (3)

The constraint set in Eq. (3) indicates that at each
time instant t and for each resource type k, the
renewable resource amounts required by the activities,
which are currently processed (i.e., At), cannot exceed
the resource availability, where rjk is the amount of
resource k required by the activity j.

fi � 0; i = 0; 1; : : : ; j + 1: (4)

Finally, the constraint set in Eq. (4) ensures that every
output has been positive and the schedule logic will be
true.

3. Vibrating Particles System (VPS)

The VPS is a population-based algorithm that sim-
ulates free vibrations of single-degree-of-freedom sys-
tems with viscous damping [14]. Similar to other multi-
agent methods, VPS has a number of individuals (or
particles) consisting of the variables of the problem. In
the VPS, each solution candidate is de�ned as \X",
contains a number of variables (i.e., Xi = fXj

i g), and
is considered as a particle. Particles are damped based
on three equilibrium positions with di�erent weights
and, during each generation, the position of particles is
updated based on using (i) the historically best position
of all particles population (HB), (ii) a good particle
(GP ), and (iii) a bad particle (BP ). The solution can-
didates gradually approach their equilibrium positions
that are achieved by the current population and histor-
ically best position in order to have a proper balance
between diversi�cation and intensi�cation. The main
procedure of this algorithm is given as follows:

Step 1: Initialization. Initial locations of particles
are created randomly in an n-dimensional search
space by:

xji = xmin + rand� (xmax � xmin) ;

i = 1; 2; 3; : : : ; n; (5)

where xji is the jth variable of the ith particle; xmax
and xmin are the minimum and maximum allowable
values of vector of variables, respectively; rand is a
random number at the interval [0,1]; and n is the
number of particles;

Step 2: Evaluating candidate solutions. The objec-
tive function value of each particle is calculated;
Step 3: Updating the particle positions. In order to
select the GP and BP for each candidate solution,
the current population is sorted according to their
objective function values in increasing order and then,
GP and BP are chosen randomly from the �rst half
and second half, respectively.

According to the above concepts, the particle's
position is updated by:

xji = !1:
�
D:A:R1 +HBj

�
+ !2:

�
D:A:R2 +GP j

�
+!3:

�
D:A:R3 +BP j

�
; (6)

where xji is the jth variable of the particle i; !1, !2,
and !3 are three parameters for measuring the rel-
ative importance of HB, GP , and BP , respectively
(!1 + !2 + !3 = 1); and R1, R2, and R3 are the
uniformly distributed random numbers in the range
of [0, 1]. The parameter A is de�ned as follows:

A =
h
!1:
�
HBj � xji

�i
+
h
!1:
�
GP j � xji

�i
+
h
!1:
�
BP j � xji

�i
: (7)

Parameter D is a descending function based on the
number of iterations:

D =
�

iter
itermax

���
: (8)

In order to have a fast convergence rate in the VPS,
the role of BP is sometimes considered in updating
the position formula. Therefore, for each particle,
a parameter like p within (0,1) is de�ned and it is
compared with rand (a random number uniformly
distributed in the range of [0,1]) and if p < rand,
then !3 = 0 and !2 = 1� !1.

Particles move towards HB and, therefore, self-
adaptation is provided. Any particle has the chance
to a�ect the new position of the other one; thus,
the cooperation between the particles is supplied.
Because of the p parameter, the e�ect of GP (good
particle) is more than that of BP (bad particle) and,
therefore, a completion is established;
Step 4: Handling the side constraints. There is
a possibility of boundary violation when a particle
moves to its new position. In the proposed algorithm,
to handle boundary constraints, a harmony search-
based approach is used [29]. In this technique, there
is a possibility like Harmony Memory Considering
Rate (HMCR) that speci�es whether the violating
component must be changed with the corresponding
component of the historically best position of a
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Figure 1. Pseudocode of the vibrating particles system algorithm [14].

random particle or it should be determined randomly
in the search space. Moreover, if the component
of a historically best position is selected, there is
a possibility like Pitch Adjusting Rate (PAR) that
speci�es whether this value should be exchanged with
the neighboring value or not;

Step 5: Terminating condition check. Steps 2{4 are
repeated until a termination criterion is ful�lled. Any
terminating condition can be considered; however,
in this study, the optimization process is terminated
after a �xed number of iterations. The pseudocode
of the VPS is provided in Figure 1.

4. Chaotic Vibrating Particles System (CVPS)

Six types of scenarios are used for embedding chaotic
maps into VPS. Chaotic maps are involved in manip-
ulating the selection of GP and BP and tuning the
amount of R1, R2, R3, and p operators of the VPS
algorithm.

