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Abstract. This study explores mixed convection ow of tangent hyperbolic liquid
over stretching sheet. Joule heating, double strati�cation, non-linear thermal radiation,
Brownian motion, and thermophoresis were presented. The phenomenon of mass transfer
was examined by activation energy along with binary chemical. Computations of convergent
solutions were carried out for the nonlinear mathematical system. Graphical representation
was employed to illustrate the outcome of sundry variables on velocity, temperature, and
concentration of nanoparticles. Moreover, Nusselt number, coe�cient of drag force, and
mass transfer rate were examined. It was observed that velocity decreases at a larger
Weissenberg number. Concentration of uid was enhanced in the case of higher activation
energy parameter.

© 2019 Sharif University of Technology. All rights reserved.

1. Introduction

Thermal radiation involves electromagnetic radiations
transmitted due to the thermal motion of the uid
particles almost in all directions. The process of
thermal radiation is observed in the heating of the
bodies by diverse means such as solar light, �re, and
radiator. Heat transfer with radiation has extensive
industrial applications including atomic reactor secu-
rity, boiler design, heat exchangers, power stations,
and many propulsion equipment pieces and tools for
missiles, aircraft, space automobiles, and satellites.
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Radiative heat change in energy equation is measured
by Rosseland calculation. Cortell [1] investigated non-
linear radiative heat transfer in ow by stretched
surface. Properties of non-linear thermal radiation and
cubic autocatalysis in nanouid ow with rotational
e�ects were described by Kumar et al. [2]. The e�ect
of non-linear radiative ow on magneto-Burgers uid
with gyrotactic microorganisms was studied by Khan
et al. [3]. Bhatti and Rashidi [4] developed a numerical
solution to the problem of entropy generation mini-
mization for radiative non-linear ow over a stretching
sheet. Few recent e�orts under this aspect can be
observed in [5-7].

Examination of heat transfer via mixed convec-
tion has produced substantial interest in numerous
�elds of engineering and technology due to its appli-
cations to heat conversion in nuclear reactors, tem-
perature variant atmospheric ow, electrical devices,
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and the ow path owing to density variation in a
stream across a vertical direction through seasonal vari-
ation. Mixed convection is normally entitled through
buoyancy force created by density and temperature
variations. By Boussinesq's theory, equations of energy
and momentum containing mixed convection term are
highly coupled. Fluid ow with mixed convection gen-
erates a boundary layer close to the vertical plate. A
sizeable literature on mixed convective ow is available
now. Some representative contributions in this regard
can be seen in [8-14].

E�ects of mass transfers in uid mixture are
observed due to concentration variation of species
existing in uid. This variation occurs in a uid when
species move from a higher concentration region to a
lower concentration region.

Further, the energy obtained by reactants before
a chemical reaction is referred to as activation energy,
which is also called the minimum energy required
to initiate a reaction. Mass transfer phenomenon
accompanied by chemical reaction along activation
energy is frequently observed in several applications
including chemical and geothermal engineering, mech-
anisms comprised of (oil, water) suspension, and food
making. Recent contributions in this �eld are made
only by few researchers [15-18].

Strati�cation is a process of developing layers
through temperature and concentration variation or
inuence of di�erent uids. Through simultaneous
e�ects of heat and mass transfer, it is important to
analyze the e�ectiveness of thermal and solutal strat-
i�cation concerned with strati�cation of uid medium
in view of heat convection and mass transfer because
of convective motion of nanouids. The study of mixed
convection with double strati�cation is observed in
diverse industrial and engineering applications. This
phenomenon has a dominant role in polymer extrusion,
in hydraulic ow of thermal uids, geothermal reser-
voirs, volcanic ows, and geological systems. A number
of studies have been conducted in this direction [19-22].

The current study discusses the inuence of
activation energy on double strati�ed ow of tan-
gent hyperbolic nanouid over a stretched surface.
Modi�ed Arrhenius function is used. Buongiorno
model is considered, which emphasizes the novel fea-
tures of thermophoresis and Brownian movement. In
addition, mixed convection discloses the impact of
buoyancy forces. Joule heating and nonlinear ra-
diation are examined. Homotopy Analysis Method
(HAM) is utilized for the development of conver-
gent solutions [23-35]. Homotopic method appears
to perform better in the following aspects. This
method is not directly inuenced by small or large
parameters. Thus, HAM can be easily applied to
weaker and strongly nonlinear problems. HAM is
the uni�cation of some other analytical methods in-

cluding delta approximation, Adomian decomposition
method, homotopy perturbation technique, and Lya-
punov arti�cial parameter method. Explicit solutions
to highly nonlinear problems can be calculated by
HAM. It provides freedom to choose initial guesses
and operators. Unlike other methods, HAM provides
the simplest way to ensure the convergence of series
solution.

