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Abstract. Dome structures are elegant and economical structures used for covering
large areas. In this paper, an optimum topology design is performed using the Colliding
Bodies Optimization (CBO) method and its enhanced version (ECBO). The Schwedler
and ribbed domes are studied determining the optimum number of rings, the optimum
number of joints in each ring, the optimum height of crown, and tubular sections of these
domes. The minimum volume of each dome is taken as the objective function. A simple
procedure is de�ned to determine the con�gurations of Schwedler and ribbed domes. This
procedure includes calculation of the joint coordinates and element constructions. The
design constraints are implemented according to the provision of LRFD-AISC. First, a
comparative study for domes using di�erent algorithms is carried out, and then the e�ect
of choosing di�erent number of joints in each ring on the optimal topology is investigated
for Schwedler domes to verify the suitability of design procedure and to demonstrate
e�ectiveness of the ECBO.
© 2016 Sharif University of Technology. All rights reserved.

1. Introduction

Covering large areas without intermediate supports
has always been a challenging task for structural
engineers. Domes provide economical solution to this
problem. The dome shape not only provides elegant
appearance, but also o�ers one of the most e�cient
interior atmospheres for human residence, because
air and energy circulation can be placed without
obstruction. The basic parameters that de�ne the
geometry of a dome are the total number of rings
and height of crown, once its diameter is speci�ed.
Consequently, optimum topological design of domes
necessitates treatments of these parameters as design
variables. The design constraints that are to be
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considered in the formulation of the design problem can
be implemented according to one of the current design
codes. In general, for optimum design of domes, the
allowable cross-sections are selected from 37 standard
steel pipe sections, as shown in Table 1. Other sections
are rarely utilized as the members of domes. Load
and Resistance Factor Design-American Institute of
Steel Constitution (LRFD-AISC) is adopted in most of
the research papers for design. Optimization methods
can be divided in two general categories: (i) Mathe-
matical programming methods that use approximation
techniques to solve the optimization problem; and
(ii) Meta-heuristic algorithms [1-3] that mimic some
natural phenomena, including biology and evolution
theory. Popular meta-heuristic algorithms are Particle
Swarm Optimization (PSO) [3], Ant Colony Optimiza-
tion (ACO) [4], Big Bang-Big Crunch (BB-BC) [5],
Charged System Search (CSS) [6], Ray Optimization
(RO) [7], and Dolphin Echolocation (DE) [8]. The
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Table 1. The allowable steel pipe sections taken from LRFD AISC.

Type Nominal
diameter (in)

Weight per
ft. (lb)

Area (in2) I (in4) S (in3) J (in4) Z (in3)

1 ST 1/2 0.85 0.250 0.017 0.041 0.082 0.059
2 EST 1/2 1.09 0.320 0.020 0.048 0.096 0.072
3 ST 3/4 1.13 0.333 0.037 0.071 0.142 0.100
4 EST 3/4 1.47 0.433 0.045 0.085 0.170 0.125
5 ST 1 1.68 0.494 0.087 0.133 0.266 0.187
6 EST 1 2.17 0.639 0.106 0.161 0.322 0.233
7 ST 1 1

4 2.27 0.669 0.195 0.235 0.470 0.324
8 ST 1 1

2 2.72 0.799 0.310 0.326 0.652 0.448
9 EST 1 1

4 3.00 0.881 0.242 0.291 0.582 0.414
10 EST 1 1

2 3.63 1.07 0.666 0.561 1.122 0.761
11 ST 2 3.65 1.07 0.391 0.412 0.824 0.581
12 EST 2 5.02 1.48 0.868 0.731 1.462 1.02
13 ST 2 1

2 5.79 1.70 1.53 1.06 2.12 1.45
14 ST 3 7.58 2.23 3.02 1.72 3.44 2.33
15 EST 2 1

2 7.66 2.25 1.92 1.34 2.68 1.87
16 DEST 2 9.03 2.66 1.31 1.10 2.2 1.67
17 ST 3 1

2 9.11 2.68 4.79 2.39 4.78 3.22
18 EST 3 10.25 3.02 3.89 2.23 4.46 3.08
19 ST 4 10.79 3.17 7.23 3.21 6.42 4.31
20 EST 3 1

2 12.50 3.68 6.28 3.14 6.28 4.32
21 DEST 2 1

2 13.69 4.03 2.87 2.00 4.00 3.04
22 ST 5 14.62 4.30 15.2 5.45 10.9 7.27
23 EST 4 14.98 4.41 9.61 4.27 8.54 5.85
24 DEST 3 18.58 5.47 5.99 3.42 6.84 5.12
25 ST 6 18.97 5.58 28.1 8.50 17.0 11.2
26 EST 5 20.78 6.11 20.7 7.43 14.86 10.1
27 DEST 4 27.54 8.10 15.3 6.79 13.58 9.97
28 ST 8 28.55 8.40 72.5 16.8 33.6 22.2
29 EST 6 28.57 8.40 40.5 12.2 24.4 16.6
30 DEST 5 38.59 11.3 33.6 12.1 24.2 17.5
31 ST 10 40.48 11.9 161 29.9 59.8 39.4
32 EST 8 43.39 12.8 106 24.5 49.0 33.0
33 ST 12 49.56 14.6 279 43.8 87.6 57.4
34 DEST 6 53.16 15.6 66.3 20.0 40.0 28.9
35 EST 10 54.74 16.1 212 39.4 78.8 52.6
36 EST 12 65.42 19.2 362 56.7 113.4 75.1
37 DEST 8 72.42 21.3 162 37.6 75.2 52.8

