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Abstract. This paper generalizes the Economic Production Quantity (EPQ) model in
the process manufacturing industry by incorporating regular Preventive Maintenance (PM)
activities into classic EPQ model. The PM program improves the conditions of production
to an acceptable level and avoids potential stops and disruptions. Therefore, it is a vital task
in every production process. However, the EPQ model does not consider PM activities and
thus, it is not applicable to real-world situations. A manufacturer that produced a product
under the EPQ setting with a defective production process was considered in which every
production cycle involved a number of sub-production cycles. Two models were developed
based on the disposal time of defective items to determine the optimal number of sub-
production cycles. In Model I, the disposal of defective items was performed once per cycle
at the end of each production cycle, while in Model II, the disposal of defective items was
performed multiple times per cycle at the end of each sub-production cycle. The total
cost functions were derived for each model separately and then, simple solution algorithms
were designed. A numerical example was dealt with to evaluate the proposed models. The
results illustrated that Model II was more cost e�ective than Model I.
© 2020 Sharif University of Technology. All rights reserved.

1. Introduction

Nowadays, manufacturing companies seek an appro-
priate production process plan to optimize production
and inventory costs in order to be more competitive in
marketplace. Numerous models of inventory systems
have been presented in the literature so far. Among
them, Economic Order Quantity (EOQ) is the �rst
and the basic one. In traditional EOQ, the demand is
deterministic and constant over the planning horizon
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and the order is received instantaneously. The model
aims to delineate the optimal order quantity for items
to minimize the total costs including holding and
ordering. Since the holding and ordering costs behave
inversely in basic EOQ, the total cost function is convex
and hence, an intermediate amount of order quantity
becomes optimal. By relaxing some basic assumptions
or adding new assumptions to the traditional EOQ
model, many versions of the inventory model have been
proposed so far. The Economic Production Quantity
(EPQ) is one of the earlier extensions of EOQ. In the
basic EOQ, it is assumed that the order quantity is
received at a moment with an in�nite rate, while in
EPQ, orders are received at a �nite rate over time. The
EPQ model, also known as economic manufacturing
quantity, aims to determine the optimal production
quantity for a process manufacturing facility. The
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objective of the EPQ is to minimize the total inventory
and production costs.

The standard EPQ model has been extended in
various directions until now. For example, Jain and
Rathore [1] studied the economic production quantity
model for deteriorating items considering price and
stock-dependent demand. Pan et al. [2] proposed
an EPQ model integrated with the process control
problem. Khedlekar [3] proposed an EPQ model with
varying demand and production system disruption.
Wee et al. [4] considered an EPQ model with a renewal
reward procedure for imperfect items. Moreover, Dash
et al. [5] designed an EPQ for deteriorating inventories
with time value of money and price-dependent demand.
An imperfect EPQ problem was suggested by Karimi-
Nasab and Sabri-Laghaie [6] with reworkable and non-
reworkable items and random defectives. Nasr et al. [7]
utilized di�erential equations for an EPQ model with
deteriorating raw materials. In addition, Pacheco-
Velazquez and Cardenas-Barron [8] mentioned an EPQ
problem by considering inventory costs of the raw
materials and �nished items, separately. Additionally,
Jawad et al. [9] analyzed a sustainable EPQ using the
laws of thermodynamics. In another work, a multi-
item EPQ with fuzzy demand was proposed by Sadeghi
et al. [10]. Moreover, Al-Salamah [11] suggested an
EPQ model with quality control process where the
items were subject to destructive or non-destructive
inspection. Mokhtari et al. [12] proposed an EPQ
model for perishable products with shortage and stock-
dependent demand. Mokhtari and Rezvan [13] studied
an EPQ model in a multi-buyer and multi-product
supply chain under partial backordering. Nasr et
al. [14] proposed an EPQ model with maintenance
and defective items where all defective items should
be removed at the end of cycle. Moreover, Karmakar
et al. [15] proposed a pollution-sensitive fuzzy EPQ
model with a time-dependent rate of production. Nobil
et al. [16] introduced a multi-machine multi-item EPQ
model with several constraints including allocation of
items, machine utilization, budget, production ware-
house space, and capacity of each single machine. Wee
et al. [17] examined the e�ect of two human factors
on the economic quantity model. They concluded that
both learning and fatigue played a key role in their
proposed model.

