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1. Introduction

Abstract. This paper studies the free vibration characteristics of post-buckled Func-
tionally Graded (FG) carbon nanotube (CNT) reinforced annular plates. The analysis
was performed by employing a Generalized Differential Quadrature (GDQ)-type numerical
technique and pseudo-arc length scheme. The material properties of FG-carbon nanotube
reinforced composite (CNTRC) plates were evaluated by an equivalent continuum approach
based on the modified rule of mixture. The vibration problem was formulated based on the
First-order Shear Deformation Theory (FSDT) for moderately thick laminated plates and
von Karman nonlinearity. By employing Hamilton’s principle and a variational approach,
the nonlinear equations and associated Boundary Conditions (BCs) were derived, which
were then discretized by the GD(Q method. The postbuckling behavior was investigated by
plotting the secondary equilibrium path as the deflection-load curves. Thereafter, the free
vibration behaviors of pre- and post-buckled FG-CNTRC annular plates were examined.
Effects of different parameters including types of BCs, CNT volume fraction, an outer
radius-to-thickness ratio, and an inner-to-outer radius ratio were investigated in detail.

(© 2019 Sharif University of Technology. All rights reserved.

to revolutionize different fields such as medicine, elec-
tronics, material science, energy storage, etc. CNTs

Since the discovery of carbon nanotubes (CNTs) by
Tijima in 1991 [1], considerable advances have been
made in the realm of nanotechnology. CNTs are the
most extraordinary materials that have been discovered
by mankind over the past thirty years. Characterized
by extraordinary properties, they have attracted a
great deal of attention from the scientific community
and beyond [2-5]. These materials have the potential
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are reported to enjoy many desired properties such
as high tensile strength and Young’s modulus. The
high strength of CNTs makes them the stiffest known
fiber discovered so far. Further, CNTs enjoy excellent
thermal and electrical conducting properties and can
either show metallic or semi-conducting behavior based
on their size, chirality, and purity. Thus, CNTs can
be used as reinforcements to enhance the physical and
mechanical properties and electrical conductivity of
the polymeric structures. Because of some charac-
teristics such as wear and corrosion resistance, low
density, light weight, and low cost, polymer-based
composites are extensively utilized in the industrial and
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engineering usages including marine and automotive
technologies, military, and the agricultural industry [6].
The addition of CNTs to polymers may result in
the enhancement of many mechanical, electrical, and
optical properties of polymer-based nanocomposites.
These superior properties make them the best can-
didate for use in various usages such as actuators,
biomedical devices, chemical sensors, and smart mem-
ory devices [7,8]. Ajayan et al. [9] fabricated carbon
nanotube reinforced composites (CNTRCs) for the first
time in 1994. Since then, a number of studies have been
performed to utilize CNTs as reinforcement for various
materials such as polymer, ceramic, and metals. For
instance, Hassanzadeh-Aghdam and Mahmoodi [10]
conducted a comprehensive analysis of the mechanical
properties of CNT-reinforced metallic nanocomposites
by proposing an analytical approach. The effects of
CNT volume fraction, interphase, and geometry on the
thermal expansion behavior of CNT-reinforced metallic
composites were studied by Hassanzadeh-Aghdam et
al. [11,12]. Foroughi et al. [13] experimentally exam-
ined the influence of CNTs on the mechanical and
bioactive properties of bioglass-ionomer cement. More-
over, AfzaliTabar et al. [14] investigated the CNTs and
nano-porous graphene on the silica nanohybrid Picker-
ing emulsion. Recently, Rafiee et al. [15] experimen-
tally studied the vibrational and damping behaviors
of functionalized multi-walled CNT-reinforced epoxy
nanocomposites as the passive damping components.
Among the published papers on the mechani-
cal characteristics of CNT-reinforced composites, the
majority have been devoted to the reinforcement of
polymers by CNTs [16-24]. This is because of the
relative ease of polymer processing, which demands
lower temperatures for consolidation compared to met-
als and ceramic matrix composites. The fascinating
mechanical properties of CNTs over carbon fibers have
resulted in increasing use of CNT-reinforced composite
structures. The main difference between these two
types of composites lies in the low quantity of CNTs
used in the CNTRCs [25-27]. Meguid and Sun [2§]
stated that by increasing the CNT volume fraction
beyond a specified limit, the mechanical properties of
CNTRCs will deteriorate. As a result, the concept of
Functionally Graded (FG) materials has been incorpo-
rated in the modeling of CNTRCs in order to use CNTs
more efficiently in the reinforced composites. The local
buckling of CNTRC beams induced by the bending
was studied by Vodenitcharova and Zhang [29]. The
imperfection sensitivity of the primary resonances of
FG-CNTRC beams under periodic transverse loading
was examined by Gholami et al. [30]. A Mori-Tanaka-
based equivalent model was utilized by Formica et
al. [31] to study the free vibration of CNTRC plates.
Their study showed that the maximum enhancement
of the properties of fiber composites was obtainable by