Colliding Bodies Optimization was recently introduced
for design of structures with continuous and discrete
variables [9]. The CBO algorithm reproduces the laws
of collision between bodies. Each Colliding Body (CB)
is considered to be an object with speci�ed mass and
velocity before collision; after collision, each CB moves
to a new position with new velocity [10]. The design

optimization of geometrically nonlinear geodesic domes
is carried out where the developed design algorithm
determines the optimum height of the crown as well
as the optimum tubular steel sections for its members
using genetic algorithm [11]. In this paper, optimum
topology design of linear elastic geodesic domes is pre-
sented. The design algorithm determines the optimum
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number of rings, the optimum height of crown, and
tubular sections for the geodesic domes. The optimum
topology design algorithm based on the hybrid Big
Bang-Big Crunch optimization method is presented
for the Schwedler and Ribbed domes in Kaveh and
Talatahari [12]. A comparative study is carried out
for the optimum design of di�erent types of single-
layer latticed domes in Kaveh and Talatahari [13]. In
Kaveh and Talatahari [14], the optimum geometry and
topology design of geodesic domes is obtained by using
Charged System Search (CSS). Recently, Gon�calves et
al. [15] presented search group algorithm, and Mirjalili
developed the ant lion optimizer [16]. Applications to
some real-life problems can be found in the work of [17-
19].

The present paper is structured as follows: Sec-
tion 2 consists of optimum design of ribbed and
Schwedler domes according to LRFD domes. Section
3 recalls the laws of collision between two bodies. Sec-
tion 4 illustrates the con�guration of domes. Compara-
tive study is performed for ribbed and Schwedler domes
using CBO algorithm, and then topology optimization
of Schwedler dome with di�erent number of nodes in
each ring is investigated in Section 5. Finally, Section 6
concludes the main �ndings of this study.

2. Optimum design problem of ribbed and
Schwedler domes according to LRFD

Optimal design of Schwedler and ribbed domes consists
of �nding optimal cross-sections for elements, optimal
height for the crown, optimal number of the nodes in
each ring, and the optimum number of rings under
the determined loading conditions. The allowable
cross-sections are 37 steel pipe sections, as shown
in Table 1, which are standard sections. In this
table, the abbreviations ST, EST, and DEST stand for
standard weight, extra strong, and double-extra strong,
respectively. These sections are taken from LRFD-
AISC [20] which is also utilized as the code of practice.
The process of the optimum design of the structures of
a dome can be summarized as:

Find X = [x1; x2; :::; xng] ; h;Nr (1)

xi 2 fd1; d2; :::; dngg
hi 2 fhmin; hmin + h�; :::; hmaxg

To minimize V (x) =
nmX
i=1

xi:li

subjected to the following constraints:
Displacement constraints:

�i � �max
i i = 1; 2; :::; nn: (2)

Interaction formula constraints:

Pu
2�cPn

+
�

Mux

�bMnx
+

Muy

�bMny

�
�

for
Pu
�cPn

< 0:2; (3)

Pu
�cPn

+
8
9

�
Mux

�bMnx
+

Muy

�bMny

�
� 1

for
Pu
�cPn

� 0:2; (4)

where X is the vector containing the design variables of
the elements; h is the variable of the crown height; Nr
is the total number of rings; dj is the jth allowable
discrete value for the design variables; hmin, hmax,
and h� are the permitted minimum, maximum and
increased amounts of the crown height, which in this
paper are taken asD=20, D=2, and 0.25 m, respectively,
in which D is the diameter of the dome; ng is the
number of design variables or the number of groups;
V (x) is the volume of the structure; li is the length
of member i; �i is the displacement of node i; �max
is the permitted displacement for the ith node; nn is
the total number of nodes; �c is the resistance factor
(�c = 0:9 for tension, �c = 0:85 for compression); �b
is the exural resistance reduction factor (�b = 0:9);
Mux and Muy are the required exural strengths in
the x and y directions, respectively; Mnx and Mny
are the nominal exural strengths in the x and y
directions, respectively; Pu is the required strength;
and Pn denotes the nominal axial strength, which is
computed as:

Pn = AgFcr; (5)

where Ag is the gross area of a member; and Fcr is
calculated as follows:

Fcr = (0:658�
2
c):fy for �c � 1:5; (6)

Fcr =
�

0:877
�2
c

�
:fy for �c > 1:5: (7)

Here, fy is the speci�ed yield stress; and �c is obtained
from:

�c =
kl
�r

r
fy
E
; (8)

where k is the e�ective length factor taken as 1; l is
the length of a dome member; r is the governing radius
of gyration about the axis of buckling; and E is the
modulus of elasticity. In Eq. (9), Vu is the factored
service load shear; Vn is the nominal strength in shear;
and 'v represents the resistance factor for shear ('v =
0:9).

Vu � 'vVn: (9)
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3. The CBO and ECBO algorithm

This section introduces the recently developed meta-
heuristic Colliding Bodies Optimization (CBO) algo-
rithm and its enhanced version based on the work of
Kaveh and Mahdavi [9], Kaveh [21], and Kaveh and
Ilchi Ghazaan [22,23], respectively.

