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Abstract. Control Chart (CC) is used to monitor speci�c problems and causes that arise
during a process. These causes constantly change the process parameters until they are
identi�ed and removed. To this end, the techniques that present a true representation of the
entire process should be used. Rational subgrouping is an essential concept in Statistical
Process Control (SPC), which is usually overlooked by the practitioner. Hence, most of the
manufacturing, engineering, and production processes give out output products in the form
of batches over smaller time intervals. The aim of this study is to provide a median-based
design for Tukey and Tukey-EWMA control charts under subgrouping. This study uses
the idea of boxplot to monitor the process behavior. This study provided a brief discussion
about selecting and forming subgroups from the process data. The performance of the
median-based Tukey and Tukey-EWMA charts was evaluated using average, median, and
standard deviation of run length as performance measures. This study considered subgroup
sizes of m = 1:5 and 10 at pre-speci�ed ARL0 equal to 370. Real-life applications of the
median-based Tukey designs were given to demonstrate their proper implementation in
food manufacturing and hard-bake processes.
© 2021 Sharif University of Technology. All rights reserved.

1. Introduction

Tukey Control Chart (TCC) is a well-known individual
control chart designed to monitor the skewed data
using the concept of boxplot and is mainly based on the
individual observations per period. Rational Subgroup-
ing (R.S) is an essential concept in Statistical Process
Control (SPC) and yet, it is frequently overlooked in
some processes. In R.S, all goods and products are
manufactured under a condition where only random
e�ects are responsible for observed variations. It is
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the process of organizing a similar group of products
produced under similar circumstances. This process
helps measure the variations between the subgroups
rather than within subgroups, which are considered
background noises. Subgroup size should be large
enough to represent the overall variations when the
process is in control. It is concerned with the collection
and organization of numerical data. There are di�erent
pieces of literature available on Tukey designs including
many of their modi�cations. Here, a brief review of
some useful literature on the topic is provided.

1.1. Literature review
TCC is mainly an individual observation based control
chart proposed by Alemi [1]. Borckardt et al. [2,3]
applied the chart to serially dependent data. Torng
and Lee [4] calculated the Average Run Length (ARL)
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values of the Tukey chart under several distributions.
For small samples, TCC performed very well. Torng
et al. [5] introduced the economic design of TCC.
Lee [6] applied Asymmetrical Control Limits (ACLs)
to TCC. In skewed distribution, ACL-TCC o�ered
lower ARL values than SCL-TCC (symmetrical control
limits). Sukparungsee [7] evaluated the performance
of TCC; TCC performance was found superior to
classical EWMA and Shewhart control charts. Lee et
al. [8] applied the ACL to the economic design of TCC
to get the optimum performance. Sukparungsee [9]
applied ACL to Tukey chart to evaluate its performance
under non-normal distributed data and Tukey chart
outperformed ARL1.

Khaliq et al. [10] comparatively evaluated the
performance of Tukey chart versus X/MR chart under
several probability models and Tukey chart was the
best choice in many cases. The study revealed that
this chart was a good alternative to Shewhart and
X/MR chart for monitoring when data was skewed.
Tercero-Gomez et al. [11] designed the Modi�ed Tukey
control Chart (MTCC) with smaller ARL1 values than
TCC. Mekparyup et al. [12] introduced the adjusted
design for Tukey chart. Mekparyup et al. [13] combined
the features of the adjusted Tukey chart with those
of an ARIMA (Auto-Regressive Integrated Moving
Average) model to monitor the Dengue Hemorrhagic
Fever (DHF).

Saithanu et al. [14] applied the sensitizing run
rules scheme to Tukey chart. The results indicated that
the run length performance of this scheme improved
over the Tukey chart. Khaliq et al. [15] introduced the
EWMA design for Tukey chart. The Tukey-EWMA
design was more sensitive to small continuous shifts
in process location than Tukey chart. This design is
a good alternative to classical EWMA when the data
follow a skewed distribution. Khaliq and Riaz [16]
designed the CUSUM structure of Tukey chart for small
and sustainable shifts. This design is the best alterna-
tive to classical CUSUM chart when the data follow the
skewed distribution. For symmetric distribution, this
design has a similar run length performance to classical
CUSUM. Riaz et al. [17] introduced the mixed Tukey
EWMA CUSUM design which was more sensitive to
small and moderate cases of shifts.