Rezg et al. [18] discussed an inventory system
in which Preventive Maintenance (PM) action would
be activated upon a pre-planned scheme or a machine
failure, whichever occurred �rst. Radhoui et al. [19]
developed an inventory model with %100 inspection
policy. If the proportion of non-conforming items
became more than a certain amount, the PM activities
would be carried out. Otherwise, there should be
no action. Liao and Sheu [20] developed an EPQ
which conducted PM at the end of each production

run period. In addition, PM might be either perfect or
imperfect under known probability. Sana [21] investi-
gated an inventory problem with imperfect production
and PM actions. In each cycle, PM actions were
executed when production process was completed. In
the study mentioned above, the optimal production run
time and optimal bu�er inventory that could minimize
the total cost per unit time were determined. Wee
and Widyadana [22] proposed an EPQ model with
deteriorating items the production process of which
resulted in reworkable and scrap items. Moreover, PM
was performed at the end of each rework process and
the time was considered as a random parameter. Pal
et al. [23] presented an EPQ model that applied PM to
ensure that breakdown of the manufacture would not
occur during the regular production process. Chen [24]
incorporated an inventory/production problem into
the PM activities. The regular production process
produced imperfect items whose known fraction could
be reworked. The PM was also imperfect and the
number of imperfect items corresponded to the level of
PM during the production cycle. Jafari and Makis [25]
investigated an inventory problem whose production
process deteriorated randomly. In this case, PM action
would be activated upon a shift in production condition
to a warning state. Sett et al. [26] studied an inventory
problem with imperfect production and inspection
errors. PM was carried out after production process
and accordingly, shortage might occur. La Fata and
Passannanti [27] incorporated a production-inventory
system with PM policies in which breakdown might
occur more than once at any age of the production
unit. In addition, they assumed that safety stock
would prevent shortage during the PM action, while it
was possible that the system could not satisfy demand
during corrective repair. Lai et al. [28] suggested
an EPQ model whose maintenance policy, depending
on the occurrence time of machine failure, comprised
corrective and PM.

As a useful extension of EPQ, PM activities can
be incorporated into the standard EPQ model. In
real-world manufacturing processes, it is a common
and frequent case that manufacturing machines are
interrupted for maintenance activities. The standard
EPQ models assume that the machine works con-
tinuously and there is no need for maintenance or
service. However, it is not a realistic assumption
and consequently, the standard EPQ is not applicable
to many manufacturing processes. Moreover, the
zero-defective process is rarely the case in practical
situations and there are usually a number of defective
items in any production process. This is also ignored by
the standard EPQ model. This study designs two EPQ
models where PM operations should be carried out at
�xed time intervals and the process produces a number
of defective items. When PM operation commences,
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the production is interrupted until the end of PM and
then, it continues. Every production cycle involves
a number of sub-production cycles to be optimally
determined. The time of defective item disposal is
considered a major parameter in the problem. In
Model I, it is assumed that all defective items are
disposed of at the end of production cycle altogether,
while in Model II, the defective items are disposed of
at the end of every sub-production cycle.

Finally, the objective of the present study is to
answer the following questions:

� What is the impact of considering the imperfect
production process and PM actions on the standard
EPQ model?

� When should the defective items be disposed of from
the inventory system?

� How many sub-productions should be considered to
minimize the total cost per unit time in the proposed
models?

� How many products are produced to minimize the
total cost per unit time in the proposed models?

The rest of this paper is organized as follows. Section 2
reviews the standard EPQ model as the base of the
proposed models. Then, Section 3 describes the
assumptions and notation. Sections 4 and 5 discuss
the proposed models and their solution procedure,
respectively. Section 6 presents a numerical example
and �nally, Section 7 concludes the paper.

2. Basic model

In this section, a brief description of the standard EPQ
model as the base model of our study is presented.
Then, the assumptions and notation employed to
construct the models are presented. Finally, the two
proposed models are described and distinguished.