3.1. Colliding bodies optimization
The CBO mimics the one-dimensional collision law
between bodies. In CBO, each solution candidate Xi
containing a number of variables (i.e., Xi = fxi;jg) is
considered to be a Colliding Body (CB). The massed
objects composed of two main groups, equally; namely
stationary and moving objects, where the moving
objects move to follow stationary objects and a collision
occurs between pairs of objects. This is done for
two purposes: (i) to improve the positions of moving
objects; and (ii) to push stationary objects towards
better positions. After the collision, the new positions
of colliding bodies are updated based on the new
velocity by using the collision laws; and the lighter
and heavier CBs move sharply and slowly, respectively
(Figure 1).

The pseudo-code for the CBO algorithm can be
summarized as follows:

Step 1: Initialization. The initial positions of
CBs are determined with random initialization of a
population of individuals in the search space:

x0
i = xmin + rand(xmax � xmin); i = 1; 2; 3; :::; n;

(10)

where x0
i determines the initial design vector of the

ith CBs; xmax and xmin are the minimum and the
maximum allowable values for the variables; rand is
a random number in the interval [0, 1]; and n is the
number of CBs.
Step 2: The magnitude of the body mass for each
CB is de�ned as:

mk =
1

fit(k)Pn
i=1

1
fit(i)

; k = 1; 2; :::; n; (11)

Figure 1. Colliding of two bodies.

where fit(i) represents the �tness value of the agent
i; n is the population size. It is clear that a CB with a
good value exerts a larger mass than the bad one. In
maximization problems, the term (1=fit) is replaced
by fit(i):
Step 3: Mating of bodies. CBs costs are sorted in
ascending order based on the value of cost function.
The sorted CBs are divided equally into two groups:
� The lower half of CBs (stationary CBs) includes

good agents that are stationary and velocity of
these bodies before collision is zero. Thus:

vi = 0; i = 1; :::;
n
2

(12)

� The upper half of CBs (moving CBs) includes
agents that move toward the lower half. Then
(see Figure 1), the better and worse CBs, i.e.
agents with upper �tness value of each group, will
collide with each other. The change of the body
position represents the velocity of these bodies
before collision as:

vi = xi�n2 � xi; i =
n
2

+ 1; :::; n; (13)

where vi and xi are the velocity and position
vectors of the ith CB in this group, respectively,
and xi�n=2 is the ith CB pair position of xi in the
previous group.

Step 4: Updating velocities. After the collision, the
velocity of bodies in each group is evaluated using
Eqs. (13) and (14) and the velocity before collision.
The velocity of each moving CB after the collision is:

v0i =
�
mi � "mi�n2

�
vi

mi +mi�n2
i =

n
2

+ 1;
n
2

+ 2; :::; n;
(14)

where v and v0
i are the velocities of the ith moving

CB before and after the collision, respectively; mi is
mass of the ith CB; mi�n=2 is mass of the ith CB
pair. Also, the velocity of each stationary CB after
the collision is:

v0i =
�
mi+n

2
+ "mi�n2

�
vi+n

2

mi + ni+n
2

i = 1; 2; :::;
n
2
; (15)

where vi+n
2

and v0
i are the velocities of the ith moving

CB pair before the collision and the ith stationary CB
after the collision, respectively; mi is mass of the ith
CB; mi+n

2
is mass of the ith moving CB pair; " is the

Coe�cient Of Restitution (COR), which is de�ned
as the ratio of the separation velocity of two agents
after collision to the approach velocity of two agents
before collision. For most of the real objects, " is
between 0 and 1. Therefore, to control exploration
and exploitation rates, COR decreases linearly from
unity to zero and " is de�ned as:
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" = 1� iter
itermax

(16)

Step 5: Updating positions. New positions of CBs
are evaluated using the generated velocities after the
collision in position of stationary CBs. The new
position of each moving CB is:

xnew
i = xi�n2 + rand 0v0i; i =

n
2

+ 1; :::; n; (17)

where xnew0
i and v0i are the new position and the

velocity after the collision of the ith moving CB,
respectively; and xi�n=2 is the old position of ith
stationary CB pair. Also, the new position of each
stationary CB is:

xnew
i = xi + rand 0v0i; i = 1; 2; :::;

n
2
; (18)

where xnew
i , xi, and v0

i are the new position, old
position, and the velocity after the collision of the
ith stationary CB, respectively. Rand is a random
vector uniformly distributed in the Range (1,1).
Step 6: Terminating criterion. The optimization is
repeated from Step 2 until a termination criterion, as
the maximum number of iterations, is satis�ed.

Apart from the e�ciency of the CBO algorithm,
which is illustrated in the next section through
numerical examples, the independence of the algo-
rithm from internal parameters is one of the main
advantages of the CBO algorithm.

3.2. Discrete CBO algorithm
In this paper, a simple method is employed to solve
discrete problems by using a continuous algorithm.
This method utilizes a rounding function which changes
the continuous value of a result to the nearest discrete
value, as:

xnew
discrete = Fix(xnew

continuous); (19)

where Fix(X) is a function which rounds each element
of X to the nearest permissible discrete value.