All of the above-mentioned charts were designed
to deal with the individual observations. The cur-
rent study designed median-based TCC and Tukey-
EWMA Control Chart (EWMA-TCC) for subgroup-
based observations. These median-based TCC and
EWMA-TCC charts enjoy a variety of applications in
di�erent areas such as business, technology, manage-
ment, education, manufacturing, accounting, �nance,
engineering, and service sectors. We will discuss two
applications in detail in Section 5 with emphasis on
food manufacturing and hard-bake processes.

The rest of the paper is organized as follows:
Section 2 discusses the signi�cance of the subgrouping
in control chart. Section 3 presents median-based
Tukey and EWMA-TCC charts under R.S. Section 4
provides performance analysis of the charts. Section 5
includes two real applications. Section 6 summarizes
and concludes the study.

2. Signi�cance of subgrouping in control charts

Rational Subgrouping (R.S) is the fundamental spirit of
any application of process behavior chart. It does not
follow the procedure to form the subgroups. It will be
nothing more than wall-paper. As an alternative, the
observations compromising the subgroup must follow
the process at a short-time interval and show how it

uctuates over time. The size time interval established
an individual process basis to reduce the chance of
a special cause happening in the subgroup. Control
charts are generally based on more than one sample
observation, m > 1, selected at a �xed length of
sampling interval, say l, and the rational-subgroup
idea of sampling implies that sampling must be done
subsequently and any change to the process will occur
among samples and a�ect the entire sample. However,
if the length of a transient shift t is smaller than that
of l, then it seems that it may be useful to disperse
the samples over the interval l. Here, the chance for
the transient shift to occur increases. Sampling and
subgrouping should be carried out with care. Accord-
ing to Nelson [18], \the rational subgroup is basically a
sample in which random e�ects are responsible for the
observed variation during the product production".

Se�k [19] completely discussed the importance of
subgrouping in the process control chart. Nelson [20]
discussed the properties of R.S in the following. The
observations among a subgroup constitute a single
and stable process. If the subgroups following the
multiple process stream with a particular cause happen
continually within the subgroup, there will be more
variations within sample rather than between subgroup
averages and these variations may lead to widening
the control limits and lack of sensitivity to the pro-
cess shifts. \Western Electric Role Test-vii �fteen-
successive points within one sigma of center line are
helpful in detecting this condition". The subgroups are
formed non-randomly from the observations in a time-
ordered sequence. As an alternative, the observations
comprising the subgroup must display the process at
a short time interval and show how it 
uctuates over
time. The size time interval demonstrated an individ-
ual process basis to reduce the chance of a special cause
happening in the subgroup. Hillier [21,22] designed
adjusted limits of Shewhart-type chart in retrospective
and future testing stages. These limits were used
to ensure the future desired subgroup size with pre-
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speci�ed type-I error. According to Wheeler and
David [23], subgroups should be logically homogenous
by minimizing the variation within subgroup by trying
to maximize the variations between subgroups. It
should be noted that before forming the subgroup,
the samples which comprise the subgroup must be
homogenous and independent over time. They must be
collected in a time-order sequence in a stable process.
Quenvedo et al. [24] applied an iterative procedure
to classical X bar and R chart to set the control
limits of the respective chart better. Djauhari et
al. [25] evaluated the performance of the multivariate
chart when the subgroup size was too small. Abbasi
et al. [26] modi�ed the classical EWMA design to
improve the sensitivity of a memory chart. Mahmood
et al. [27] introduced the joint memory structure of the
control chart to monitor location and spread. Ajadi
and Riaz [28] designed memory-type control charts
to monitor the subgroup data. Abujiya et al. [29]
developed the variance chart to monitor dispersion in
the process monitoring. Mukherjee [30] applied the
joint monitoring scheme of location and spread to the
non-parametric EWMA chart based on the subgroup
samples. Ansorena [31] used SPC control design to
monitor the quality of seaport services. Hussain et
al. [32] designed the interquartile range-based EWMA
chart to monitor the continuous tank rector process.
Abtew et al. [33] applied the SPC chart in the sewing
section of garment industry. Rational subgroups of
the samples were �rst formed to evaluate the process
performance. Huberts et al. [34] introduced a method
for continuously updating the control limits of control
chart when data were provided in the subgroup form.