2.1. The standard EPQ model
The EPQ model, regarded as an extension of the
basic EOQ model, determines the optimal production
quantity per cycle to minimize the total cost by bal-
ancing the production setup cost and inventory holding
cost. The di�erence between these two models is that
the EPQ assumes that the manufacturer produces its
own quantity; therefore, the orders are available in an
incremental manner at a �nite rate, while the EOQ
model assumes that the order quantity is received
immediately after ordering. In the basic EPQ, demand
for products is assumed continuous at a constant rate.
The production process is made at regular intervals.
The production setup cost is �xed and independent of
the quantity produced. No discount is available. The
replenishment is incrementally made via �nite rate.
Figure 1 shows the inventory level corresponding to

Figure 1. Inventory level under Economic Production
Quantity (EPQ) model.

a single product under EPQ framework. At every
inventory cycle T , the production is processed until
the inventory reaches maximum level Imax in the
production cycle tp and then, the stored inventory
is consumed with the demand rate D upon reaching
zero in the depletion cycle td. The setup process of
production incurs a �xed cost denoted by A and the
produced inventory can be stored with a holding cost
per unit time denoted by h. The objective here is to
�nd the EPQ, so that the total cost of inventory system
involving setup and holding costs is minimized.

By considering the characteristics of the basic
EPQ model as shown in Figure 1, the parameters of
the model are obtained as T = Q=D, tp = Q=P ,
td = Q=D � Q=P , and Imax = Q(1 � D=P ). The
holding cost per cycle is HC = hQ2(1 � D=P )=(2D)
and the setup cost per order is OC = A. The holding
and setup costs per unit time can be calculated by
dividing HC and OC through inventory cycle T , as
HCU = HC=T = hQ(1 � D=P )=2, and OC = AD=Q.
Therefore, the total cost including both holding and
setup costs is calculated as follows:

TCU =
hQ
2

�
1� D

P

�
+

AD
Q
; (1)

thus, the optimal production policy and total cost can
be derived by setting the derivative of TCU to zero:

Q�EPQ =

s
2AD

h
�
1� D

P

� ; (2)

TCU
�
Q�EPQ

�
=

s
2ADh

�
1� D

P

�
: (3)

2.2. Inventory system description
In the base model, there is a manufacturer who
produces a product under EPQ framework. The
product faces the external demandD, which is assumed
to be deterministic and constant over time horizon.
The manufacturer produces the product via a �nite
production rate P to meet the demand of customers.
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Table 1. Characteristics of two models.

Model EOQ/EPQ Imperfect
production process

Shortage PM actions
Number of

disposals per cycle

Model I EPQ X � X Single

Model II EPQ X � X Multiple

The model comprises an in�nite time horizon and zero
lead time. In addition, any shortage is not allowed and
purchase cost is �xed (with no discount option). In
contrast to the standard EPQ model, PM activities
should be carried out during �xed periods. During
PM activities, the production is interrupted and then,
it commences again at the end of the maintenance
process. In general, an inventory cycle is composed
of production and depletion cycles. The production
cycle includes m, which is an integer greater than or
equal to one, and consecutive sub-production cycles of
�xed length tSP, each followed by a PM activity of the
�xed length tPM. The depletion cycle is similar to that
of standard EPQ model in which the stored inventory
is depleted until it reaches zero. The inventory cost
consists of holding and setup costs. The holding cost
is per item per unit time, denoted by h, while the
setup cost involves two terms. While every production
cycle incurs a �xed setup cost A1 (�rst term), each
sub-production cycle incurs a �xed setup cost A2
(second term). The number of defective items during
every sub-production cycle is denoted by S. A list
of assumptions and the notation used throughout the
paper is presented in the following.

2.2.1. Assumptions
� Demand is deterministic and constant;
� Production rate is �nite;
� Production rate is greater than the demand rate;
� Lead time is assumed to be zero;
� Shortage is not allowed;
� There is no discount option;
� Setup cost is �xed and incurs per production cycle

and per sub-production cycle;
� Holding cost is per item per unit time;
� Production process is interrupted during PM activ-

ity;
� Duration of PM activities is �xed;
� Sub-production cycle time is �xed;
� Number of defective items per sub-production cycle

is �xed.