3.3. Enhanced colliding bodies optimization
A modi�ed version of the CBO is Enhanced Colliding
Bodies Optimization, which improves the CBO to get
more reliable solutions. The introduction of memory
can increase the convergence speed of ECBO with
respect to standard CBO. Furthermore, changing some
components of colliding bodies will help ECBO to
escape from local optima. In short, in the Enhanced
Colliding Bodies Optimization (ECBO), a memory
that saves a number of historically best CBs is utilized
to improve the performance of the CBO and reduce
the computational cost. Furthermore, ECBO changes
some components of CBs, randomly, to prevent pre-
mature convergence. The steps added to the standard
CBO are as follow:

Added step 1: Saving. This step is put after
Step 2 of standard CBO and considers a memory
which saves some historically best CB vectors and their
related mass and objective function values improve the
performance of the algorithm without increasing the
computational time, [22,23]. Here, a Colliding Memory
(CM) is utilized to save a number of the best-so-far
solutions. Therefore, at this step, the solution vectors
saved in CM are added to the population, and the same
numbers of current worst CBs are deleted. Finally, CBs
are sorted according to their masses in a decreasing
order.
Added step 2: Escape from local optima. This step
is put after Step 7 of standard CBO. Meta-heuristic
algorithms should have the ability to escape from the
trap when agents get close to a local optimum. In
ECBO, a parameter like Pro within (0, 1) is introduced
and it is speci�ed to determine whether a component
of each CB must be changed or not. For each colliding
body, Pro is compared with rni(i = 1; 2; :::; n) which is
a random number uniformly distributed within (0, 1).
If rni < Pro, one dimension of the ith CB is selected
randomly and its value is regenerated as follows:

xij = xj;min + random:(xj;max � xj;min); (20)

where xij is the jth variable of the ith CB. xj;min and
xj;max, respectively, are the lower and upper bounds of
the jth variable. In order to protect the structures of
CBs, only one dimension is changed. This mechanism
provides opportunities for the CBs to move all over the
search space thus providing better diversity.

4. Con�guration of Schwedler and ribbed
domes

The con�guration of a Schwedler dome is shown in Fig-
ure 2. This dome consists of meridional ribs connected
together by a number of horizontal polygonal rings. To
sti�en the resulting structure, each trapezium formed
by intersecting meridional ribs with horizontal rings is
subdivided into two triangles by introducing a diagonal
member. The number of nodes in each ring for the

Figure 2. The Schwedler dome.
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Schwedler domes is considered constant and it is equal
to 10 at the �rst stage. The distances between the
rings in the dome on the meridian line are generally
of equal length. The structural data for the geometry
of this form of the Schwedler domes is a function of
the diameter of the dome (D), the total number of
rings (Nr), and the height of the crown (h). The total
number of rings can be selected as 3, 4, or 5. The
top joint at the crown is numbered as the �rst joint,
as shown in Figure 2(a) (joint number 1), which is
located in the center of the coordinate system in x� y
plane. The coordinates of other joints in each ring are
obtained as:8>>>>>>><>>>>>>>:

xi = D
2Nr cos

�
360
4ni

�
i�Pi�1

j=1 4nj � 1
��

zi =
r�

R2 � n2
iD2

4Nr2

�� (R� h)

yi = D
2Nr sin

�
360
4ni

�
i�Pi�1

j=1 4nj � 1
�� (21)

where ni is the number of rings corresponding to the
node i; R = (D2 + 4h2)=(8h), where R is the radius of
the hemisphere as shown in Figure 2(b). The member
of grouping is determined in a way that rib members
between each consecutive pair of rings belong to one
group, diagonal members belong to one group, and the
members on each ring form another group. Therefore,
the total number of groups is equal to (3Nr � 2).
Figure 3 shows the number of groups corresponding to
rib, diagonal, and ring members. The con�guration of
elements contains determining the start and end nodes
of each element. For the �rst group, the start node for
all elements is the joint number 1 and the end nodes
are those on the �rst ring.

A dome without the diagonal members is called
the ribbed dome, as shown in Figure 4. For these

Figure 3. The Schwedler dome with the related member
grouping.

Figure 4. The ribbed dome.

domes, Eqs. (19) and (20) are also valid to determine
the joint coordinates and the ring member construc-
tions. However, the rib members are assigned using
the following relationship:8<:I = 10 � (ni � 1) + j + 1

J = 10 � (ni) + j + 1
ni = 1; 2; :::; Nr � 1

(22)

5. Results and discussion

In this section, two common domes are optimized uti-
lizing the CBO and ECBO. Both ribbed and Schwedler
domes have common con�gurations, which are widely
used to cover large areas. Since a ribbed dome has less
number of elements than a Schwedler dome, it will be
interesting to compare their performance and optimum
volumes, element sections, and their heights, when
these domes are subjected to three di�erent forms of
equipment loading. Another reason for choosing these
types of domes is the diagonal members in topology of
the Schwedler domes in contrary to the ribbed domes.

The modulus of elasticity for the steel is taken as
205 kN/mm2. The limitations imposed on the joint
displacements are 28 mm in the z direction and 33 mm
in the x and y directions for the 1st, 2nd, and 3rd
nodes, respectively (Table 2).

The behavior of domes is nonlinear due to change
of geometry under external loads. This is due to the
imperfections arising either from the manufacturing
process and/or from the construction of the structure.
Furthermore, they are sometimes subjected to equip-
ment loading concentrated at the crown in addition
to uniform gravity loading. In the further step of
this study, the domes are subjected to equipment
loading. In order to show the e�ect of geometric
nonlinearity on the behavior of domes, linear and
nonlinear Z-displacements of joint 1 of the ribbed dome
obtained from CBO algorithm are calculated under
di�erent concentrated loads. The linear analysis is
performed by the commercial structural analysis pro-
gram SAP2000v14 for comparison with the nonlinear
analysis. It is apparent from Table 3 that under 500 kN
downward load, nonlinear displacement is 12.94% more
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Table 2. Displacement restrictions of single-layer ribbed and Schwedler domes.