2.1. Two common methods for constructing
rational subgroups

i. The method for R.S provides a pictorial display
of the system at each point in time wherein an
observation is collected. It is used when the
main objective of the control chart is to identify
the process shift. It diminishes the chance of
inconsistency due to special causes within a sample
and it increases the chance of variability among
the samples if the assignable cause is present. It
additionally o�ers a higher estimate of the standard
deviation of the manner in the case of variable
control charts;

ii. Each sample comprises units of products that
illustrate all the units that have been produced
since the last sample was taken. Basically, every
subgroup is an unsystematic sample of the entire
process output over the sampling interval. This
technique of R.S is frequently used when the con-
trol chart is employed to draw conclusions about
the acceptance of all units of products that have
been produced since the last sample. Indeed, if

the process shifts to an out-of-control state and
then, back in control again between samples, it is
sometimes argued that the picture technique of R.S
will be unsuccessful against these types of changes;
therefore, the technique sample scheme must be
used (cf., Montgomery [35]).

3. Median-based Tukey and EWMA-TCC
under rational subgroup

Let Xij be independent observations collected over
time from a normal process, i = 1; 2; 3; � � � ; n and
j = 1; 2; 3; � � � ;m. That is, we have m subgroups,
each of which is characterized by size n. Now, three
quartiles (q1, q2, q3) and interquartile range (iqr) for
all the m subgroups are computed which are presented
in the following:

q1 =

q11

q12

q13

q14

:
q1m

; q2 =

q21

q22

q23

q24

:
q2m

; q3 =

q31

q32

q33

q34

:
q3m

; iqr=

(iqr)1
(iqr)2
(iqr1)3
(iqr1)4

:
(iqr)m

: (1)

Let ~q1, ~q2, ~q3, and i~qr be the medians of �rst, second,
third, and interquartile range of the subgroup data sets,
respectively.

Then, the control limits of TCC are given as
follows:

LCL = ~q1 � L (i~qr) ; (2)

CL = ~q2; (3)

UCL = ~q3 + L (i~qr) ; (4)

where L is the control limits coe�cient and it is set
according to pre-speci�ed ARL0. The median (q2 =
~xj ;= 1; 2; 3; � � � ) of these values will be used as the
plotting statistic for the TCC chart.

The plotting statistic for EWMA-TCC is as fol-
lows:

Gj = �~xj + (1� �)Gj�1: (5)

The variance of EWMA-TCC statistic is given below:

V ar(Gj) =
i~qr(�(1� (1� �)2j))

2� � ; (6)

where � is the weighting parameter and it lies between
0 and 1. For � = 1, it exhibits the most recent
observation and becomes the special case of TCC. The
initial value of Gi (i.e., G0) is set equal to the overall
median.



550 Q-U-A. Khaliq et al./Scientia Iranica, Transactions E: Industrial Engineering 28 (2021) 547{556

The time varying control limits of EWMA-TCC
are given as follows:

LCL = ~q1 � Lt (i~qr)

s
�(1� (1� �)2j)

2� � ; (7)

CL = ~q2; (8)

UCL = ~q3 + Lt (i~qr)

s
�(1� (1� �)2j)

2� � ; (9)

where Lt is the control limits coe�cient taking into
account the time varying feature. These control limits
are known as time varying control limits which are
dependent upon the j. When j !1, (1�(1� �)2j)!
1 and the time varying limits turn into the asymptotic
limits given as follows:

LCL = ~q1 � Lt (i~qr)
r

�
2� �; (10)

CL = ~q2; (11)

UCL = ~q3 + Lt (i~qr)
r

�
2� �: (12)

4. Performance evaluations and analysis

A sequence of points plotted on a chart until an out-
of-control signal is identi�ed is known as a run and a
series of points in a run are named as Run Lengths
(RLs). Typically, control RL is expected to be higher,
while out-of-control RL is anticipated to be as small as
possible. One may see Chakraborti [36] for more useful
discussion on RL.