uniformly aligning CNTs with the loading direction.
Ansari et al. [32] examined the nonlinear forced vi-
bration of Timoshenko beams made of FG-CNTRCs.
Shen and He [33] studied the nonlinear vibration of
embedded FG-CNTRC curved panels under thermal
loading. It was found that nonlinear vibration behavior
of CNTRC panels was considerably affected by the FG-
CNT reinforcements. The nonlinear forced vibration
of FG-CNTRC rectangular plates based upon Mindlin
and Reddy’s plate theories was analyzed by Ansari
et al. [34,35]. In addition, Ansari et al. [36] ana-
lytically studied the postbuckling of piezoelectric FG-
CNTRC shells. Lin and Xiang [37] investigated the
free vibrational characteristics of SWCNT-reinforced
nanocomposite beams. The variational technique of
Hamilton’s principle and sense of von Karméan’s non-
linearity were used to derive the energies of the CNT-
reinforced composite beams. Then, by employing the
p-Ritz technique, the free vibration problem of the
beam was solved. The free vibration of FG-CNTRC
cylindrical shells under the thermal loading was ana-
lyzed by Song et al. [38] upon employing the assumed
modes approach. Mehrabadi et al. [39] examined linear
buckling of FG-CNTRC plates under uniaxial and
biaxial compression. In a study conducted by Lie et
al. [40], free vibrations of SWCNT-reinforced nanocom-
posite plates were analyzed by the kp-Ritz method.
Shen et al. [41] presented a study on the vibrational
response of thermally postbuckled sandwich CNTRC
plates resting on the elastic mediums. Ahmadi et
al. [42] employed a multi-scale finite element procedure
to obtain the mechanical properties of carbon fiber-
CNT-polyimide nanocomposites and, then, examine
the buckling of rods made of these nanocomposites.
Recently, according to a variational approach, Gholami
and Ansari [43] provided a weak form of mathematical
modeling to study the nonlinear resonant responses of
shear deformable FG-CNTRC annular sector plates.
In addition, the resonance of multi-scale laminated
nanocomposite rectangular plates was examined by
Gholami et al. [44]. According to the First-order
Shear Deformation Theory (FSDT) and Rayleigh-Ritz
scheme, the free vibration of nanocomposite spherical
panels and shells of revolution was studied by Wang et
al. [45].

In this work, upon employing the Generalized
Differential Quadrature (GDQ) approach, the free
vibration problem of postbuckled FG-CNTRC annular
plates with Uniformly Distributed (UD) and FG rein-
forcements is numerically formulated. It is assumed
that the material properties of FG-CNTRCs are ob-
tained by employing a modified rule of mixture-based
equivalent model. The postbuckling problem is for-
mulated on the basis of the FSDT with a von Karman
type of kinematic nonlinearity. By applying Hamilton’s
principle, the nonlinear equations and corresponding
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BCs are derived and, then, discretized by the GDQ
method. In addition, pseudo-arc length algorithm is
employed to find the secondary equilibrium paths of
CNTRCs plates. The free vibration of postbuckled
CNTRC annular plates is formulated as a standard lin-
ear eigenvalue problem. Impacts of design parameters
including type of BCs, CNT volume fraction, inner-to-
outer radius ratio, and outer radius-to-thickness ratio
on the equilibrium postbuckling path and fundamental
frequencies in the pre- and post-buckled configurations
are investigated.

2. Mathematical formulation

2.1. CNTRCs and material properties

As illustrated in Figure 1, an SWCNT-reinforced com-
posite annular plate with inner radius, a, outer radius,
b, and thickness, h, is assumed. It is considered that
the SWCNT reinforcements are UD or FG through
the thickness. The structure of the CNT significantly
affects the properties of the nanocomposites. Thus
far, different micromechanical models such as the Mori-
Tanaka [46,47] and Voigt models, as well as the rule of
the mixture [26,48], have been proposed to obtain the
material properties of CNTRCs. The former is used
for micro-particles and the latter extensively for the
CNTRCs. On a nanoscale, both of these approaches
should be extended to capture the small-scale effect. It
has been demonstrated that both of Mori-Tanaka and
Voigt techniques have an identical level of accuracy
in treating the static and dynamic problems of FG
ceramic-metal beams [49], plates [50], and shells [51].
Accordingly, applying the modified version of the rule
of mixture, one can express the effective Young’s and
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Figure 1. Schematics of an FG-CNTRC annular plate.

shear modules of CNTRCs as follows [48]:

By = 771thEfft + Vi, E™, (la)
Ven Vin

o= et (1b)