The chaotic GP and BP selection operators
improve exploration, whereas the chaotic tuning of R1,
R2, R3, and p operators enhances the exploitation
of the VPS algorithm. Ten di�erent chaotic maps
are utilized for the VPS algorithm. The applications
of chaotic maps are tested on each of the foregoing
operators, singly.

4.1. Chaotic maps
Deterministic nonlinear systems can exhibit nonlinear
behavior which is sensitive to initial conditions. Such
systems are called chaotic and their relative equations
are chaotic maps. Recently, chaos and metaheuristics
have been combined for di�erent purposes. Chaotic
metaheuristics utilize chaotic maps to control the value
of parameters or incorporate chaotic search into the
procedures of the metaheuristics in order to enrich the
searching behavior and avoid being trapped in local

optimums [21,30]. Thus, by reviewing the literature,
ten most relevant one-dimensional chaotic maps to
tackle CVPS have been used in the present work.

The selected chaotic maps employed in this re-
search include Chebyshev [31], circle [32], gauss/mouse
[33], iterative [34], logistic [35], piecewise [23], sine [36],
singer [37], sinusoidal [35], and tent [38]. The required
information about these maps is provided in Table 1.
According to Table 1, deterministic systems can also
have chaotic behaviors. There is no random component
in the following chaotic maps, but the chaotic behaviors
of the equations are quite evident in the related �gures.
This set of chaotic maps with di�erent behaviors has
been chosen, while all of the chaotic maps start from
0.7 (x0 = 0:7). The starting point can take any number
between 0 and 1 (or {1 and 1 based on the chaotic map
range). However, it should be noted that the vibration
pattern of the chaotic maps is sensitive to their relative
initial value. This study uses similar initial values to
those used in [24].

5. Numerical examples

In order to evaluate the performance of the proposed
CVPS techniques in solving the RCPSP, three case
studies previously treated by other researchers are
investigated.

5.1. Example 1
This example is a project with 15 activities and one
resource type, previously solved by Anagnostopoulos
and Koulinas [39]. The duration, predecessors, and
daily resource demand of activities are illustrated in
Figure 2. The maximum availability level of renewable
resource is 14 units per day.

5.2. Example 2
This study devised a real highway bridge construction
project as a numerical case study, as presented in [40].



1830 A. Kaveh and Y. Vazirinia/Scientia Iranica, Transactions A: Civil Engineering 27 (2020) 1826{1842

Table 1. Chaotic maps data.

# Map name Map formula Range
Distribution of the map

between 0 and 1
after 100 iterations

1 Chebyshev [31] xi+1 = cos(i cos�1 (xi)) -1,1

2 Circle [32] xi+1 = mod
�
xi + b� � a2� � sin (2�xi) ; 1

�
; a = 0:5; b = 0:2

0,1

3 Gauss / mouse [33] xi+1 =

(
1 xi = 0
1

mod(x1;1) xi 6= 0
0,1

4 Iterative [34] xi+1 = sin
�
a�
xi

�
; a = 0:7 -1,1

5 Logistic [35] xi+1 = axi (1� xi) ; a = 4 0,1

6 Piecewise [24] xi+1 =

8>>>><>>>>:
xi
P 0 � xi < P

xi�P
0:5�P P � xi < 0:5

1�P�xi
0:5�P 0:5 � xi < 1� P
1�xi
P 1� P � xi < 1

; P = 0:4 0.1
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Table 1. Chaotic maps data (continued).

# Map name Map formula Range
Distribution of the map

between 0 and 1
after 100 iterations

7 Sine [36] xi+1 = a
4 sin (�xi) ; a = 4 0,1

8 Singer [37]
x(i+1) = �(7:86xi � 23:31x2

i + 28:75x3
i 13:302875x4

i );
� = 2:3

0,1

9 Sinusoidal [35] xi+1 = ax2
i sin (�xi) ; a = 2:3 -1,1

10 Tent [38] xi+1 =

(
xi
0:7 xi < 0:7

10
3 (1� xi) xi � 0:7

0,1

This case study contains 44 activities by various daily
resource demands. There are three types of renewable
resources (e.g., labor, equipment, etc.) and maximum
availability levels of resources are 12, 8, and 8 units per
day. Figure 3 shows the precedence relationships of the
project activities using arrow lines. The duration of the
project activities is written on top of their respective
circle nodes. The number of required resources is
written below their respective circle nodes.

5.3. Example 3
The third case study was presented by Christodoulou
[41] and studied by some other research studies,
e.g., [10]. This project contains 17 activities and one
type of resource with availability of 6 units per day.
Precedence diagram of the project is shown in Figure 4.