2.2.2. Notation
D Demand rate of product
P Production rate of product

A1 Fixed setup cost per production cycle
A2 Fixed setup cost per sub-production

cycle
h Holding cost of product per item per

unit time
tp Duration of production cycle

td Duration of depletion cycle
T Inventory cycle of product (T = tp+td)

tSP Duration of sub-production cycle
tPM Duration of PM activity
S Number of defective items per

sub-production cycle
q Number of sub-productions per cycle

(decision variable)
i Index of sub-production cycle

(i = 1; 2; � � � ; q)
Q Production quantity per cycle

(dependent variable to m)

In this study, two di�erent models of EPQ with PM
activities in terms of time are presented in which
defective items are disposed of. In Model I, it is
assumed that all defective items are disposed of at the
end of a production cycle altogether, while in Model II,
defective items are disposed of at the end of every sub-
production cycle separately. In Model I, the removal of
defective items occurs once per cycle, while in Model
II, the removal of defective items occurs once per sub-
production cycle, that is, multiple times per cycle. The
details of both models are discussed in the subsequent
subsections. Table 1 compares the main characteristics
of both models.

3. Model I: Disposal of defective items once
per cycle

In this section, the EPQ model is studied under PM
activities in which defective items are removed from
the system once at the end of the production cycle.
Figure 2 depicts the behavior of the inventory system
for this model.

To ensure feasibility and prevent shortage, we
consider (P � D)tSP � (S + DtPM) > 0. The total
cost involves setup and holding costs. The setup cost
SCI includes two terms per production cycle and per
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Figure 2. Inventory level for Model I.

sub-production cycle, which are:

SCI = A1 + qA2: (4)

To formulate the holding cost, �rst, the inventory level
at the start of PM activity (end of current production
process) at the ith sub-production cycle is de�ned as
Ii1 and the inventory level at the end of PM activity
(beginning of the next production process) at the ith
sub-production cycle as Ii2:

Ii1 = i(P �D)tSP � (i� 1)DtPM;

8 i = 1; 2; � � � ; q; (5)

Ii2 = i(P �D)tSP � iDtPM;

8 i = 1; 2; � � � ; q: (6)

By using Ii1 and Ii2, the area under inventory level in
Figure 2 (AI), as total inventory held in Model I, is
calculated as follows:

AI =
qX
i=1

��
Ii1 + I(i�1)2

2

�
tSP +

�
Ii1 + Ii2

2

�
tPM

�
� qStPM +

(Iq2 � qS)(td � tPM)
2

; (7)

where I02 = 0. Then, the holding cost can be calculated
as HCI = hAI . Before calculating the holding cost,
note that td � tPM can be written in terms of Iq2 as
shown in the following:

td � tPM =
Iq2 � qS

D
: (8)

Therefore, by substituting the Ii1, Ii2, and td�tPM into
AI and simplifying the result, the holding cost HCI is
written as:

HCI =h

(
tSP

2
�
q2tSP(P �D)�DqtPM(q � 1)

�
+
tPM

2
��Dq2tPM + qtSP(P �D)(q + 1)

�
�qStPM+

(Sq+qtSP(D�P )+DqtPM)2

2D

)
;
(9)

therefore, the total cost TCI = SCI + HCI is summa-
rized as given below:

TCI =A1 + qA2

+ h

(
tSP

2
�
q2tSP(P �D)�DqtPM(q � 1)

�
+
tPM

2
��Dq2tPM + qtSP(P �D)(q + 1)

�
�qStPM+

(Sq+qtSP(D�P )+DqtPM)2

2D

)
:
(10)

Finally, the total cost per unit time in Model I, TCUI,
is obtained by dividing TCI by the inventory cycle time
CTI. First, the cycle time is calculated through CTI =
q(tSP + tPM) + td � tPM, which is simpli�ed as:

CTI = q (PtSP � S) =D: (11)

Then, the total cost per unit time of Model I is obtained
as shown below.