2. Modeling

Unsteady ow of tangent hyperbolic nanouid is ex-
amined here. Impermeable stretched sheet (at y = 0)
is accountable for uid motion. Material density is
assumed constant. Fluid con�ned the space y > 0.
Sheet is stretched with velocity Uw(x) = ax in x-
direction. The sheet has a constant temperature (Tw)
and constant concentration (Cw), whereas C1 and
T1 are uid's ambient concentration and temperature,
respectively. Brownian di�usion and thermophoresis
are present. Magnetic uid ows in the transverse
direction (Figure 1). E�ects of electric �eld are as-
sumed negligible. Moreover, the inuence of activation
energy with binary chemical reaction will be detailed.
Thermal radiation is taken to be non-linear. Viscous
dissipation and heat generation/absorption are absent.
Under these considerations, the velocity, temperature,
and concentration expressions are follows [4,17,35]:
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Figure 1. Physical model.
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The relevant boundary conditions are:

u = Uw(x) = ax; v = 0;

T = Tw = T0 + ^ax; C = Cw = C0 + ^ex;

at y = 0; (5)

u!0; T!T1=T0+
^
bx; C!C1=C0+

^
dx

at y !1: (6)

Here, u and v depict the velocity components parallel to
x- and y-axes, � material constant, ~n power law index,
� kinematic viscosity, � uid density, cp speci�c heat,
� the dynamic viscosity, DT the thermophoresis coef-
�cient, Uw the stretching velocity, DB the Brownian
coe�cient, � the heat capacity of nanoparticles, � the
electrical conductivity, T0 the reference temperature,
^
k the thermal conductivity, �T thermal expansion
coe�cient, �C concentration expansion coe�cient, and
(^a,

^
b , ^e ,

^
d) the dimensional constants. Further,

Tw and Cw are the constant temperature and so-
lute concentration near the surface, while T1 and
C1 represent ambient temperature and concentration.
Term [ TT1 ]n exp

h�Ea
k1T

i
in Eq. (4) is referred to as the

modi�ed Arrhenius function. In addition, k1 = 8:61�
10�5 eV/K represents the Boltzmann constant, n is the
dimensionless constant or rate constant in the range
�1 < n < 1, Kr is the chemical reaction parameter,
and Ea is the activation energy. Considering the
following transformations:
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velocity components are de�ned in terms of stream
function ( ) by v = �@ @x and u = @ 

@y . Now:

u = axf 0(�); v = �pa�f(�): (8)

Radiative heat ux through the Rosseland approxima-
tion yields:
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where �� and k� represent Stefan-Boltzmann constant
and mean absorption coe�cient. Based on Eq. (9),
Eq. (3) becomes: 
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Continuity expression is veri�ed, and Eqs. (2) to (10)
yield:
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f 0(�) = 1; f(�) = 0; �(�) = 1� S�;
�(�) = 1� S� at � = 0;

f 0(�)! 0; �(�)! 0; �(�)! 0

at � !1; (14)

where We denotes the Weissenberg number, M the
magnetic parameter, N� the local buoyancy parameter,
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� the mixed convection parameter, Pr the Prandtl
number, S� the thermal strati�ed parameter, S� the
solutal strati�ed parameter, Sc the Schmidt number,�
E dimensionless activation energy, and A0 the dimen-
sionless chemical reaction parameter. Furthermore,
Ec, Rd, (�w, �0), Nb, Nt, (Gr, Gr�) are the Eckert
number, radiation parameter, temperature ratio pa-
rameter, Brownian motion parameter, thermophoresis
parameter, and the Grashof number (temperature and
concentration), respectively. These parameters are
de�ned as follows:
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Coe�cient of drag force (Cfx), heat transfer rate
(Nux), and mass transfer rate (Shx) are described as
follows [30]:
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In the non-dimensional form, we obtain:
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in which Rex = Uwx
� is the Reynolds number.

3. Solution methodology

Series solution of the above-mentioned system is ob-
tained by the homotopic technique. Initial guesses
(f0; �0; �0) and associated linear operators (

^
Lf ,

^
L�;

^
L�)

are as follows:
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where ~Xi (i = 1�7) represents the arbitrary constants.