The precedence relationships are illustrated by arrows.
The duration of project activities is written on the
top of their respective circle nodes. The number of
required resources of each activity is written below the
respective circle node.

6. Results and discussion

By employing ten chaotic maps, RCPSP examples
are solved by MATLAB R2017a [42]. Based on the
central limit theorem, when the sample size gets larger,
the distribution of the sample mean converges to the
normal distribution; the size of the sample must be
equal to 30 or more [43]. Hence, each method has
been run 30 times independently for all case studies.
The Average (Avg.), Standard Deviation (SD), and
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Figure 2. Project network of Example 1.

Success Rate (SR) of 30 runs for the cost of the last
iteration are calculated to evaluate the stability and
accuracy of algorithms. The performance of the VPS
is dependent on the control parameters; thus, according
to the performed sensitivity analysis and parameter
settings in the literature [11,14,43,44], the values of
parameters �; !1, !2, and p are set to 0.05, 0.3, 0.3, and
0.8, respectively. Here, the numbers of the population
sizes are set to 50, 40, and 200 in Cases 1, 2, and 3
through 50, 100, and 500 iterations, respectively. In
this paper, chaotic algorithms are coded as follows:
(CVPS-operator name-map number). The second part
of this code points to the operator's name. In the third
part of this coding, 01 to 10 are assigned to Chebyshev,
circle, gauss/mouse, iterative, logistic, piecewise, sine,
singer, sinusoidal, and tent, respectively. For instance,
\CVPS-GP -01" is a VPS algorithm with Chebyshev
mapping of GP selection operator.

6.1. Results and discussion of Example 1
The convergence curves of VPS and CVPS techniques,
which are applied to solving the second example, are
shown in Figure 5. Results of using chaotic maps
instead of VPS operators are depicted singly for each
operator. The convergence curve of the VPS is shown
in all �gures for the simplicity of comparison. Figure 4
shows that except gauss/mouse and sinusoidal maps, Figure 3. Project network of Example 2.
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Figure 4. Project network of Example 3.

all other chaos-based GP selection operators are suc-
cessful in improving the performance of the VPS in
solving this example, and four Chebyshev, iterative,
piecewise, and singer mappings present the best con-
vergence of all other maps. Although gauss/mouse,
piecewise, and sine chaotic BP selection operators do
not improve the performance of the VPS in solving this

example, the application of Chebyshev, circle, iterative,
logistic, singer, sinusoidal, and tent maps helps reduce
the VPS cost and, also, iterative, singer, and tent map-
pings reach better solution than others. Besides, except
gauss/mouse mapping, all other CVPS techniques with
the chaotic operator R1 are able to outperform the
VPS results and mapping with Chebyshev. In addition,
piecewise maps have resulted in faster convergence. By
using chaos-based maps as the operator R2, except the
gauss/mouse mapping, other maps can improve the
performance of VPS algorithm. Graphical curves of
chaotic maps used as operators R3 in Figure 5 show
that although gauss/mouse mapping cannot outper-
form the VPS results, other mapping methods have a
better convergence speed than standard VPS. The best
results have been achieved by using circle, logistic, and
sinusoidal maps. Convergence curves of the CVPS-p
show that all chaotic maps, except the gauss/mouse,
are able to improve the VPS results by using p as a
parameter and that the mapping of this key parameter
by circle, logistic, singer, and sinusoidal maps improved
the VPS algorithm more than other maps.

The statistical results of PSO, CBO, GA, HS,
ICA, VPS, and CVPS algorithms for solving Exam-
ple 1 are shown in Table 2. In this table, the best
results of each parameter are highlighted in bold form.
All of the algorithms could obtain the best duration
in comparison to previous �ndings in the literature
[8]. According to Table 2, except for gauss/mouse
and sinusoidal maps, all other chaotic GP selection
operators are able to improve the performance of
the VPS, while Chebyshev, iterative, piecewise, and

Table 2. Statistical results of the chaotic Vibrating Particles System (VPS) for Example 1.
Algorithm Avg. SD Worst SR Algorithm Avg. SD Worst SR Algorithm Avg. SD Worst SR