TCUI =
TCI

q(PtSP � S)=D
=

A1D
q (PtSP � S)

+
A2D

(PtSP � S)
+

hD
(PtSP � S)
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�
(
tSP

2
(qtSP(P �D)�DtPM(q � 1))

+
tPM

2
(�DqtPM + tSP(P �D)(q + 1))

�StPM+
q (S+tSP(D�P )+DtPM)2

2D

)
: (12)

As observed, the total cost TCUI is a function of
decision variable q (the number of sub-production
cycles per cycle). To achieve the optimal value of this
variable, the derivative of total cost TCUI is set to zero:

@TCUI

@q
=� A1D

q2(PtSP � S)

+
hD

(PtSP�S)

(
tSP

2
(tSP(P�D)�DtPM))

+
tPM

2
(�DtPM + tSP(P �D))

+
(S + tSP(D � P ) +DtPM)2

2D

)
= 0; (13)

by simplifying the above equation, we obtain:

A1

q2 =h

(
tSP

2
(tSP(P �D)� (DtPM))

+
tPM

2
(�DtPM + tSP(P �D))

+
(S + tSP(D � P ) +DtPM)2

2D

)
; (14)

which yields:

qI =

s
2A1D

h fDF (tSP + tPM) + (F � S)2g ; (15)

where:

F = (P �D)tSP �DtPM: (16)

In addition, the number of sub-production cycles in
Model I, i.e., qI , is used to obtain the production
quantity at each cycle of Model I as QI = tSPPqI .

For further analysis of the obtained solution, q�I
with respect to the standard EPQ formula is thor-
oughly investigated. In the standard EPQ, no PM
activity is observed, and thus, PM duration is zero
(tPM = 0) and there are no defective items (S = 0).
In this regard, F = (P � D)tSP and the production
quantity QI = tSPPqI is simpli�ed to:

QI =

s
2A1D

h
�
1� D

P

� ; (17)

which is equal to the optimal production quantity in
the basic EPQ (Q�EPQ). This completes the com-
parative analysis between the proposed Model I and
standard EPQ.

Since the sub-production cycle is an integer (q �
1), a simple algorithm is designed to �nd the feasible
solution. Prior to presenting the algorithm, it is
necessary to evaluate the convexity of the total cost
function TCUI. To this end, the second derivative of
TCUI with respect to q is calculated as follows:

@2TCUI

@q2 =
2A1D

q3 (PtSP � S)
: (18)

Given that PtSP�S > 0 in Model I, it can be concluded
that @2TCUI

@q2 > 0 and hence, the convexity is proved.
Therefore, the following algorithm �nds the feasible
solution:

Step 1: Find qI using Eq. (15);
Step 2: If qI is less than 1, set q�I = 1 and stop the

algorithm;
Step 3: If qI is not an integer, set q1 = [qI] and q2 =

[qI ] + 1, where [:] calculates the integer part
of qI ;

Step 4: Calculate the total costs associated with q1
and q2 as TCU1 and TCU2;

Step 5: Select the minimum total cost as TCU =
minfTCU1;TCU2g and set the correspond-
ing q(q1 or q2) as q�I .

Having determined the optimal number of sub-
productions per cycle q�I , we can �nd the optimal
duration of production cycle t�p and depletion cycle t�d
in Model I as t�p = q�I tSP +(q�I � 1) tPM and t�d = tPM+
fq�I (P �D) tSP � q�IDtPM � q�ISg =D, respectively.

4. Model II: Removal of defective items once
per sub-production cycle

This section discusses the case in which defective items
are removed from the system at the end of every sub-
production cycle. Figure 3 depicts the behavior of the
inventory system for this model in general.

Similar to Model I, (P �D)tSP� (S+DtPM) > 0
is regarded as the feasibility condition. In addition,
the setup cost SCII includes two terms per production
cycle and per sub-production cycle, including:

SCII = A1 + qA2: (19)

In order to formulate the holding cost, �rst, the inven-
tory level at the end of sub-production cycle (before
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Figure 3. Inventory level for Model II.

starting maintenance) at the ith sub-production cycle
is de�ned as Ii1, the inventory level at the start of PM
activity at the ith sub-production cycle as Ii2, and the
inventory level at the end of PM activity (start of next
production process) at the ith sub-production cycle as
Ii3:

Ii1 = i(P �D)tSP � (i� 1)S � (i� 1)DtPM;

8 i = 1; 2; � � � ; q; (20)

Ii2 = i(P �D)tSP � iS � (i� 1)DtPM;

8 i = 1; 2; � � � ; q; (21)

Ii3 = i(P �D)tSP � iS � iDtPM;