4. Convergence analysis

Homotopy analysis technique is helpful to �nd conver-
gent series solutions and provides a chance to sketch the
region of convergence. This region can be controlled by
setting appropriate values of ~f , ~�, and ~�. Figure 2
displays the h-curves. It is analyzed that the ranges
of parameters ~f , ~�, and ~� are �1:5 � ~f ��0:5, �1:3 � ~� � �0:4, and �1:4 � ~� � �0:7.
Numerically obtained solution convergence is presented
in Table 1. Here, the 20th order approximation is
enough for momentum equation, while energy and
concentration equations converge at the 25th order
approximation.
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Table 1. Convergence of HAM solutions when
~n = A0 = 0:1 = We, � = 0:3 = M = Sc, S� = 0:3 = S�,
Pr = 1:5, Rd = 0:5, Ec = 1:3 =

�
E, Sc = 0:8, N� = 1,

Nb = 0:1 = Nt, �w = 1:1, and �0 = 1:2.
Order of

approximations
�f 00(0) ��0(0) �0(0)

1 0.87717 1.0384 0.074223
2 0.88392 1.1535 0.075501
3 0.87568 1.1784 0.069273
4 0.86657 1.1822 0.065361
6 0.86657 1.1830 0.065025
12 0.86901 1.1795 0.064510
15 0.86902 1.1798 0.064469
20 0.86903 1.1793 0.064242
25 0.86903 1.1794 0.064303
30 0.86903 1.1794 0.064303
50 0.86903 1.1794 0.064303

Figure 2. ~�plots in view of f 00(0), �0(0), and �0(0).

Figure 3. f 0(�) via We.

5. Discussion

Velocity, temperature, and concentration are discussed
in Figures 3-16. Figure 3 predicts Weissenberg number,
We, variation on f 0(�). Clearly, velocity and momen-
tum layer have been found to be low through We. In
fact, the Weissenberg number is the ratio of relaxation

Figure 4. f 0(�) via N�.

Figure 5. f 0(�) via M .

time to particular time of uid. Hence, for more
relaxation time, the uid thickness increases and, con-
sequently, there is a reduction in uid velocity. Figure 4
indicates the variation of velocity f 0(�) by increasing
local buoyancy parameter N�. Clearly, velocity and
related layer thickness are enhanced through larger N�.
Figure 5 illustrates the impact of magnetic parameter
M on f 0(�). A rise in M leads to a decrease in velocity
�eld f 0(�). Obviously, larger magnetic parameter M
increases Lorentz force (also termed as resistive force),
which opposes uid movement and, thus, velocity re-
duces. The inuence of mixed convection parameter �
is depicted in Figure 6. Velocity is enhanced through �.
Higher values of mixed convection enhance buoyancy
forces; thus, velocity and corresponding momentum
layer increase.

Figure 7 explores the variations of temperature
�eld for magnetic parameter, M . In addition, tem-
perature increases in the case of a larger magnetic
parameter. Figure 8 demonstrates the enhancement
of temperature and thermal layer at higher Eckert
number, Ec. Graphical illustration of Nb for �(�) is
presented in Figure 9. Temperature rises in response to
larger variations of Nb, since the motion of uid particle
is unsystematic in the reaction of higher Brownian
motion parameter that leads to an increase in heat
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Figure 6. f 0(�) via �.

Figure 7. M impact on �(�).

Figure 8. Ec impact on �(�).

Figure 9. Nb impact on �(�).

Figure 10. Rd impact on �(�).

Figure 11. S� impact on �(�).

Figure 12. A0 e�ect on �(�).

production. Figure 10 explores temperature variation
for radiation parameter, Rd. Larger Rd gives rise to
a higher rate of heat transfer since heat production
enhances the radiation process. Impact of thermal
strati�ed variable, S�, on temperature, �(�), is reected
in Figure 11. Thermal �eld decreases with an increase
in S� as the di�erence in temperature decreases gradu-
ally between the ambient temperature, T1, and surface
temperature, Tw.

Figure 12 clari�es the outcome of A0 on concen-
tration of nanoparticles. As predicted, the decline



3934 S. Jabeen et al./Scientia Iranica, Transactions F: Nanotechnology 26 (2019) 3928{3937

Figure 13.
�
E e�ect on �(�).

Figure 14. Sc e�ect on �(�).

Figure 15. S� e�ect on �(�).

in nanoparticle concentration is noticed for larger A0.
Variations of activation energy,

�
E, in nanoparticles'

concentration are shown in Figure 13. As expected,
concentration is enhanced through

�
E. Outcome of

Schmidt number, Sc, on �(�) is displayed in Figure 14.
Herein, concentration decreases for higher Sc. Analysis
of concentration strati�cation parameter, S�, on �(�)
is displayed in Figure 15. It appears that larger values
of S� correspond to lower nanoparticle concentration
�(�). Figure 16 demonstrates a marginal increase in
the nanoparticle concentration when thermophoresis
parameter Nt varies from Nt = 0:2 to Nt = 0:35.