PSO 117.77 1.1943 120 0.63 CBO 117.26 0.6397 120.00 0.80 GA 117.90 1.0289 120 0.43

HS 117.43 0.5040 118.00 0.57 ICA 117.56 0.8172 120.0 0.57 VPS 117.20 0.4068 118.00 0.80

CVPS-GP -01 117.00 0 117.00 1 CVPS-R1-01 117.00 0 117.00 1 CVPS-R3-01 117.13 0.3457 118.00 0.87
CVPS-GP -02 117.13 0.3457 118.00 0.87 CVPS-R1-02 117.13 0.3457 118.00 0.87 CVPS-R3-02 117.00 0 117.00 1
CVPS-GP -03 117.90 1.0289 120.00 0.43 CVPS-R1-03 117.43 0.8172 120.00 0.70 CVPS-R3-03 117.23 0.6261 120.00 0.83
CVPS-GP -04 117.00 0 117.00 1 CVPS-R1-04 117.13 0.3457 118.00 0.87 CVPS-R3-04 117.10 0.3051 118.00 0.90
CVPS-GP -05 117.03 0.1826 118.00 0.97 CVPS-R1-05 117.03 0.1826 118.00 0.97 CVPS-R3-05 117.00 0 117.00 1
CVPS-GP -06 117.00 0 117.00 1 CVPS-R1-06 117.00 0 117.00 1 CVPS-R3-06 117.13 0.3457 118.00 0.87
CVPS-GP -07 117.20 0.4498 118.00 0.73 CVPS-R1-07 117.13 0.3457 118.00 0.87 CVPS-R3-07 117.06 0.2537 118.00 0.93
CVPS-GP -08 117.00 0 117.00 1 CVPS-R1-08 117.10 0.3051 118.00 0.90 CVPS-R3-08 117.06 0.2537 118.00 0.93
CVPS-GP -09 117.23 0.6261 120.00 0.83 CVPS-R1-09 117.10 0.3051 118.00 0.90 CVPS-R3-09 117.00 0 117.00 1
CVPS-GP -10 117.17 0.3790 118.00 0.83 CVPS-R1-10 117.10 0.3051 118.00 0.90 CVPS-R3-10 117.10 0.3051 118.00 0.90

CVPS-BP -01 117.17 0.3790 118.00 0.83 CVPS-R2-01 117.00 0 117.00 1 CVPS-p-01 117.10 0.3051 118.00 0.90
CVPS-BP -02 117.03 0.1826 118.00 0.97 CVPS-R2-02 117.13 0.3457 118.00 0.8 7 CVPS- p -02 117.00 0 117.00 1
CVPS-BP -03 117.30 0.6513 120.00 0.77 CVPS-R2-03 118.33 1.2130 120.00 0.30 CVPS- p -03 117.56 0.8172 120.00 0.57
CVPS-BP -04 117.00 0 117.00 1 CVPS-R2-04 117.10 0.30 51 118.00 0.90 CVPS- p -04 117.00 0 117.00 1
CVPS-BP -05 117.10 0.3051 118.00 0.90 CVPS-R2-05 117.03 0.1826 118.00 0.97 CVPS- p -05 117.10 0.3051 118.00 0.90
CVPS-BP -06 117.20 0.4498 118.00 0.73 CVPS-R2-06 117.16 0.3790 118.00 0.83 CVPS- p -06 117.13 0.3457 118.00 0.87
CVPS-BP -07 117.23 0.6261 120.00 0.83 CVPS-R2-07 117.03 0.1826 118.00 0.97 CVPS- p -07 117.20 0.4498 118.00 0.73
CVPS-BP -08 117.00 0 117.00 1 CVPS-R2-08 117.03 0.1826 118.00 0.97 CVPS- p -08 117.00 0 117.00 1
CVPS-BP -09 117.10 0.3051 118.00 0.90 CVPS-R2-09 117.00 0 117.00 1 CVPS- p -09 117.00 0 117.00 1
CVPS-BP -10 117.00 0 117.00 1 CVPS-R2-10 117.00 0 117.00 1 CVPS- p -10 117.33 0.6609 120.00 0.73
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Figure 5. Convergence curves for the Chaotic Vibtaring Particles System (CVPS) algorithms for solving Example 1.

singer GP selection operators show worse results than
other maps in terms of average best cost (117.00),
standard deviation (0), worst cost (117.00), and success
rate (1.00). On the other hand, all of the chaotic
BP selection operators, except gauss/mouse, have

successfully improved the performance of the VPS
algorithm and iterative, singer, and tent BP selection
operators have the best performance (Avg = 117.00,
SD = 0, worst cost = 117.00, and SR = 1.00) for
solving this example. Besides, except gauss/mouse
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Figure 6. Resource allocation pro�le of Example 1.