Displacement limitations (mm)

x direction y direction z direction
Joint

no
Upper
bound

Lower
bound

Upper
bound

Lower
bound

Upper
bound

Lower
bound

1 { { { { 28 -28

2 33 -33 33 -33 28 -28

3 33 -33 33 -33 28 -28

Table 3. Z-displacement of joint 1 of ribbed dome with four rings obtained by the linear analysis using SAP200 v14 and
nonlinear analysis by the routine developed in this work.

Load (kN)

Z-displacements of joint 1
obtained by carrying out
the linear analysis using

SAP2000 v14 (mm)

Z-displacements of joint 1
obtained by carrying out

the nonlinear analysis
developed in this work (mm)

0 0 0

100 13.63 14.27

200 14.72 16.63

300 17.18 19.09

400 19.63 21.63

500 22.09 24.95

than the linear displacement for ribbed dome with four
rings.

5.1. Optimum design of the domes obtained by
di�erent methods

The diameter of the considered dome is selected as
40 m. The dome is subjected to equipment loading
at its crown. The three loading conditions are as:

Case 1. The vertical downward load of 500 kN;
Case 2. The two horizontal loads of 100 kN in the x
and y directions;
Case 3. The vertical downward load of 500 kN
and two horizontal loads of 100 kN in the x and y
directions.

Tables 4 and 5 present the results for the ribbed
and Schwedler domes. The volume of dome structures
can be considered a function of the average cross-
sectional area of the elements ( �A) and the sum of the
element lengths written as:

V (X) = �A:
nmX
i=1

li: (23)

In all cases, both domes have approximately the same
optimal height; however, because of having less number
of elements, the ribbed dome has smaller value for the
sum of the element lengths than that of the Schwedler
dome.

When comparing the optimum sections for these

two types of domes, it can be shown that the rib mem-
bers in the ribbed dome have much stronger sections
than the rings elements, while almost all members in
the Schwedler dome have near cross-section areas. It
can be shown that the rib members in the ribbed dome
have much heavier sections than the rings elements,
while almost all members in the Schwedler dome are
not so much di�erent. In other words, the results show
that for providing lateral sti�ness in the ribbed domes,
all rib members should have very strong sections, and A
has a very large value, whereas the Schwedler dome has
small area sections because of having diagonal elements
which provide the necessary lateral sti�ness against the
lateral external loadings. In short, the Schwedler dome
has better performance against the external lateral
forces and has smaller volume.

Because of the existence of only lateral forces
in Case 2 loading, the angles of elements with the
horizontal line in the optimum design should have the
least value; therefore, the domes have the minimum
allowable standard heights.

When Case 1 and Case 2 loading conditions are
applied to the domes, for maintaining stability, the
height of the ribbed dome is obtained smaller. On the
contrary, for Schwedler domes, because of having more
diagonal and ribbed members, the height is obtained
bigger than that for the ribbed dome, and it is more
stable.

Another observation is that the performance of
ECBO is better than that of the CBO. ECBO �nds
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Table 4. Optimum design of the ribbed domes.

Optimum section (designations)
Group number Case 1 Case 2 Case 3

(CBO) (ECBO) (CBO) (ECBO) (CBO) (ECBO)
1 PIPST (8) PIPST(8) PIPST (8) PIPPST(8) PIPST (12) PIPEST(12)
2 PIPST (5) PIPST(5) PIPST (8) PIPST(8) PIPST (12) PIPEST(12)
3 PIPST (5) PIPST(5) PIPST (10) PIPST(10) PIPST (10) PIPEST(10)
4 PIPST (8) PIPST(8) PIPST (1/2) PIPST(1/2) PIPST (8) PIPST(10)
5 PIPST (5) PIPST(5) PIPST (1 1/4) PIPST(1 1/4) PIPST (8) PIPEST(6)

Height (m) 13.25 13.00 2.00 2.00 7.25 7.25
Max. displacement (cm) 2.85 2.89 2.20 2.20 3.00 3.20

Max. strength ratio 0.80 0.82 0.60 0.60 0.82 0.79
Volume (m3) 1.33 1.32 1.16 1.01 2.57 2.51P

lI (m) 375.92 374.11 324.90 324.90 340.20 340.20
�A(cm2) 35.37 35.28 39.39 39.39 75.54 73.78

PIPST, PIPEST, and PIPDEST stand for standard weight, extra strong, and double-extra strong, respectively.

Table 5. Optimum design of the Schwedler domes.

Optimum section (designations)
Group number Case 1 Case 2 Case 3

(CBO) (ECBO) (CBO) (ECBO) (CBO) (ECBO)
1 PIPST (10) PIPST(8) PIPST (3) PIPPST(8) PIPST (10) PIPEST(10)
2 PIPST (5) PIPST(5) PIPST (3) PIPST(8) PIPST (4) PIPEST(4)
3 PIPST (2) PIPST(1 1/2) PIPST (2 1/2) PIPST(10) PIPST (6) PIPEST(6)
4 PIPST (4) PIPST(4) PIPST (3) PIPST(1/2) PIPST (4) PIPST(4)
5 PIPST (2) PIPST(1 1/2) PIPST (3 1/2) PIPST(1 1/4) PIPST (5) PIPEST(5)
6 PIPST (10) PIPST (8) PIPST (2 1/2) PIPST (2) PIPST (8) PIPST (8)
7 PIPST (2) PIPST (5) PIPST (2 1/2) PIPST (2) PIPST (5) PIPST (5)