8 i = 1; 2; � � � ; q: (22)

Using Ii1, Ii2, and Ii3, the area under inventory level
in Figure 3 (AII), regarded as the total inventory hold
in Model I, is calculated as follows:

AII =
qX
i=1

��
Ii1 + I(i�1)3

2

�
tSP +

�
Ii2 + Ii3

2

�
tPM

�
� qStPM +

Iq3 (td � tPM)
2

; (23)

where I03 = 0. Then, the holding cost can be calculated
as HCII = hAII. To calculate HCII, note that td� tPM
can be written in terms of Iq3:

td � tPM =
Iq3
D
: (24)

Therefore, by substituting Ii1, Ii2, Ii3, and td � tPM
into AII and simplifying the result, the holding cost
HCII is obtained as:

HCII =h

(
�S

�
qtPM(q + 1)

2
+
qtSP(q � 1)

2

�
�DtPM

�
q2tPM

2
+
qtSP(q � 1)

2

�
+ (P �D)tSP

�
q2tSP

2
+
qtPM(q + 1)

2

�
+
q2 (S +DtPM + tSP(D � P ))2

2D

)
; (25)

therefore, the total cost TCII = SCII + HCII is
summarized as:

TCII =A1+qA2+h

(
�S
�
qtPM(q+1)

2
+
qtSP(q�1)

2

�
�DtPM

�
q2tPM

2
+
qtSP(q � 1)

2

�
+ (P �D)tSP

�
q2tSP

2
+
qtPM(q + 1)

2

�
+
q2 (S +DtPM + tSP(D � P ))2

2D

)
: (26)

Finally, the total cost per unit time in Model II, TCUII,
is obtained through dividing TCII by the inventory
cycle time CTII. To this end, the cycle time is
calculated through CTII = q(tSP + tPM) + td � tPM,
which is simpli�ed to:

CTII = q (PtSP � S) =D; (27)

which is equal to CTI. Then, the total cost per unit
time of Model II is obtained as:
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TCUII =
TC

q (PtSP � S) =D
=

A1D
q (PtSP � S)

+
A2D

(PtSP � S)
+

hD
(PtSP � S)

�
(
�S

�
tPM(q + 1)

2
+
tSP(q � 1)

2

�
�DtPM

�
qtPM

2
+
tSP(q � 1)

2

�
+ (P �D)tSP

�
qtSP

2
+
tPM(q + 1)

2

�
+
q (S +DtPM + tSP(D � P ))2

2D

)
: (28)

To attain the optimal value for q, the derivative of total
cost TCUII is set to zero.

@TCUII

@q
=� A1D

q2(PtSP � S)

+
hD

(PtSP � S)

(
�S

2
(tPM + tSP)

� DtPM

2
(tPM + tSP)

+ (P �D)
tSP

2
(tSP + tPM)

+
1

2D
(S+DtPM+tSP(D�P ))2

)
= 0:

(29)

By simplifying the above equation, the following equa-
tion is obtained:

qII =

s
2A1D

h fDG (tSP + tPM) +G2g ; (30)

where:

G = (P �D)tSP � (S +DtPM) : (31)

Moreover, the production quantity at each cycle of
Model II is obtained as QII = tSPPqII.

For further analysis of the obtained solution, qII
for the case of standard EPQ formula is investigated. In
standard EPQ, we have tPM = 0 and S = 0. Thus, G =
tSP(P � D) is achieved and the production quantity
QII = tSPPqII is simpli�ed to:

QII =

s
2A1D

h(1� D
P )
; (32)

which is equal to the optimal production quantity in
basic EPQ (Q�EPQ).

Since the sub-production cycle is an integer (q �
1), a simple algorithm is designed to �nd the feasible
solution. Similar to Mode I, it is required to evaluate
the convexity of total cost function TCUII. To this
end, the second derivative of TCUII with respect to q
is calculated as follows:

@2TCUI

@q2 =
2A1D

q3 (PtSP � S)
: (33)

Since PtSP�S > 0, it can be concluded that @2TCUII
@q2 >

0 and hence, the convexity is proved. Furthermore,
similar to Model I, by using the algorithm, the feasible
solution for Model II is achieved as follows:

Step 1: Find qII using Eq. (30);
Step 2: If qII is less than 1, set q�II = 1 and stop the

algorithm;
Step 3: If qII is not an integer, set q1 = [qII] and

q2 = [qII] + 1 where [:] calculates the integer
part of qII;

Step 4: Calculate the total costs associated with q1
and q2 as TCU1 and TCU2;

Step 5: Select the minimum total cost as TCU =
minfTCU1;TCU2g and set its corresponding
q(q1 or q2) as q�II.