mapping, all other CVPS algorithms with chaotic
operators R1 were successful in outperforming the VPS
and Chebyshev, and piecewise mappings showed the
best performances in terms of statistical results (Avg
= 117.00, SD = 0, worst cost = 117.00, and SR =
1.00). By using chaos-based maps as operators R2,
except the gauss/mouse mapping, other maps could
improve the performance of the VPS algorithm and
Chebyshev, sinusoidal, and tent mappings presented
the best possible results at di�erent run times based
on experimental results presented in Table 2 (Avg =
117.00, SD=0, worst cost=117.00, and SR=1.00). Al-
though gauss/mouse mapping of R3 cannot outperform
the VPS results, other mapping methods have good
performance in enhancing the VPS and circle, logistic,
and sinusoidal maps provide robustness for VPS at all
run times (Avg=117.00, SD=0, worst cost=117.00, and
SR=1.00). The statistical results of using chaotic maps
as p parameter showed that all chaotic maps, except
the gauss/mouse, could improve the VPS results and
mapping of this parameter with circle, logistic, singer,
and sinusoidal maps resulted in the robustness of the
VPS algorithm.

Figure 6 illustrates the corresponding optimal
solution schedule of the �rst example obtained by
the chaos-based VPS algorithms for the �rst example.
Moreover, sequences and start/�nish times of all activ-
ities of the projects, with dummy activities not being
included, are provided and the schedule describes the
resource-allocation pro�le. The �nal project duration

was determined as 117 days by using the proposed
method after resource leveling.

6.2. Results and discussion of Example 2
Figure 7 shows the convergence curves of VPS and
CVPS techniques employed to solve the second exam-
ple. Results of chaotic maps used as the VPS operators
were drawn singly for all operators. The convergence
curve of the VPS is shown in all �gures for simplicity of
the comparison. Although gauss/mouse, logistic, sine,
and sinusoidal maps could not be as successful as GP
selection operators, Chebyshev, circle, iterative, piece-
wise, sine, singer, and tent maps successfully improved
the performance of the VPS in solving this example.
In addition, Chebyshev and piecewise maps were more
successful than others in using them as GP selection
operators. All chaotic BP selection operators improved
the performance of the VPS in solving this example and
piecewise gave the best and fastest convergence result
among all chaotic BP selection operators. Although
gauss/mouse chaotic operator R1 did not improve the
performance of the VPS in solving this example, other
maps improved the VPS cost and piecewise mapping
was better and faster than others in adjusting R1
parameter. Moreover, except gauss/mouse mapping,
adjusting parameter R2 to all other CVPS techniques
could outperform the VPS results and mapping with
the sinusoidal map was successful in outperforming
other algorithms. All chaos-based maps as the operator
R2, except the gauss/mouse mapping, could improve
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Figure 7. Convergence curves for the Chaotic Vibtaring Particles System (CVPS) algorithms for solving Example 2.

the performance of the VPS algorithm and, also, map-
ping with sinusoidal led to more robust solutions. The
graphical curve of chaotic maps used as the operator
R3 showed that while gauss/mouse mapping could not
outperform the VPS results, other mapping methods
had a better convergence speed than the standard VPS

and adjusting p values by the sinusoidal map led to
higher robustness.

The statistical results of PSO, CBO, GA, HS,
ICA, VPS, and di�erent CVPS algorithms for solving
Example 2 are shown in Table 3. Here, the best
results of each parameter are highlighted in bold form.
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Table 3. Statistical results of the chaotic VPS for Example 2.
Algorithm Avg. SD Worst SR Algorithm Avg. SD Worst SR Algorithm Avg. SD Worst SR