Several measures based on RL are presented in
literature to assess the performance of the chart, some
are used for speci�c shifts and others for the overall
shifts in a process. For this study, only speci�c
shift measures including average, standard deviation
and median RL are considered. The details of these
measures are provided in the following:

Average Run Length (ARL): It is generally used
to assess the performance of a chart for a speci�c shift
value. It represents the average number of points
plotted on a chart until an out-of-control signal is
identi�ed. There are two famous terms used in the
control chart for the aforesaid purpose, termed as in
control and out of control ARLs. The in and out of
control measures are denoted by ARL0 and ARL1. A
chart showing smaller ARL1 on a particular shift value
is considered to be more e�cient than other competing
charts. An estimate of ARL may be given as follows:

ARL =
kX
j

(RL)j=k: (13)

Standard Deviation Run Length (SDRL): The
dispersion of RL may be observed by Variance and
Standard Deviation of RL. This shows how much
average variation is present in the particular control
chart RL values. An estimate of SDRL may be given
as follows:

SDRL =

vuuuut kX
j

(RL)2
j=k �

8><>:
0@ kX

j

(RL)j=k

1A2
9>=>;:(14)

Median Run Length (MRL): The distribution
of RL is mostly skewed and hence, median of RL is
another the most suitable choice. Median, being a
wonderful and robust measure for outliers, is a more
detailed performance indicator of a chart and it is
de�ned as follows:

MRL = Median (RL): (15)

Using Monte Carlo simulations, we have computed
the aforementioned RL properties of both median-
based TCC and EWMA-TCC charts. The results are
reported in Tables 1, 2, 3 in the form of ARL, MRL,
and SDRL using several subgroup values at ARL0
= 370. Figure 1 presents RL curves of Tukey and
Tukey-EWMA at several subgroup sizes m with �xed

Figure 1. Average Run Length (ARL) performance of Tukey Control Chart (TCC) and EWMA-TCC at di�erent
subgroup sizes (m = 1, 5, 10) for (a) TCC, (b) EWMA-TCC at � = 0:7, and (c) EWMA-TCC at � = 0:5.
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Table 1. Average Run Length (ARL) performance of Tukey Control Chart (TCC) and EWMA-TCC using di�erent
subgroup sizes (m).

TCC EWMA-TCC (� = 0:75) EWMA-TCC (� = 0:5)
�=m m = 1 m = 5 m = 10 m = 1 m = 5 m = 10 m = 1 m = 5 m = 10

0 370.12 370.1404 370.52 370.00 370.14 370 369.124 371.3 370.41
0.25 283.13 178.69 102.38 235.29 125.41 63.01 196.62 83.83 40.17
0.5 158.21 56.10 21.72 109.47 35.06 10.68 71.959 19.02 8.08
0.75 80.33 19.57 6.38 51.01 11.18 4.042 29.88 7.0938 3.53

1 44.27 8.15 2.69 25.04 5.57 2.14 15.34 3.87 2.17
1.25 25.10 4.06 1.59 13.94 2.90 1.46 8.97 2.65 1.621
1.5 15.03 2.39 1.18 8.55 2.04 1.18 5.92 2.0135 1.29
2 6.28 1.29 1.009 4.11 1.31 1.01 3.42 1.405 1.0307

2.5 2.55 1.05 1 2.99 1.05 1 2.11 1.16 1.00
3 1.97 1 1 1.79 1 1 1.861 1.01 1
4 1.19 1 1 1.18 1 1 1.29 1 1

Table 2. Median Run Length (MRL) performance of Tukey Control Chart (TCC) and EWMA-TCC using di�erent
subgroup sizes (m).

TCC EWMA-TCC (� = 0:75) EWMA-TCC (� = 0:5)
�=m m = 1 m = 5 m = 10 m = 1 m = 5 m = 10 m = 1 m = 5 m = 10

0 256 195 156 257 201 166 256 188 155
0.25 191 99 65 164 89.5 41 133 51 28
0.5 108 31 14 76 24 7 50 12 6
0.75 57 12 4 36 8 3 21 5 3

1 30 5 2 18 4 2 11 3 2
1.25 17 3 1 10 3 1 7 2 2
1.5 11 2 1 6 2 1 5 2 1
2 4 1 1 3 1 1 3 1 1

2.5 2 1 1 3 1 1 2 1 1
3 1 1 1 2 1 1 2 1 1
4 1 1 1 1 1 1 1 1 1

Table 3. Standard Deviation Run Length (SDRL) performance of Tukey Control Chart (TCC) and EWMA-TCC using
di�erent subgroup sizes (m).