In addition, the optimal durations of production cycle
t�p and depletion cycle t�d in Model II can be calculated
as t�p = q�IItSP + (q�II � 1)tPM and t�d = tPM + fq�II(P �
D)tSP � q�IIS � q�IIDtPMg=D, respectively.

5. Example and discussion

This section discusses a numerical example in order to
investigate the performance of the proposed EPQ mod-
els. Consider a manufacturer that produces a product
under EPQ setting. The demand is deterministic and
constant, D = 60, and the production rate is �nite
P = 100. In addition, the lead time is zero and shortage
is not allowed. The setup costs are �xed and incurred
per production cycle A1 = 240 and per sub-production
cycle A2 = 60. The holding cost is calculated per item
per unit time h = 2. The duration of PM activities
is �xed tPM = 0:2. The sub-production cycle time is
�xed tSP = 1:2. The number of defective items per
sub-production cycle is �xed S = 10. Prior to solving
this example, the total cost per unit times TCUI and
TCUII is derived as follows:

TCUI =
370q2 + 480q + 1440

11q
;

TCUII =
286q2 + 564q + 1440

11q
:
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Figure 4. Total cost functions, TCUI and TCUII.

Figure 4 presents both total cost functions for further
analysis of these two models.

Obviously, both cost functions are convex. There-
fore, the minimum cost value of q can be obtained by
setting derivatives to zero.

@TCUI

@q
=

10(37q2 � 144)
11q2 = 0) qI = 1:9728;

@TCUII

@q
=

2(143q2 � 720)
11q2 = 0) qII = 2:2439:

In addition, these solutions can be obtained using
Eqs. (15) and (30):

F = ((100� 60)1:2� 60� 0:2) = 36;

qI =

s
2� 240� 60

2f60�36� (1:2+0:2)+(36�10)2g=1:9728;

G = ((100� 60)1:2� (10 + 60� 0:2)) = 26;

qII =

s
2� 240� 60

2f60� 26� (1:2 + 0:2) + 262g = 2:2439:

Since the number of sub-production cycles should be
an integer greater than or equal to one, the obtained
solutions are not e�cient. To solve this example, the
solution algorithms presented in the previous section
are employed.

First, the algorithm for Model I is taken into
account. To this end, the values of total cost TCUI
for q1 = [1:9728] = 1 and q2 = [1:9728] + 1 =
2 are calculated as TCU1 = 208:18 and TCU2 =
176:36, respectively. Therefore, the minimum cost
value is TCU = minf208:18; 176:36g = 176:36, which
is associated with q2 = 2. In this respect, the
optimal number of sub-production cycles in Model I
is calculated as q�I = 2. Then, the optimal production
quantity per production cycle is calculated as Q�I =

Figure 5. Optimal inventory level of the example
(Model I).

tSPPq�I = 240. After determining the optimal number
of sub-productions per cycle q�I , the optimal durations
of production cycle t�p and depletion cycle t�d are
calculated as t�p = q�I tSP + (q�I � 1)tPM = 2:6 and
t�d = tPM + fq�I (P � D)tSP � q�IDtPM � q�ISg=D =
1:07, respectively. Figure 5 shows the behavior of the
inventory level for the optimal solution for Model I.

Figure 5 presents the obtained inventory levels
in the �rst and second sub-production cycles. The
inventory level at the beginning of PM activity at the
�rst sub-production cycle is I11 = (P � D)tSP = 48,
the inventory level at the end of PM activity at the �rst
sub-production cycle is I12 = (P�D)tSP�DtPM = 36,
the inventory level at the start of PM activity at the
second sub-production cycle is I21 = 2(P � D)tSP �
DtPM = 84, and the inventory level after disposal
of defective items is I21 � 2S = 64. Note that the
maximum inventory level Imax is equal to I21, i.e.,
Imax = 84.