Height (m) 11.50 11.25 2.00 2.00 10.25 7.25
Max. displacement (cm) 3.10 3.20 1.86 1.84 3.18 3.10

Max. strength ratio 0.76 0.79 0.94 0.94 0.94 0.96
Volume (m3) 1.38 1.34 0.73 0.71 2.02 2.01P

lI (m) 599.24 596.47 534.16 535.16 585.95 583.46
�A (cm2) 23.02 22.46 13.64 13.25 34.47 31.45

better results for all cases. As an example, volumes of
Schwedler dome under Case 2 loading are obtained 0.71
and 0.73 for ECBO and CBO, respectively. This shows
that ECBO has designed 2.7% lighter structure than
CBO. Also for the ribbed dome under loading Case 1,
the volumes are obtained 1.31 and 1.33 for ECBO and
CBO, respectively, indicating that ECBO has obtained
a lighter structure than CBO. To sum up, the ECBO
algorithm is a robust method for optimum design of
domes, having better performance than its standard
version.

Figure 5 shows the convergence histories for the
CBO and ECBO algorithms. This �gure shows that

Figure 5. Optimization history of the Schwedler dome
with 3 rings.
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Table 6. Geometry and topology optimization of Schwedler domes with four rings using colliding bodies method.

Group number Nn = 6 Nn = 7 Nn = 8 Nn = 9 Nn = 10

1 PIPST (10) PIPST (10) PIPST (10) PIPST (10) PIPST (10)
2 PIPST (8) PIPST (8) PIPST (8) PIPST (8) PIPST (8)
3 PIPST (8) PIPST (8) PIPST (8) PIPST (8) PIPST (8)
4 PIPST (5) PIPST (5) PIPST (5) PIPST (5) PIPST (5)
5 PIPST (2 1/2) PIPST (2 1/2) PIPST (2 1/2) PIPST (2 1/2) PIPST (2 1/2)
6 PIPST (5) PIPST (5) PIPST (4) PIPST (3) PIPST (3 1/2)
7 PIPST (2) PIPST (1 1/2) PIPST (1 1/2) PIPST (1 1/2) PIPST (1 1/2)
8 PIPST (8) PIPST (8) PIPST (8) PIPST (8) PIPST (8)
9 PIPST (5) PIPST (5) PIPST (4) PIPST (4) PIPST (4)
10 PIPST (4) PIPST (4) PIPST (4) PIPST (4) PIPST (3 1/2)

Optimum height (m) 6.00 5.50 5.00 4.50 4.25
Max. displacement (cm) 2.76 2.59 2.70 2.79 2.71

Max. strength ratio 91.85 80.61 72.33 92.89 72.17
Volume 0.8936 0.9619 0.9777 1.0438 1.08P
lI (m) 308.97 329.05 348.04 366.33 385.71

�x (cm2) 36.30 36.12 34.52 34.43 33.89

the design found by ECBO is lighter than that found
by CBO at the same number of analyses. It can be
seen that the convergence rate of the ECBO algorithm
is better than that of the CBO.

5.2. Topology and geometry optimization of
Schwedler domes with di�erent number of
nodes in each ring

In this section, the dome described in the previous
section is optimized using the CBO algorithm while
the number of rings (Nr) and the number of nodes
in each ring (Nn) are de�ned as the design variables
in our program. However, in order to investigate the
e�ect of Nr and Nn on the optimum design, here,
we consider all possible conditions for these design
variables. The dome is considered to be subjected
to equipment loading equal to 1000 kN, as shown in
Figure 6. The modulus of elasticity for the steel is
taken to be 205 kN/mm2. The diameter of the dome
is selected as 20 m. The limitations imposed on the
joint displacements are according to Table 3. Nr and
Nn determine the number of elements and the height

Figure 6. The Schwedler dome under equipment loading
distributed in the �rst ring.

of dome alters the length of elements to cause change
in the sum of the element lengths. Tables 6, 7, and 8
present the optimal designs for the Schwedler dome
with di�erent number of nodes in each ring that is
obtained by the CBO algorithm. Tables 6, 7, and 8
are related to domes with Nr being 3, 4, and 5,
respectively. From these tables, it can be observed that
a dome with small number of elements (Nn) tends to
select the greater height. When Nn increases, almost
in all the tables, the height of the domes decreases. For
a dome with small Nn, having a large height helps the
dome to prevent instability. Also it is clear that for
Schwedler dome, the optimum volume is attained by 3
rings with 8 nodes on each ring, as shown in Figure 7.
As a result, the selected sections for the elements in
a dome with a small Nn are stronger than those of
a dome with a larger value for Nn. This means that
though a dome with small Nn has a small value for the
sum of the element lengths, its average cross-sectional

Figure 7. A 20 meter span Schwedler domes plan view
with di�erent number of nodes in each ring.
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Table 7. Geometry and topology optimization of Schwedler domes with 5 rings using CBO.