TCC EWMA-TCC (� = 0:75) EWMA-TCC (� = 0:5)
�=m m = 1 m = 5 m = 10 m = 1 m = 5 m = 10 m = 1 m = 5 m = 10

0 376.64 374.37 370.173 367.74 528.70 369.21 373.40 564.80 469.25
0.25 279.72 282.92 129.18 246.97 138.16 76.82 194.63 131.42 53.33
0.5 157.79 77.96 23.47 110.36 34.32 10.99 70.062 20.30 6.88
0.75 81.67 25.82 6.24 50.78 9.59 3.079 28.52 5.86 2.049

1 42.73 9.17 2.23 23.84 4.17 1.23 13.41 2.40 0.97
1.25 25.21 4.07 0.99 12.86 1.78 0.69 6.89 1.31 0.64
1.5 14.65 2.00 0.46 7.52 1.187 0.39 4.233 0.87 0.47
2 5.84 0.62 0.09 3.038 0.53 0.099 1.87 0.53 0.17

2.5 4.52 0.24 0.08 1.56 0.235 0 0.98 0.33 0.02
3 1.43 0.08 0.05 0.95 0.099 0 0.74 0.13 0.01
4 0.47 0 0.014 0.42 0 0 0.47 0 0
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Figure 2. Comparative performance of EWMA-TCC and Tukey Control Chart (TCC) at several � and subgroup sizes
for: (a) TCC and EWMA-TCC (� = 0:75 and 0.5) designs at m = 1; (b) TCC and EWMA-TCC (� = 0:75 and 0.5)
designs at m = 5, and (c) TCC and EWMA-TCC (� = 0:75 and 0.5) designs at m = 10.

�. Moreover, Figure 2 presents ARL curves of TCC
and EWMA-TCC charts at several � and m. The
performance analysis of these control charts supports
the following �ndings (cf., Tables 1{3 and Figures 1
and 2):

TCC analysis
� With an increase in the size of subgroups, the ARL1

of median-based TCC exhibits a decreasing pattern.
For example, TCCs with ARL1 values are 178.13
and 102.38 for m = 5 and 10 at � = :25. A similar
pattern is shown in Figure 1(a);

� The larger the subgroup size, the smaller the MRL
and SDRL values for median-based TCC. For in-
stance, MRL values of the proposed chart are 191,
99, 65, while SDRL values are 282.91, 279.72, 129.18
at � = 0:25 and m = 1, 5, and 10 (cf., Tables 2 and
3). Based on these results, when the subgroup size
varies from 1 to 10, MRL and SDRL values keep
getting smaller.

EWMA-TCC analysis
� The subgroup size and � a�ect the performance of

the median-based EWMA-TCC. As the subgroup
size m increases, the median-based EWMA-TCC
chart exhibits more sensitivity towards shifts. For
example, ARL1 values of EWMA-TCC are 243.29,
125.41, and 63.016 at � = 0:25, � = 0:75 using
subgroup size 1, 5, and 10. It is clear that the
subgroup size increases the sensitivity of EWMA-
TCC for small to moderate shifts (cf., Table 1).
Moreover, in Figure 1(a) and (b), EWMA-TCC
design o�ers a steeper ARL1 curve at � = 0:5 and
m = 10;

� The large subgroup size ensures smaller ARL, MRL,
and SDRL values of median-based EWMA-TCC.
For example, MRL values of EWMA-TC are 164,
89.5, and 41, while the SDRL values are 246.97,
138.16, and 73.82 at � = 0:25, � = 0:75, and m = 1,
5, and 10. A similar outcome may be observed for
the other values of � (cf., Tables 2 and 3).

� The median-based EWMA-TCC design (at � = 0:75
and 0.5) shows smaller ARL1, MRL, and SDRL
values than the median-based TCC for small to
moderate shifts and they are seen in Tables 1{3 and
Figure 2.

5. The real applications

This section considers two real life datasets to illustrate
subgroup-based TCCs. The details and application of
both datasets are given below:

Application 1: Food manufacturing process.
The food industry has started showing tendency to-
wards the utilization of nanotechnology. The nanotech-
nology plays its role in food ingredients, food packag-
ing, water puri�cation; improving mechanical strength;
reducing weight; increasing heat resistance; improving
barrier against oxygen, carbon dioxide, ultra-violet
radiation, moisture, and volatiles of food packaging
materials. Packaging is the process of enclosing the
meals material in a container to ensure the delivery of
products in �ne circumstances to the customer for �nal
use. Therefore, proper packaging plays an essential
role in enhancing the image of company product.
Packaging protects the meals and permits it to reach
the customer in a hygienic and safe condition. The use
of protecting coatings and appropriate packaging by
the food industry can surely increase the shelf life of
food product (cf. [37]). Ahmed et al. [38] and Razzaq
et al. [39] discussed the importance of nano-technology
in several manufacturing industries.