By EZ T B
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By considering this point that, through theformula-
tions, sub-/super-scripts “m” and “cnt” signify the
matrix and CNT, respectively, in Eq. (1), G and E rep-
resent shear and Young’s modules, and 7; (j = 1,2, 3)
identifies the CNT efficiency parameter, which is
attributed to the scale-dependent properties. It is
notable that n; will be later obtained by matching
the material properties achieved from the Molecular
Dynamics (MD) simulations with those obtained from
the rule of mixture. In addition, V,,; and V,, denote
the volume fractions of CNT and mixture, respectively,
and have the following relationship as follows:

The FG-CNTRCs are supposed to be in two different
configurations, namely O and X types. For conve-
nience, in the following, the two types of FG-CNTRCs
are indicated by FGO and FGX. For the case, the FG-
CNTRC is referred to as FGO, and the middle surface
of the composite is CNT-rich, while, for the FGX, both
outer and inner faces are CNT-rich. In this study,
the UD, FGO, and FGX distributions of CNTs are of
special concern and are expressed as below [48]:

UD : V. = V:,m (3&)
2 .
FGO : Vo =2 ( - }LZ') Vi (3b)
4 .
FGX : V. = %V;,‘m (3d)
where:
y Acnt
ent = . (4>
Acnt + < P ) <pm )Acnt

In the preceding equation, A.,; is the mass fraction
of CNT, and p denotes the mass density. Similar to
the previous case, effective Poisson’s ratios v and p are
obtained by Wang and Shen [52]:

_ cnt m —
viz2 = VeneViy 4+ V™ 101 = v12Eay [ By, (5)

p = Vertp™ + Vinp™. (6)
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2.2. Nonlinear equations of motion and
corresponding BCs

Consider a cylindrical coordinate system (r,6,2) in
which its origin is placed at the center of the mid-
plane of the FG-CNTRC annular plate, and r, 4,
and z-axes denote radial, tangential, and thickness
directions, respectively. Considering the axisymmetric
deformation, the displacement components, u,, ug and
u,, along r, 6, and z axes, respectively, are obtained by
Liew et al. [53]:

wr =w(t,r) + 20, (4,r), wg =0, u, =w(tr), (7)

where u(t,r) and w(t,r) are the radial and transverse
displacement components of middle-plane, respectively,
and ¥,(t,r) is the rotation about #-axis. In addition,
t denotes time. Of note, the displacement field defined
in Eq. (7) is based on the FSDT.

By applying Eq. (7), the strain-displacement re-
lations are expressed by:

ou 1(810)2 o, u U,
= +z cp = Z

“=a talar ar LI

ar
Additionally, according to the linear elasticity and the

von Karman hypothesis, the nonlinear stress compo-
nents can be defined by:

Or [Qn Q12 0 -| Ep

Erz = Ezp = % (1/» + aw) . (8)

o9 p= Q12 Q22 O g9 ¢, (9)
Orz [ 0 0 Q55J Erz
where:
E E:
Qu = %7 Qg = —2 |
— ViaV21 1 —wviav91
v B
Q2 = 121711, Q55 = Gis. (10)
— Vi2V21

In the previous equation, parameters F;;, G;;, and v;;
are obtained through Eqgs. (1) and (5).

Based on the previous discussion, now, the in-
plane force resultants (NV,,Ny), moment resultants
(M,, My), and transverse force resultant (Q,) are
obtainable by:

h/2

N oy
= {6 [ {ne
—h/2
/2
M.\ _ o,
) ] ()
“h/2
h/2
Q, = ks / oradz, (11)
—h/2

where #, = 7m2/12 denotes the shear correction fac-
tor [53]. By inserting Eqgs. (9) and (10) into Eq. (11),
one obtains:

ou 1[/0w\? u O,
N, =An 81“+2<3r) +A12;+B11 or
+B12%7
r
U ou 1[/0w\’ P
Ng =Aos— + A1a |[— + = — Bys—
) 22r+ 12 |5 +2(3r> + 227
o0,
B
+ D12 or
ou  1[/ow\” U Y,
M, =B 8+2(8T) +B12;+D11 g
+D12%7
r
U ou 1(/0w\’ B
My :Bzz;-f'Blz 5+2<87’> ]+D22w
oY,
D
+ Do ar
ow
Qr:ksASS <¢r+ar>a (12)
where:
hy2
AzaBlaDl = Q'L 172722 dZ7 i,j=1,2),
g1 Pijy g J
—h/2
/2
Aij: / Qijdz; (27]25) (13)
“hJ2

The strain energy (IIs) expression for the FG-CNTRC
annular plates takes the following form:

h/2
1
HS = 5/ / O'ijEidedS
S —h/2
1 ou  1{ow\’ U oY,
S
- 0
# M2 40, (v + G ) fas
T T (14)

where S denotes the plate area. The kinetic energy,
II7, and the potential energy, II,,, resulting from the
applied external radial load, N?, are expressed by:
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e [ G (5)]
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S