PSO 54.97 1.0981 58.00 0.53 CBO 54.57 0.8172 56.00 0.63 GA 54.63 0.8087 56.00 0.57

HS 54.60 0.8550 57.00 0.60 ICA 54.57 0.8172 56.00 0.63 VPS 54.53 0.7303 55.00 0.60

CVPS-GP -01 54.03 0.1826 55.00 0.97 CVPS-R1-01 54.20 0.5509 56.00 0.87 CVPS-R3-01 54.30 0.5350 56.00 0.73
CVPS-GP -02 54.57 0.8172 56.00 0.63 CVPS-R1-02 54.36 0.7649 57.00 0.77 CVPS-R3-02 54.40 0.7240 56.00 0.73
CVPS-GP -03 54.13 0.9371 57.00 0.07 CVPS-R1-03 55.13 0.8996 56.00 0.26 CVPS-R3-03 54.67 0.8841 57.00 0.57
CVPS-GP -04 54.43 0.1826 57.00 0.70 CVPS-R1-04 54.10 0.3051 55.00 0.90 CVPS-R3-04 54.27 0.6915 57.00 0.83
CVPS-GP -05 54.63 0.8087 56.00 0.57 CVPS-R1-05 54.30 0.7497 57.00 0.83 CVPS-R3-05 54.17 0.4611 56.00 0.87
CVPS-GP -06 54.00 0 54.00 1 CVPS-R1-06 54.00 0 54.00 1 CVPS-R3-06 54.13 0.3457 55.00 0.87
CVPS-GP -07 54.60 0.8550 57.00 0.60 CVPS-R1-07 54.26 0.5833 56.00 0.80 CVPS-R3-07 54.33 0.6065 56.00 0.73
CVPS-GP -08 54.43 0.7279 56.00 0.70 CVPS-R1-08 54.06 0.2537 55.00 0.93 CVPS-R3-08 54.30 0.6513 57.00 0.77
CVPS-GP -09 55.00 0.9826 57.00 0.43 CVPS-R1-09 54.26 0.5833 56.00 0.80 CVPS-R3-09 54.00 0 54.00 1
CVPS-GP -10 54.30 0.7022 57.00 0.80 CVPS-R1-10 54.26 0.5833 56.00 0.80 CVPS-R3-10 54.23 0.5040 56.00 0.80

CVPS-BP -01 54.30 0.5960 56.00 0.77 CVPS-R2-01 54.23 0.6789 57.00 0.87 CVPS-p-01 54.46 0.8193 56.00 0.73
CVPS-BP -02 54.43 0.8172 56.00 0.73 CVPS-R2-02 54.43 0.6789 56.00 0.67 CVPS- p -02 54.26 0.7397 57.00 0.86
CVPS-BP -03 54.37 0.7184 56.00 0.77 CVPS-R2-03 56.03 0.9643 58.00 0.10 CVPS- p -03 54.96 0.9643 57.00 0.43
CVPS-BP -04 54.00 0 54.00 1 CVPS-R2-04 54.23 0.5683 56.00 0.83 CVPS- p -04 54.43 0.6789 56.00 0.67
CVPS-BP -05 54.30 0.6513 57.00 0.80 CVPS-R2-05 54.16 0.3790 55.00 0.83 CVPS- p -05 54.33 0.5467 56.00 0.73
CVPS-BP -06 54.27 0.5833 56.00 0.80 CVPS-R2-06 54.20 0.5509 56.00 0.73 CVPS- p -06 54.26 0.5833 56.00 0.76
CVPS-BP -07 54.43 0.7279 56.00 0.70 CVPS-R2-07 54.43 0.7279 56.00 0.70 CVPS- p -07 54.46 0.7303 56.00 0.67
CVPS-BP -08 54.40 0.7240 56.00 0.73 CVPS-R2-08 54.10 0.3051 55.00 0.90 CVPS- p -08 54.03 0 54.00 1
CVPS-BP -09 54.43 0.7279 56.00 0.70 CVPS-R2-09 54.03 0 54.00 1 CVPS- p -09 54.03 0 54.00 1
CVPS-BP -10 54.40 0.6747 56.00 0.70 CVPS-R2-10 54.30 0.7022 57.00 0.80 CVPS- p -10 54.46 0.7761 56.00 0.70

All of the algorithms could obtain the best duration
in comparison to those obtained in the literature
[45]. As listed in Table 3, gauss/mouse, logistic, sine,
and sinusoidal maps cannot obtain the results of the
VPS, while other chaotic GP selection operators could
improve the performance of the VPS and piecewise GP
selection operator presented worse results than other
maps. On the other hand, all chaotic BP selection
operators successfully improved the performance of the
VPS algorithm and the best in
uence as BP selection
operator was presented by iterative map. Besides,
except for gauss/mouse mapping, all other CVPS
algorithms with chaotic adjusting operators R1 were
successful in outperforming the VPS and piecewise
mappings had the best performances. According to
the results shown in Table 3, adjusting R2 to all maps
provided better results than the standard VPS and
tent provided the best performance for the second
example. Further, as shown in this table, except
gauss/mouse mapping, all other CVPS techniques with
chaotic operators R3 could outperform the VPS results
and mapping of R3 with sinusoidal map was successful
at all run times. The statistical results of chaotic maps
used as the operator p showed that all of the chaotic
maps, except the gauss/mouse, were able to improve
the VPS results and mapping of this parameter with
singer and sinusoidal maps improved the robustness of
the VPS algorithm.

Figure 8 illustrates the corresponding optimal
solution schedule of Example 2 obtained by the chaos-
based VPS algorithms for Example 2. Moreover, the
schedule describes the resource-allocation pro�le, and

the sequences with start/�nish times of all activities
of the projects are provided with no dummy activities
being included. The �nal project duration is 54 days
after resource leveling by the proposed methods.