Figure 3 displays manufacturing setting of dif-
ferent nanotechnology materials that are produced
by �ve di�erent machines. The di�erent subgroup
arrangements are found after packaging food products.
We have considered formation of the subgroups during
food packaging process and collected data from an
ongoing process in a �rm (cf., Figure 3) located in RWP
Pakistan. A group of 50 samples was selected from the
process, each characterized by batch size ten. For this



Q-U-A. Khaliq et al./Scientia Iranica, Transactions E: Industrial Engineering 28 (2021) 547{556 553

Figure 3. Procedural 
ow of forming subgroup during
the packaging process.

Figure 4. Implementation of charts on manufacturing
data: (a) TCC and (b) EWMA-TCC.

dataset, we have constructed two control charts (TCC
and EWMA-TCC (at � = :25)) as shown in Figure 4.

Clearly, TCC and EWMA-TCC o�er six and ten
out-of-control signals, respectively. It shows that the
process has a mix up of both small and large shifts and
our two charts are helpful in alarming these changes in
the process.

Application 2: Hard-bake process. A hard-bake
process was used in conjunction with the photolithog-

Figure 5. Implementation of charts on wafer data for (a)
display of data, (b) TCC, and (c) EWMA-TCC.

raphy in semiconductor manufacturing. Our objective
is to establish statistical control of the 
ow width
that resists this process. The data on the mentioned
variable was taken from Montgomery [35] and we
intend to construct TCC and EWMA-TCC. Twenty-
�ve samples, each with �ve wafers, were taken when
the process was of in-control type. The time interval of
subgroups is one hour. The display of the wafer data
is given in Figure 5. We have implemented both TCC
and EWMA-TCC (� = :25) charts for the mentioned
dataset. TCC o�ered no points in the out-of-control
state, while EWMA-TCC detected eight points in same
state. This �nding supports the occurrence of smaller
shifts that are not captured by TCC, but EWMA-TCC
successfully signaled them.

6. Summary and conclusions

This study investigated the performance of median-
based Tukey and Tukey-EWMA charts using Rational
Subgrouping (R.S) concept. The manufacturing and
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industrial data mostly formed in the form of batches
at equal time intervals. Traditional Tukey-type charts
were designed to monitor the individual observations
over time. In the current study, the design of the
median-based Tukey and Tukey-EWMA (TCC and
EWMA-TCC) charts was presented using subgroups.
The Average Run Length (ARL), Standard Deviation
Run Length (SDRL), and Median Run Length (MRL)
measures were employed to evaluate the performance
ability. These median-based Tukey Control Chart
(TCC) and EWMA-TCC charts exhibited very e�ec-
tive performance under R.S. Two real life cases were
also presented to show the practical application in
real processes such as manufacturing, production, and
packaging under the subgroups data. The scope of
the idea may be extended easily to the Tukey-CUSUM
design following the same line of action.
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Nomenclature

ACL Asymmetrical Control Limits
ARL Average Run Length
CUSUM Cumulative Sum
CL Control Limits
EWMA-TCC Exponentially Weighted Moving

Average Tukey Control Chart
Iqr Interquartile range
LCL Lower Control Limit
MEC-TCC Mixed Tukey EWMA-CUSUM
S:G Sub-Grouping
ARIMA Auto-Regressive Integrated Moving

Averages
SDRL Standard Deviation Run Length
SPC Statistical Process Control
MDRL Median RL
TCC Tukey Control Chart
MTCC Modi�ed TCC
RL Run Length
DHF Dengue Hemorrhagic Fever
SCL Symmetrical Control Limits
ARL0 In control ARL
ARL1 Out of control ARL

~q1 Median of �rst quartile
~q2 Median of second quartile
i~qr Median interquartile range
X Quality characteristics
~q3 Median third quartile
L Control limits coe�cient
R:S Rational Subgrouping
Lt EWMA's control limits coe�cient
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