Using Hamilton’s principle [54]:
ta
/ (8TTy — 8TI, + 6T1,,) dt = 0, (16)
t1

where 6 denotes the variation operator; one can achieve
the governing equations and all possible BCs. DBy
inserting Eqgs. (14) and (15) into (16), taking the
variation of w, w, and ¥, through the integration by
parts, and lastly by equating the coefficients of du, dw,
and 61),. to zero, the following expressions are obtained
for the governing equations of motion (Eqs. (17a)-
(17¢)) and the BCs (Egs. (18a)-(18c))

ON. | N. - Ny 2u O,

EAA U Sy Ra.dd 1
or ; o T ae (172)
2Q, Q, 190 ow o [FPw 10w
=4 22 (rN. S ) + N et
37’+T+7’87’< 6) (9r2+7’87’
0w
=ly— 17b
092 (17b)
8MT MT — M.9 a¢r
—Q, =1 L2
ar T @r=bgy+ 18t2 (17¢)
and:
bu=0 or N,=0, (18a)
0y Ow
bw=0 or (NT+NT)§+QT:0, (18b)
6, =0 or M,=0. (18c)
By inserting Eq. (12) into Eqs. (17), the governing

equations are determined in terms of displacement
components as follows:

A 32 +la£+a£827w+i aﬂ ’
Yorz Ty ar T or orz T 2r \ or
PP, 10y, u
+Bu ( or? +; or ) _Amﬁ
B % @ 3£ ’
2202 2r \ Or
d%u O,
—Iow‘FIl atz, (19&)

FPw 10w O, P,
kA55(3T2+’I“31“+3 +)+N(w)

Pw 10w &w
N (31“2 ty 3r> _IOW’ (19b)
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Ur Py, 10y,
~Dnsy r2 +Du ( or? +; or

Bu ow ow
(67’ ) ksA55 (1/)7’ + 87’)

Iy
ot?

Ow FPw
or or?

Pu  10u

By, |22 L 29
o o2 +r3r

- BQ?
r2

==L +11 (19¢)

at2’
du  1(0w\®
or 2\ 0r
O, P 10w &w
+B”a }(r 87‘—'—697“2)
u
A g
+{ 11 <3T2+

10 92,
+ Ao (u_u) + B @/f

ror 12 or?

19, ow
+ Bi» (7‘ o 7’Q¢T> } o (20)

The BCs provided in Eq. (18) show the possible
edge conditions for the FG-CNTRC annular plates.
Consequently, the BCs are as follows:

where:

N (U}) :{All

U
+ Ap—
r

ow o'
Or Or?

For the simply supported CNTRC annular plates:

N, =w=DM, =0. (21a)
For clamped CNTRC annular plates:
N, =w =1, = 0. (21b)

The following dimensionless quantities are introduced
so as to non-dimensionalize the governing equations of
motion:

b
§=5 m=7. {wwl—hfuw),
- N? t Ao
r— Yr, N?: r’ T=7 y
vr=v Ao o\ T

{A11, A2z, Ao, Ass }
Aq1o ’

{CL11,@22,@127@55} =
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D11, Dy2, Dy
i daa, iz, dyg) = 20 D22 Dz

Ar1oh? ’
S Iy L I,
In, L, Li=4—,—/—,—— 22
{ 0541, Z} {1007 ]00h7 ]00h2 }7 ( )

where A119 and Iyg show the values of Ay and I for
a homogeneous matrix plate. Thus, one obtains:

%+1%+1%%+1(%>2
082 £0¢  nog ag2  2mE\ O¢
0%, 10, (o
e (G g5 o e
A12 ow 7 (92 -0 r
2175( 5) Ioa > I T27 (23&)
2w 10w o, Uy
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1 ou ow\? U
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1 u 10w d*w
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b (92’LL+1(9U+1(9’LU821U+1((9’LU>2
92 LIE  nog 082 2nE\ O
P %y, 10,
~bng —dmg +du ( o ¢ 85)
dys [ Ow\? ow
2775(85) _ksa/5577 (n¢r+ar>
9y,
_Ia +Ila2 (23¢)

Further, by non-dimensionalizing the BCs, the follow-
ing expressions are obtained for the simply supported

(Eq. (24a)) and clamped (Eq. (24b)) BCs:

u ow\? . O
Hog Ty (c‘%) + g+
+ blz% =w = 0,
ou 1 /ow\?> oY,
5+ 00 (% ) ] b g
+ de% =0, (24&)
ou 1 /ow\? 31/Jr T/Jr
=w =1, =0. (24D)

3. GDQ method

The GDQ method as an efficient numerical approach
can be utilized for solving the boundary value problems
including the ordinary and partial differential equa-
tions. Unlike the finite element method that is usually
employed for solving the weak form of equations, the
GDQ technique represents a powerful tool for solving
the equations in the strong form with great efficiency
and accuracy using a small number of discrete mesh
points [55].