Group number Nn = 6 Nn = 7 Nn = 8 Nn = 9 Nn = 10
1 PIPST (10) PIPST (10) PIPST (10) PIPST (10) PIPST (10)
2 PIPST (8) PIPST (8) PIPST (8) PIPST (8) PIPST (8)
3 PIPST (8) PIPST (8) PIPST (8) PIPST (8) PIPST (8)
4 PIPST (5) PIPST (5) PIPST (5) PIPST (5) PIPST (4)
5 PIPST (2 1/2) PIPST (2 1/2) PIPST (2 1/2) PIPST (2 1/2) PIPST (2 1/2)
6 PIPST (5) PIPST (5) PIPST (3 1/2) PIPST (3 1/2) PIPST (3)
7 PIPST (2) PIPST (2) PIPST (2) PIPST (1 1/2) PIPST (1 1/2)
8 PIPST (5) PIPST (4) PIPST (3 1/2) PIPST (3 1/2) PIPST (3)
9 PIPST (1 1/2) PIPST (1 1/2) PIPST (1 1/2) PIPST (1 1/2) PIPST (1 1/2)
10 PIPST (5) PIPST (4) PIPST (4) PIPST (4) PIPST (4)
11 PIPST (6) PIPST (4) PIPST (4) PIPST (4) PIPST (4)
12 PIPST (5) PIPST (4) PIPST (4) PIPST (3 1/2) PIPST (3 1/2)
13 PIPST (5) PIPST (4) PIPST (4) PIPST (3 1/2) PIPST (3 1/2)

Height (m) 6.50 6.00 5.50 5.00 5.50
Max. displacement (cm) 2.71 2.80 2.79 2.79 2.75

Max. strength ratio 96.02 92.11 96.87 91.51 86.37
Volume 0.9114 0.8409 0.8682 0.8856 0.9117P
lI (m) 353.17 370.62 386.50 401.32 419.83

�x (cm2) 31.91 28.25 27.15 26.53 25.49

Table 8. The values of the joint displacements in the
optimum single-layer Schwedler dome with Nn = 8 and
Nr = 3.
Direction x direction y direction z direction

1 { { �2:76� 10�2

Joint no. 2 +1:49� 10�3 �3:27� 10�4 �8:50� 10�3

3 +1:28� 10�3 +8:22� 10�4 �8:50� 10�3

area is a big value. Obviously, the lowest volume is
the one which has the smallest values, simultaneously,
for the average cross-sectional area and the sum of the
element lengths.

�x =
Pn
i=1A
n

: (24)

From Table 9, related to the Schwedler domes with
three rings, the optimum value for dome is obtained
when Nn is set to 8 and 9. For the smaller values
of Nn, as expected, the sections are very strong and,
therefore, the average cross-sectional area becomes a
higher value, and for the big values of Nn, the sum of
the element lengths increases the volume of the dome.
Similarly, from Table 6, for the domes with 4 rings with
Nn as 6 and 7, economical designs are obtained. For
the domes with 5 rings (Table 7), optimum values of
Nn are 7 and 8. Accordingly, when Nn is constant, for
example when it is 8, the sum of the element lengths
in average for the Schwedler dome with 4 rings is 1.32

times larger than that for the dome with 3 rings. This
value becomes 1.46 times larger when the domes with
�ve and three rings are compared.

These di�erences are smaller when Nr remains
constant and Nn is varied. As an example, the sums
of the element lengths for the seven, eight, and nine
nodes related to four-ring dome are 1.06, 1.12, and 1.18
times larger than that for the dome with six nodes
on each ring, respectively. Therefore, as expected,
when the number of rings changes, the alterations of
�x must be bigger than when the number of nodes is
altered. In addition, the lowest value of �x is found
for the �ve-rings dome with 10 nodes on each ring,
which is 25% and 5.5% percent lower than those for
the domes with 4 rings and 3 rings with ten nodes
on each ring, respectively. Therefore, in downward
equipment loading condition, domes with the lowest
volume have the weakest sections, and it does not
depend on increasing Nn and/or Nr. As an example,
for a dome with 5 rings and 7 nodes on each ring,
we have stronger sections than the dome with four
rings having the same Nr and Nn. These points are
supported by the comparisons of the results made in
Tables 6, 7, and 9. Also, according to Figure 8, the
lowest volume is achieved when the dome is considered
with 3 rings and 8 nodes. Under this load case, the
optimum steel tubular designations for each member
group obtained by the CBO algorithm, the height of
the dome with di�erent number of rings, and the max-
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Table 9. Geometry and topology optimization of Schwedler domes with three rings using colliding bodies method.

Group number Nn = 6 Nn = 7 Nn = 8 Nn = 9 Nn = 10
1 PIPST (10) PIPST (10) PIPST (10) PIPST (10) PIPST (10)
2 PIPST (10) PIPST (6) PIPST (5) PIPST (5) PIPST (5)
3 PIPST (8) PIPST (6) PIPST (5) PIPST (5) PIPST (5)
4 PIPST (3) PIPST (3) PIPST (3) PIPST (3) PIPST (3)
5 PIPST (5) PIPST (2 1/2) PIPST (1 1/2) PIPST (1 1/2) PIPST (1 1/2)
6 PIPST (8) PIPST (8) PIPST (8) PIPST (8) PIPST (8)
7 PIPST (4) PIPST (4) PIPST (3 1/2) PIPST (3 1/2) PIPST (3 1/2)

Height (m) 6.75 6.50 6.00 5.25 5.00
Max. displacement (cm) 2.75 2.78 2.76 2.79 2.70

Max. strength ratio 73.24 98.32 78.79 74.29 68.57
Volume 0.9331 0.7318 0.6833 0.7283 0.7784P
lI (m) 231.74 249.64 264.56 276.20 291.73

�x (cm2) 46.47 35.55 25.82 26.36 26.68

Figure 8. The volume comparison when Nn and Nr are
varied.