6.3. Results and discussion for Example 3
Figure 9 shows the convergence curves of all mapping
techniques for solving the third example. For simplicity
of the comparison, the convergence curve of the VPS
for this case is shown in all �gures. As can be
seen from Figure 9, Chebyshev, iterative, piecewise,
singer, and sinusoidal chaotic GP selection operators
could improve the performance of VPS in solving
the third example. On the other hand, piecewise
mapping presented better convergence than other maps
for the GP selection operator. All chaotic BP selection
operators were able to improve the performance of VPS
in solving the third example, and iterative mapping had
the best e�ciency in increasing the speed and reducing
cost of this example. Besides, except gauss/mouse
mapping, all other CVPS techniques with chaotic
operators R1 were successful in outperforming the VPS
results. By using chaos-based maps as the adjusting
operator R2, the gauss/mouse, logistic, and sinusoidal
mappings cannot obtain the results of standard VPS
and other maps could improve the performance of VPS
algorithm as the adjusting operator R2. According to
this table, the sinusoidal adjusting operator R2 had
the best convergence. However, adjusting parameter
R3 with gauss/mouse and singer cannot outperform
the VPS results. Other mapping methods had better
performances in enhancing the VPS and, among these
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Figure 8. Resource allocation pro�le of Example 2.

Table 4. Statistical results of the chaotic VPS for Example 3.
Algorithm Avg. SD Worst SR Algorithm Avg. SD Worst SR Algorithm Avg. SD Worst SR

PSO 133.67 0.4795 134 0.33 CBO 133.57 0.5040 134 0.43 GA 133.73 0.4498 134 0.27

HS 133.73 0.4498 134 0.27 ICA 133.60 0.4983 134 0.40 VPS 133.63 0.4901 134 0.37

CVPS-GP -01 133.53 0.5074 134 0.47 CVPS-R1-01 133.43 0.5040 134 0.57 CVPS-R3-01 133.50 0.5085 134 0.50
CVPS-GP -02 133.67 0.4795 134 0.33 CVPS-R1-02 133.60 0.4983 134 0.40 CVPS-R3-02 133.53 0.5074 134 0.47
CVPS-GP -03 133.33 1.2685 140 0.10 CVPS-R1-03 133.73 0.4498 134 0.27 CVPS-R3-03 133.63 0.4901 134 0.37
CVPS-GP -04 133.60 0.4983 134 0.40 CVPS-R1-04 133.50 0.5085 134 0.50 CVPS-R3-04 133.50 0.5085 134 0.50
CVPS-GP -05 133.63 0.4901 134 0.37 CVPS-R1-05 133.47 0.5074 134 0.53 CVPS-R3-05 133.47 0.5074 134 0.53
CVPS-GP -06 133.50 0.5085 134 0.50 CVPS-R1-06 133.43 0.5040 134 0.57 CVPS-R3-06 133.53 0.5074 134 0. 47
CVPS-GP -07 133.77 0.4302 134 0.23 CVPS-R1-07 133.50 0.5085 134 0.50 CVPS-R3-07 133.53 0.5074 134 0.47
CVPS-GP -08 133.53 0.5074 134 0.47 CVPS-R1-08 133.53 0.5074 134 0.47 CVPS-R3-08 133.67 0.4795 134 0.33
CVPS-GP -09 133.57 0.5040 134 0.43 CVPS-R1-09 133.50 0.5085 134 0.50 CVPS-R3-09 133.43 0.5040 134 0.57
CVPS-GP -10 133.67 0.4795 134 0.33 CVPS-R1-10 133.47 0.5074 134 0.53 CVPS-R3-10 133.50 0.5085 134 0.50