3.1. Introduction

With the aid of the GDQ technique [56-58], the pth
order derivative of g(r) is attained in the following
form:

d”g (p)
dpr

N
= Z A;]g (Tj) ’ (25)

r=r; j=1

where N is the number of total discrete points. By

considering a column vector F:

F= [g]] = [g(?"])] = [g(’l“l),g(’l“2>7,_,,g(TN)]T’

(26)
where g; = g(r;) indicates the amount of g(r) at r;, and
an operational matrix of differentiation on the basis of
Eq. (25) is achieved as in the following form:

O () = D2¥ = (2], (1), -

where:

DT = [Df]i,j = -Afjv i,j=1:N, (28)

where A;; gives the weighting coeflicients obtained as
by Eq. (29) as shown in Box I, in which P(r;) =
H;V:L#i(m —1;), and I, denotes an N x N identity
matrix.
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'Irv r=20
P(ri) PL i oand 4 od—

(ri—r;)P(r;)’ 1 Z#J e 7/,41_1’”.

) 7 p= L. .
A= (A - ATt and i =1
N

- Z -’4{)]7 = and ) =1,...,

j=Lij#i

, N and p=1
N and p=2,3,...N -1 (29)

N and p=1,2,3,...N -1

Box I

3.2. Postbuckling analysts
With the aid of Chebyshev-Gauss-Lobatto points as
the grid points, the mesh generation can be obtained

1- 1
@:a-l-a(l—cos 17r),z':1:N, (30)

where @ = a/b. The discretized form of displacement
components is defined as the following vectors:

UT:[Ulw"?UN]a
WT =[W,,....,.Wy],
T = [T,,..., Ty, ], (31)

where U; = u (&), W = w(&), ¥ = ¢ (&). By
assuming N? = —P, utilizing the GDQ scheme, and
discarding the inertia terms, the equilibrium equations
are discretized by:

ay D?U + D%U oA + % (DfW) o (D%W)

+ % (D¢W) o (D;W) 0 Ay
+b1y (Df¥ +D®oA)) —a»UoA,
—bQQ\IJOAQ—%%;W)o(DgW)oAl:0, (32a)
Ksaz5 (DFW + DiW o Ay)
+ ksassn (De® + o Ay)

— P [D{W + (D;W) 0 A{]

+ 1{a11 {D%U T (D{W) o (Dgw)]
n 2n

+ bllD%‘I’ + (leU o A1 + blg‘I’ ] Al}

o [DiW + (D;W) o A4]

+ 717{@11 {D?U + % (DfW) o (Dgw)]
+a12 [DiUoA; —UoAy] + b, Di ¥

+ ais [D%UOAl _UOAQ]

+ blg [D%‘I’ OA1 — ¥ OAQ]} o) (D%W) = 0,
(32b)

b1y |D7U+D{Uo A, + % (DW) o (D{W)

+ % (DIW) o (D!W) o Al]

+ d11 (Dg‘I’ + D%‘I’ o Al) — b22U o A2

—dypT oAy — 1’21—; (D¢W) o (D;W) 0 Ay

— KsQs57 (77\11 + D%W) =0, (32¢)

where o shows the Hadamard product [59] and AT =
[1/5{, 1/€8, ..., 1/5}'\,]‘ Following the same procedure
used for the discretization of the equilibrium equation,
one can discretize the BCs (Eqs. (18)) similarly. The
set of nonlinear equations of the domain can be defined
by:

G’ . R3N+1 _ ]RBN
G (P,X) =0,
XT=[ut, wh '], (33)

where parameter P is the axial load.

The previous equation due to the presence of
P is a parameterized equation. Here, by employing
the pseudo-arc length continuation technique, this
equation will be solved. To this end, by substituting
the residual of equations relevant to boundaries into the
residual of the domain G(P, X), the edge conditions are
satisfied. This assumption implies that the elements of
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G related to the grid points must be substituted with
those of discretized BCs.