Table 10. The values of the joint displacements in the
optimum single-layer Schwedler dome with Nn = 8 and
Nr = 4.
Direction x direction y direction z direction

1 { { �2:70� 10�2

Joint no. 2 +5:56� 10�4 +7:50� 10�4 �1:19� 10�2

3 �1:37� 10�4 +9:20� 10�4 �1:19� 10�2

imum values of restricted displacements by considering
di�erent number of nodes in each ring are given in
Tables 6, 7, and 9 for Schwedler domes, respectively.
The values of restricted displacement in the optimum
domes obtained under downward equipment loading
are shown in Tables 8, 10, and 11, respectively.

5.3. Optimum design of Schwedler dome
under dead and snow loads

In this section, the dome described in the previous
section is optimized using the CBO algorithm. In this
case, the dead, snow, and lateral loads are considered

Table 11. The values of the joint displacements in the
optimum single-layer Schwedler dome with Nn = 8 and
Nr = 4.
Direction x direction y direction z direction

1 { { �2:79� 10�2

Joint no. 2 +3:23� 10�4 +7:40� 10�4 �1:59� 10�2

3 �2:94� 10�4 +7:52� 10�4 �1:59� 10�2

for Schwedler domes to investigate the real behavior
and to obtain the optimum topology and geometry of
the dome under these loading conditions.

The design dead load is established on the basis
of the actual loads like the weight of various accessories
and cladding that may be expected to act on the dome
structure. The dead and snow loads are considered
200 N/m2 and 800 N/m2, respectively. The sum of
dead and snow loads is computed as 1250 kN that is
distributed between joints. Two horizontal loads in x
and y directions are equal to 200 kN that are applied
at the crown of dome as lateral loads.

At this stage, the number of rings is considered
to be 3 under this loading condition. This number is
chosen because according to the results of the previous
section, the optimum number of rings for Schwedler
dome is 3. The results of the design are shown in
Table 12. Due to the existence of a noticeable value
of dead/snow loading on each joint, the cross-sections
are obtained close to each other. As can be seen, the
optimum design of dome is found with 8 Nns on each
ring. The dome with 6 number of nodes in each ring,
because of having the least joints and simultaneously
considerable load value on each joint, obtained almost
higher volume for dome. Also, when the Nr is altered
to 7 and Nn is changed to 8, the element lengths
are increased, but the volume is decreased, because
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Table 12. Optimum design of Schwedler under dead/snow loading ring using colliding bodies method.

Group number Nn = 6 Nn = 7 Nn = 8 Nn = 9 Nn = 10
Group 1 PIPST (3 1/2) PIPST (4) PIPST (3 1/2) PIPST (3 1/2) PIPST (3 1/2)
Group 2 PIPST (3 1/2) PIPST (4) PIPST (3 1/2) PIPST (3 1/2) PIPST (3 1/2)
Group 3 PIPST (2 1/2) PIPST (2) PIPST (2) PIPST (2) PIPST (2)
Group 4 PIPST (2 1/2) PIPST (2) PIPST (1 1/2) PIPST (1 1/2) PIPST (2)
Group 5 PIPST (3 1/2) PIPST (3 1/2) PIPST (2 1/2) PIPST (2 1/2) PIPST (2)
Group 6 PIPST (2 1/2) PIPST (3 1/2) PIPST (3 1/2) PIPST (3 1/2) PIPST (3 1/2)
Group 7 PIPST (2 1/2) PIPST (3 1/2) PIPST (2 1/2) PIPST (2 1/2) PIPST (2 1/2)

Height (m)) 8.00 7.25 6.75 6.00 5.50
Max. strength ratio 95.11 94.95 99.21 98.88 97.69

Volume 0.37 0.41 0.39 0.40 0.42P
lI (m) 241.04 255.99 271.56 283.44 296.88

�x (cm2) 15.70 16.38 14.11 14.11 14.18

the dead/snow load is distributed among more joints.
For domes with 9 and 10 number of nodes in each
ring, because of having considerable element length,
the volume is increased again. From Table 12, it
can be observed that a dome with small number of
elements (Nn) tends to select greater height. When
Nn decreases, the height of the dome increases, for a
dome with small Nn, having a large height, helps the
dome to prevent instability, as it was mentioned in the
previous section. In short, a dome with 8 number of
nodes in each ring has the optimum volume at this
stage, which shows the lowest volume corresponding to
the one which has the smallest values, simultaneously,
for the average cross-sectional areas and the sum of the
element lengths.

6. Concluding remarks

In this paper, the Colliding Bodies Optimization
(CBO) and its enhanced version (ECBO) have been
utilized for optimum design of Schwedler and ribbed
domes. These algorithms determine the total number
of rings, the number of nodes on each ring, the optimum
height, and the optimum steel section designations for
the members. CBO is inspired by the laws of collision
between bodies. The governing laws from the physics
initiate the base of CBO algorithm; each agent solution
is considered to be a Colliding Body (CB). After the
collision of two moving bodies, which has the speci�ed
mass and velocity, they separate with a new velocity.
The main advantage of CBO is that unlike many other
meta-heuristics, it is parameter-independent. From
optimization point of view, CBO and ECBO provide
a good balance between the exploration and the ex-
ploitation paradigms of the algorithm.

A complete investigation is performed on the
e�ect of the number of rings and the number of nodes

of the each ring on the �nal optimum design. Dead
and snow load conditions are also taken into account.
It is observed that the results obtained from these two
algorithms are quite satisfactory and it is worthwhile
to mention that ECBO has a better performance than
CBO in terms of accuracy, reliability, and speed of
convergence.
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