Figure 16. �(�) via Nt.

Table 2. Numerical description of skin friction coe�cient.

~n We M � N�
�
E �Re

1
2
xCfx

0.1 0.1 0.3 0.3 1 1.3 0.8688595

0.2 0.9131529

0.3 0.9673078

0.1 0.2 0.3 0.3 1 1.3 0.8701973

0.3 0.8759865

0.4 0.8783699

0.1 0.1 0.4 0.3 1 1.3 0.9030014

0.5 0.9458779

0.6 0.9977259

0.1 0.1 0.3 0.4 1 1.3 0.8039160

0.5 0.7507146

0.6 0.7290100

0.1 0.1 0.3 0.3 1.2 1.3 0.4763013

1.3 0.5473585

1.4 0.6347946

0.1 0.1 0.3 0.3 1 1.4 0.6814829

1.5 0.5666427

1.6 0.5298977

E�ects of various embedded parameters on skin-
friction coe�cient, Nusselt number, and Sherwood
number are demonstrated in Tables 2-4. Table 2
declares that the coe�cient of drag force is a�ected by
mixed convection parameter, �, and non-dimensional
activation energy,

�
E. The coe�cient of drag force is

decreased by these parameters. Skin-friction coe�cient
shows an increasing behavior for higher ~n, We, M ,
and N�. Table 3 displays variations in heat transfer
rate against some parameters of interest. Tabulated
values show that heat transfer rate decreases for
Eckert number, Ec, dimensionless thermally strati�ed
parameter, S�, Brownian di�usion parameter, Nb, and
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Table 3. Numerical description of Nusselt number.

Pr Rd Ec S� Nb Nt Re
1
2
xNux

1 0.5 1.6 0.3 0.1 0.1 0.2084664
1.1 0.2544226
1.2 0.3026473
1 0.6 1.6 0.3 0.1 0.1 0.2492009

0.7 0.2893210
0.8 0.3293889

1 0.5 1.7 0.3 0.1 0.1 0.2781875
1.8 0.2288348
1.9 0.1920219

1 0.5 1.6 0.4 0.1 0.1 0.1800328
0.5 0.1541903
0.6 0.1291780

1 0.5 1.6 0.3 0.2 0.1 0.1929118
0.3 0.1779978
0.4 0.1644246

1 0.5 1.6 0.3 0.2 0.2 0.1849759
0.3 0.1755373
0.4 0.1683754

Table 4. Numerical description of Sherwood number.

Sc A0
�
E S� Nb Nt Re

1
2
x Shx

0.8 0.1 1.1 0.1 0.2 0.3 0.3911616
0.9 0.4536701
1 0.5391772

0.8 0.2 1.1 0.1 0.2 0.3 0.3758304
0.3 0.3745837
0.4 0.3651333

0.8 0.1 1.2 0.1 0.2 0.3 0.3876376
1.3 0.3654337
1.4 0.3559579

0.8 0.1 1.1 0.15 0.2 0.3 0.3536455
0.2 0.3270567
0.25 0.3119910

0.8 0.1 1.1 0.1 0.25 0.3 0.5049517
0.3 0.5660433
0.35 0.6292429

0.8 0.1 1.1 0.1 0.2 0.4 0.2766914
0.5 0.1498125
0.6 0.04072542

thermophoresis parameter, Nt, while it decreases for
Prandtl number, Pr, and Rd. Further mass transfer
rate is decreased via higher Schmidt number, Sc, and
Brownian di�usion coe�cient, Nb; however, it increases
for the other parameters mentioned in Table 4.

6. Conclusions

Thermal and concentration strati�cations under the
e�ects of non-linear thermal radiation and activation
energy were explored. The obtained results are pre-
sented in the following.

� Velocity �eld decays with larger Weissenberg num-
ber, We;

� Concentration distribution reduces with an incre-
ment in solutal strati�cation parameter, S�;

� Temperature distribution signi�cantly reduces for
stronger thermal strati�ed parameter, S�;

� Stronger chemical reaction parameter, A0, results in
the increase of concentration distribution;

� Velocity has a direct relation with mixed convection
parameter, �;

� Concentration against activation energy variable,
�
E,

increases;
� Heat transfer rate is enhanced for radiation param-

eter, Rd;
� Higher mass transfer rate is noted for thermophore-

sis parameter, Nt.
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