3.3. Vibration study in the postbuckled region
Herein, the aim is to examine the linear free vibration
of a buckled CNTRC plate. To accomplish this goal,
by introducing small disturbances ug, wg, and g4,
respectively, around the buckled configurations ug, ws,
and 1, the time evolution of that disturbance will be
obtained as follows:

u(§,7') = Us (5) + uq (577-) ,U)(f,’]’)
= Ws (5) + wq (577-) s Ur (577)
=¥ (&) +va(&,7). (34)

Thereafter, by inserting the previous equation into the
governing equation and ignoring the nonlinear time-
dependent terms, the linear free vibration problem is
obtained by:

mx + kx = 0, (35)

where dot indicates the derivative with respect to 7, x
denotes the generalized coordinate, and m and k are
the inertia and stiffness matrices, respectively, which
can be determined by:

x' = [ug, wa, ¥a],
oL

m = 9 [0 9
[ Iy
k'u'LL k'U/LU

A ] (36)
=)

The elements of k are introduced as follows:

0? 10 1
kuu = a1 8752—'—5675 —(122?7

b [Fwe 0 ow 8 1ow, D
o Logr og T 06 0 € 9E 0¢

_ m2 9w, O
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o? 19 1
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5 85 ag s 5577857
dgz 02 10 .
kwdj = 52 (652 + §a€> - k5a55n2. (370)

Now, by employing the GDQ technique, one can
discretize Eq. (35) as follows:

MX + KX =0, (38)

in which:

X' =[Ug,wyi,¥]],



R. Gholami and R. Ansari/Scientia Iranica, Transactions F: Nanotechnology 26 (2019) 3857-3874 3865

LD 0 LD
M = O I_ODg O 9
ID¢ 0 LD

Kuu Kuw Kuw
K=| Kou Kuww Koy | . (39)
Kyu Kyuw Kyy

The components of K are determined by:
kuu = a11 (D + A1ODg) — a2 A, DY,
Fuw :% (D}W,) 0D} + (D}W,) ¢ D?
+ A, o (DiW,) OD}
- anﬁ [A1 0 (DgW,) 0D,
kup = bi1 (D + A1 OD) — bya Ay ODY, (40a)
Kuwu :% (a11Df + ai2Aq)
o (A1 o (DIW,) + DEW,)
+ - {anDE + a1z (410D} - A20D}) )
& (DEW,),
kuww =ksass (D + A ODg)
+5 (DIW. + A1 o (DIW,)) o (D}W)
0D} + %41 ((DIW,) 0D + (DEW,) DY)
o (DIW.) + 717{(111 [(Dgus)

1
+ o (D%Ws) o (D%Ws):| + a2y

o (DYUs) + b11 De Wy + bia Ay o (DQ\I:S)}
¢ (D? + 410D}
+ 717{@11 (DgUs + % (D¢W,) o (Dgws)>

+ a1z (A1 0 (D;Us) — Ay 0 (D{Uy))

+ blng‘I’s + b2 (Al o (Dé‘Ils)

—Ago(ng’S)) }QD%—P (D7+A.0D;),
(40b)

1
kuwy =ksassn (Di + Aq) + " {b11Dg + b1o Ay }
O (DFW, + A o DiW,)

1
+ n{ang + b2 (Al

oD} - Azong) }<> (DIW,) .

kyu = b1y (D + A1ODE) — by A, ODY,

b
kg :% (DgWSng +DIW,OD! + A

o (Dgws) <>Dg> - %Al o (D%WS)

<>Dé - ksa55nD%7

kyp = —da2As + diy (DF + A1OD}) — keassn° DY,
(40c¢)

where < represents the SJT product (SJT is the
abbreviation of Shanghai Jiao Tong Univ.) [59,60]. By
considering the harmonic solution of the form X =
Xe“T, Eq. (39) turns into:

~w*MX + KX = (K - w?’M) X =0, (41)

where w denotes the non-dimensional frequency.
Substitution of the BCs into K and M and the

rearrangement of the discretized equations and the

associated BCs yield the following eigenvalue problem:

{Kdd de} F"(d] _ [M2Mddxd} (42)
Kia Kul| |X,] {0} ’
where subscripts d and b are the domain and boundary
mesh grid points, respectively.

Eq. (42) can be uncoupled through the following
expressions:

Ko — Kb (Kpy) 'Ky ) Xy = w2M gy X
{( dd db( bb) bd) d W dd<4xd (43)

Xo = (Kpp) ' KpaXa.
Now, w; (i =1,2,3,...) and their corresponding mode
shapes X7 = [X;,Xz’] can be achieved by finding a
solution to Eq. (43).
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4. Numerical results and discussion

The formulation and solution procedure developed
in the previous sections are utilized to present the
numerical results for the postbuckling behavior and
the free vibration of the FG-CNTRC annular plates.
Effects of various factors on the static equilibrium post-
buckling path and frequencies are shown by conducting
a non-dimensional study. Poly methyl methacrylate
(PMMA) with »™ = 0.34,p™ = 1150 kg/m3, E™ =
25 GPa  [26] and armchair (10,10) SWCNTs
with v = 0.175,G$3 = 1.9445 TPa,ESP =
5.6466 TPa,ESyt = 7.08 TPa, p™ = 1400 kg/m? at
room temperature (300 K) [61] are selected as matrix
and reinforcements, respectively.