CVPS-BP -01 133.57 0.5040 134 0.43 CVPS-R2-01 133.43 0.5040 134 0.57 CVPS-p-01 133.67 0.4795 134 0.33
CVPS-BP -02 133.57 0.5040 134 0.43 CVPS-R2-02 133.47 0.5074 134 0.53 CVPS- p -02 133.57 0.5040 134 0.43
CVPS-BP -03 133.50 0.5085 134 0.50 CVPS-R2-03 134.13 0.8342 136 0.10 CVPS- p-03 133.80 0.4068 134 0.20
CVPS-BP -04 133.37 0.4901 134 0.63 CVPS-R2-04 133.53 0.5074 134 0.47 CVPS- p -04 133.50 0.5085 134 0.50
CVPS-BP -05 133.60 0.4983 134 0.40 CVPS-R2-05 133.43 0.5040 134 0.57 CVPS- p -05 133.60 0.4983 134 0.40
CVPS-BP -06 133.50 0.5085 134 0.50 CVPS-R2-06 133.57 0.5040 134 0.43 CVPS- p -06 133.57 0.5040 134 0.43
CVPS-BP -07 133.50 0.5085 134 0.50 CVPS-R2-07 133.57 0.5040 134 0.43 CVPS- p -07 133.70 0.4661 134 0.30
CVPS-BP -08 133.40 0.4983 134 0.60 CVPS-R2-08 133.40 0.4983 134 0.60 CVPS- p -08 133.26 0.4498 134 0.73
CVPS-BP -09 133.53 0.5074 134 0.47 CVPS-R2-09 133.37 0.4901 134 0.63 CVPS- p -09 133.53 0.5074 134 0.47
CVPS-BP -10 133.43 0.5040 134 0.57 CVPS-R2-10 133.60 0.4983 134 0.40 CVPS- p -10 133.60 0.4983 134 0.40

maps, the sinusoidal chaotic operator showed the best
statistical results. Convergence curves of CVPS-p
showed that Chebyshev, gauss/mouse, sine, and tent
could improve the VPS results, while the application
of circle, iterative, logistic, piecewise, singer, and
sinusoidal maps as adjusting operator of p parameter
improved the convergence speed of VPS and mapping
of this parameter by the singer map achieved the best
convergence results for the VPS among all results of
this example.

The statistical results of PSO, CBO, GA, HS,
ICA, VPS, and di�erent CVPS algorithms in solving
Example 3 are shown in Table 4. In this table,
the best results of each operator are highlighted in

bold form. All of the algorithms could obtain better
results than those obtained in the literature [8,39].
According to this table, Chebyshev, iterative, logistic,
piecewise, singer, sinusoidal, and tent chaotic GP
selection operators could improve the performance of
VPS and piecewiseGP selection operator showed worse
results than others. On the other hand, all chaotic
BP selection operators successfully improved the per-
formance of the VPS algorithm and iterative map
had the best in
uence as the BP selection operator.
Besides, except gauss/mouse mapping, all other CVPS
algorithms with chaotic operators R1 were successful in
outperforming the VPS and Chebyshev, and piecewise
mappings had the best performances. Considering
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Figure 9. Convergence curves for the Chaotic Vibtaring Particles System (CVPS) algorithms for solving Example 3.

the results presented in Table 4, the mapping of R2
with sinusoidal map provided the best performance for
the third example in comparison with other adjusting
methods of this parameter. According to this table,
adjusting the R3 parameter by singer map produced

less satisfactory results in terms of statistics, while
all other maps were able to outperform the standard
VPS and sinusoidal map provided better performance
than others. Moreover, adjusting the p parameter with
Chebyshev, gauss/mouse, and sine maps cannot im-
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Figure 10. Resource allocation pro�le of Example 3.

prove the performance of VPS, while adjusting p value
with other mapping methods enhances the performance
of this algorithm and singer presents the best results for
this algorithm.

The optimal schedule obtained by the CVPS
algorithms for Example 3 is shown in Figure 10.
Furthermore, the sequences and start/�nish times of all
activities of the projects whose dummy activities are
not included are provided and the schedule describes
the resource-allocation pro�le. The proposed method
managed to compute the �nal project duration as 133
days after resource leveling.

7. Conclusions

Employing chaos as a technique for adjusting some
parameters of the metaheuristic algorithms has become
an interesting research topic among researchers in
recent years. This study applied chaos to the standard
VPS and developed a set of di�erent chaotic VPSs.
In this paper, six di�erent Chaotic Vibtaring Particles
System (CVPS) algorithms using ten di�erent chaotic
maps were proposed. By comparing di�erent chaotic
VPS algorithms, the algorithm which used the piece-
wise map as itsGP selection parameter (CVPS-GP -06)
had the best results. Moreover, the results revealed
that the application of iterative map was better than
other mappings for BP selection parameter. Other
results of this research showed that the application
of Chebyshev and piecewise mappings as the operator
R1 had additional improvement to the results. It was
also found that both the operators R1 and R2 could
be improved by replacement with sinusoidal chaotic
maps. Finally, the results of using chaotic maps as
the operator p revealed that singer map provided the
best results of all other maps. Statistical results and
the success rates of the Chaos-based VPS algorithms
suggested that the adjusted algorithms could clearly
improve the robustness of the global optimality and
they also could enhance the quality of the results. For
future works, it would be interesting to utilize chaos
in enhanced vibrating particles system and solve engi-
neering optimization problems using these algorithms.
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