Now, in order to �nd feasible solution for
Model II, the values of total cost TCUII for q1 =
[2:2439] = 2 and q2 = [2:2439]+1 = 3 are calculated as
TCU1 = 168:73 and TCU2 = 172:91, respectively. The
minimum cost value is TCU = minf168:73; 172:91g =
168:73, which is associated with q1 = 2. Therefore, the
optimal number of sub-production cycles in Model II
is q�II = 2 and the optimal production quantity per
production cycle is calculated as Q�II = tSPPq�II = 240.
Moreover, the optimal durations of production cycle
t�p and depletion cycle t�d can be obtained using t�p =
q�IItSP + (q�II � 1)tPM = 2:6 and t�d = tPM + fq�II(P �
D)tSP � q�IIS � q�IIDtPMg=D = 1:07, respectively.
Figure 6 shows the behavior of inventory level for the
optimal solution for Model II.

The inventory level at the end of production
process in the �rst sub-production cycle is I11 =
(P �D)tSP = 48, the inventory level at the beginning
of PM activity in the �rst sub-production cycle is
I12 = (P �D)tSP � S = 38, the inventory level at the
end of PM activity at the �rst sub-production cycle is
I13 = (P �D)tSP�S�DtPM = 24, the inventory level
at the end of production process at the second sub-
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Figure 6. Optimal inventory level of the example
(Model II).

production cycle is I21 = 2(P �D)tSP � S �DtPM =
74, and the inventory level at the beginning of PM
activity at the second sub-production cycle is I22 =
2(P � D)tSP � 2S � DtPM = 64. Of note, maximum
inventory level Imax is equal to I21, i.e. Imax = 74.

A comparison of these two models indicates that
Model II outperforms Model I in terms of total cost
criterion due to a higher amount of inventory carried
in the latter. In this model, the defective items remain
in the system until the end of production cycle, while
they are disposed of at the end of every sub-production
cycle in Model II. However, these models show the
same performance when the holding cost h is small
or the number of defective items is negligible. In
addition, a practical recommendation for this example
is that the managers can decide to plan multiple
disposals of defective items at the appropriate time of
each cycle. Note that the required time for defective
items disposal corresponds to the number of sub-cycles.
The numerical example results illustrate that optimal
number of sub-cycles is calculated based on Model II.
This decision can signi�cantly decrease the total cost
of the inventory system.

6. Conclusions

The Economic Production Quantity (EPQ) model,
regarded as an extension of the basic Economic Order
Quantity (EOQ) model, aims to determine the optimal
production quantity to minimize the total cost. This
paper extended the standard EPQ model by incorpo-
rating regular Preventive Maintenance (PM) activities.
A manufacturer with a single product under EPQ
setting and defective production process was taken into
account. Every production cycle involved a number
of sub-production cycles. According to the disposal
time of defective items, two models were proposed
to determine the optimal number of sub-production
cycles. In the �rst model, the defective items were
disposed of at the end of production cycle, while in
the second model, defective items were disposed of at
the end of sub-productions. The total cost functions
were derived for each model separately. The convexity

of cost functions was discussed and then, closed-form
solutions for models were obtained. To guarantee
feasibility, simple solution algorithms were designed.
A numerical example was presented and implemented
step by step in order to illustrate the procedure of
the solution approaches. The results indicated that
the second model guaranteed minimum total cost due
to a higher amount of inventory held by the �rst
model. In special cases, such as small holding cost
or negligible number of defective items produced, both
models showed the same performance in terms of total
cost.

The incorporation of PM into classical inventory
models is a new direction for future researchers. This
paper can be extended in various directions. For
instance, one can consider the production process with
uncertain parameters such as the number of defective
items produced. Moreover, it can be interesting to
design a complicated problem in which PM is also
a decision variable in terms of time of occurrence,
PM duration, and selection among multi-level PMs.
In addition, it can be assumed that PM action is
imperfect and error-prone. In this case, probability
of PM error occurrence follows the known probability
density function. Imperfect PM may result in shifting
the production system to an out-of-control state and
cause an increase in the fraction of defective items in
the production lot.
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