Furthermore, the values of CNT efficiency param-
eters 71, 12, and 73 for three different CNT volume
fractions are considered as follows [26]:

Vi, =012: n=0.137, 1,=1.022 55 = 0.715,
Vi, =017: m=0.142, 15,=1.626 3 = 1.138,
Vi, =028: n=0.141, 5,=1.585 ,n; = 1.109.

In what follows, a sequence of letters including “SS”
and “C” is used to represent the simply supported and
clamped BCs, respectively.

To provide a convergence study and illustrate
the accuracy of mathematical modeling, solution pro-
cedure, and numerical results, the natural frequency
parameters of isotropic annular plates are provided in
Table 1. It can be seen that the results are converged
by increasing N and are in excellent agreement with
those of Liew et al. [53]. In this study, N = 21 is used
in all computational efforts. In addition, in Table 2,
the critical buckling load parameters associated with
various inner-to-outer radius ratios are compared with
those given in [62], illustrating very well agreement.

Depicted in Figure 2 are the static equilibrium
postbuckling paths as the maximum non-dimensional

Table 1. Convergence of the frequency parameters (Cu =

(v=0.3,b/h=>5,a/b=0.5).
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Table 2. Comparison of critical buckling load parameter
(]SCT = Pme/Dno) of C-C isotropic annular plates
(v =10.3,b/h = 20).

a/b Present Ref. [62]
0.2 59.922 60.01
0.3 76.633 76.77
0.4 101.812 102.05

deflection, wy,.x, versus the non-dimensional compres-
sive radial load (Non. dim. radial load; P = P/A;10
where P is the dimensional compressive radial load)
for the three different prescribed distributions of CNTs
in the CNTRC annular plates corresponding to four
various combinations of simply supported and clamped
edge supports. According to this figure, it is revealed
that for a fixed value of the radial load, the maximum
deflection, wyax, corresponding to an FGO-CNTRC
annular plate is larger than those of the other two types
of CNTRC plates; the FGO-CNTRC annular has the
lowest critical buckling load and the highest critical
buckling load, and the maximum load-carrying capac-
ity belongs to the FGX distribution pattern. It can be
concluded from this figure that the addition of more
CNTs to the upper and lower surfaces of FG-CNTRC
annular plates results in a considerable increase in the
total stiffness of system and induces more resistance
against bending. In addition, it is observed that the
FG-CNTRC plates with C-C edge conditions have min-
imum values of maximum deflection and, subsequently,
maximum values of critical buckling load, whereas, for
the case of the FG-CNTRC annular plates with fully
simply supported edges, an opposite trend is seen. The
dependence of the non-dimensional frequency (Non.
dim. frequency: w = @by/Ioo/A110 where @ denotes
the natural frequency) upon the non-dimensional com-
pressive radial load in the pre- and post-buckled states
is exhibited in Figure 3. Based on the results exhibited
in Figure 3, it can be concluded that the fundamental
frequencies of FG-CNTRC annular plates in the pre-

b2 foo/Duo) of isotropic annular plates with different BCs

BCs Mode N Ref. [53]
5 7 9 11 13 21

$9.95 1 31.3583  31.7365 31.7292 31.7292 31.7292 31.7292 31.87

2 104.3532  89.9127 89.8677 89.8647 89.8647  89.8647 90.64
§5.C 1 41.2354  41.2906  41.2883  41.2883  41.2883  41.2883 41.62

2 109.4586  94.3543  94.2975 94.2913 94.2914 94.2914 95.27
€SS 1 37.5501  38.0643 38.0538 38.0538 38.0538  38.0538 38.36

2 107.2712 92,9592 92.8525 92.8512  92.8512  92.8512 93.78
C-C 1 47.7424  47.8078  47.8099 47.8099 47.8099  47.8099 48.31

2 110.4921 96.4347 96.2918 96.2885 96.2886  96.2886 97.39
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Figure 3. Vibration behavior of pre- and post-buckled FG-CNTRC annular plates for three different distributions of the
CNTs (b/h = 40, V7, = 0.17,a/b = 0.2).
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buckled state decrease with an increase in the radial
load. This is because the stiffness of FG-CNTRC
annular plates decreases by increasing the compressive
radial loading. By increasing the compressive radial
load to a new high, the stiffness matrix becomes a
zero matrix at a certain point, called the buckling
point. In this point, the FG-CNTRC annular plates
do not experience any vibration and, consequently, the
fundamental frequency is zero. It can be interpreted
that the buckling point is a bifurcation point through
which the FG-CNTRC annular plate meets its sec-
ondary equilibrium state known as the postbuckling
region. Prior to the bifurcation point, the frequencies
correspond to the pre-buckling configuration, and those
after the critical buckling load are concerned with the
vibration in the post-buckled state. For a buckled
plate, it is seen that by increasing the compressive
radial load, the fundamental frequencies increase. This
implies that a buckled plate can withstand additional
load without failure. In addition, it is deduced that the
dimensionless frequency-load curves are continuous, yet
not differentiable at the buckling point. According to
this figure, it is observed that at a fixed value of radial
load, the fundamental frequencies associated with the
FGO-CNTRC plates have lower values than CNTRC
annular plates with FGX and UD patterns in the pre-
buckled region. While, in the postbuckled region, it is
seen that the fundamental frequencies corresponding to
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FGO-CNTRC plates have larger values than the other
two cases. It is due to this fact that the deflection in
the postbuckled region intensifies the nonlinear stiffness
matrices. In addition, it is implied that the effect of
deflection is more significant than the CNT distribution
pattern. Hence, at a certain point in the postbuckled
region, since the deflection of FGO-CNTRC annular
plate is more than two other distribution patterns, its
frequency is greater than the annular plate with UD
and FGX patterns.

Effects of V, on the equilibrium postbuckling
path and frequency-response curves are plotted in
Figures 4 and 5 for the FGX-CNTRC annular plates.
From these figures, it is seen that as V., increases,
the maximum dimensionless deflection decreases and
critical buckling load increases. It means that by
increasing V7 ,, the flexibility of the CNTRC annular
plate increases, too. This is due to the considerable
stiffness of CN'Ts. As it is expected, by increasing V' ,,
the frequencies of the CNTRC annular plates with FGX
pattern increase in the pre-buckled region, whereas
an opposite trend is observed for the postbuckling
configuration.

Figures 6 and 7 show the effects of b/h on the
maximum dimensionless deflection and frequency of
the FGO-CNTRC plates with C-C, SS-SS, C-SS, and
SS-C BCs, respectively. It is observed that an increase
in b/h leads to increasing and decreasing the maximum
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Figure 4. Postbuckling path of FGX-CNTRC annular plates for different amounts of V,; (b/h = 40,a/b = 0.3).
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Postbuckling characteristics of FGX-CNTRC annular plates for various values of b/h (V5,, = 0.17,a/b = 0.2).
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dimensionless deflection and the critical buckling
load, respectively. In other words, an increase in b/h
results in a decrease in the postbuckling load-carrying
capacity of FGannular plates. According to the
dimensionless frequency-radial load curves, it is seen
that the frequency in the pre-buckled and post-buckled
regions respectively decreases and increases as the
plate aspect ratio rises.

Finally, the effects of a/b on the equilibrium
postbuckling path and vibration characteristics of the
FGX-CNTRC annular plates with C-C, SS-SS, C-
SS, and SS-C BCs are shown in Figures 8 and 9,
respectively. It is deduced that an increase in a/b
decreases the maximum dimensionless deflection and
increases the critical buckling load. In other words,
the larger the difference between the outer and inner
radii, the more stable the CNTRC plate. In addition,
it is seen that increasing a/b causes the fundamental
frequency to increase in the pre-buckled and deep post-
buckled regions. In the post-buckled region, depending
on the geometry and compressive radial loading (and,
consequently, the deflection of plate), the fundamental
frequency may decrease or increase.

5. Conclusion

In this study, a numerical methodology was adopted
to investigate the postbuckling and free vibration of

FG-CNTRC annular plates with different BCs. To this
end, the FSDT along with the von Karmén geometric
nonlinearity was utilized to formulate the underlying
problem. The UD, FGO, and FGX distributions of
SWCNTSs in the composite plates were considered.
Upon employing an equivalent continuum model, the
material properties of FG-CNTRCs were estimated.
Governing equations were attained by Hamilton’s prin-
ciple and, then, discretized by a GDQ-based method.
Prior to examining the vibration behavior of post-
buckled CNTRC plates, postbuckling analysis was
performed to obtain the buckling load and equilibrium
postbuckling path via the pseudo-arc length continua-
tion scheme. Thereafter, the free vibration problem of
the postbuckled CNTRC annular plates was solved as a
standard linear eigenvalue equation. Effects of various
parameters including types of BCs, CNT volume frac-
tion, outer radius-to-thickness ratio, and inner-to-outer
radius ratio on the postbuckling path and fundamental
frequencies were investigated. Results showed that at a
fixed value of the applied radial load, the fundamental
frequencies of FGO-CNTRC plates are the smallest in
the pre-buckling region and the largest in the post-
buckling region among the given cases. In addition,
it was observed that by increasing the outer radius-
to-thickness aspect ratio, the fundamental frequencies
increase in the prebuckling and deep postbuckling
regions.
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Figure 8. Postbuckling behavior of FGX-CNTRC annular plates for various values of a/b (b/h = 40, V,,; = 0.28).
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