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Abstract. Development of (Internet of Things) IoT applications brings a new movement
to the functionality of Wireless Sensor Networks (WSNs) from only environment sensing
and data gathering to collaborative inferring and ubiquitous intelligence. In intelligent
WSNs, nodes collaborate to exchange the information needed to achieve the required
inference or smartness. E�ciency or correctness of many smart applications relies on the
e�cient, timely, reliable, and ubiquitous inference of information. In this paper, we intro-
duce the RUbIn framework, which provides a generic solution to such ubiquitous inferences.
It brings reliability and ubiquity to inferences using the redundancy characteristic of the
gossiping protocols. With RUbIn, the implementation of such inferences and the control of
their speed and cost are abstracted by providing developers with a proposed middleware
and some dissemination control services. We developed an implementation prototype of
the RUbIn framework and a few inference examples of TinyOS. For evaluation, we utilized
both the TOSSIM simulator and a testbed of MicaZ motes in various densities and di�erent
numbers of nodes. Results of the evaluations demonstrated that in all nodes, the inferring
time after a change was about a few seconds and the cost of maintenance in stability state
was about a few messages sent per hour.
© 2019 Sharif University of Technology. All rights reserved.

1. Introduction

Sensor motes are small smart devices that integrate the
advantages of computing, communication, and sensing
systems into a compact element. These advantages
provide WSNs with the ability of intelligence, which
ensures their deployment as networked embedded sys-
tems in smart applications [1]. Development of IoT ap-
plications brings a new movement to the functionality
of WSNs from only environment sensing and data gath-
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ering to collaborative inferring and ubiquitous intelli-
gence [2-5]. The di�culty of perceiving the constraints
on the resources of nodes and the complexities brought
by these constraints to application development should
not be a barrier for the development of WSN/IoT
applications. Simplifying the application development
by the contribution of software and programming
language experts can increase the speed of WSN
development. In order to reduce these complexities,
it is necessary to create new programming paradigms.
Hence, the number of research studies and projects
focusing on e�ective frameworks or middleware are
increasing. These frameworks or middleware enfold the
constraints and complexities of WSNs and provide a
convenient abstraction for programmers [6-8].

In intelligence WSNs, nodes collaborate to ex-
change the information needed to achieve the required
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inference or smartness [9-13]. The e�ciency, correct-
ness, or smartness of many protocols or applications of
WSNs rely on e�cient, timely, reliable, and ubiquitous
inference of information. Some necessary inferences in
WSN are ubiquitous as it is required at all the nodes.
They are often active as all the nodes are continually
tracing changes to keep their inferred information up-
to-date. They should also be reliable because, in a
connected network, the inferred information at all the
nodes should be updated in a short time after a change
at any node. In this paper, our focus is on such
inference problems. Thus, hereafter, the term inference
refers to a ubiquitous, active, and reliable inference
of information. Additionally, e�ciency in energy
consumption, the speed of inference after a change,
e�ectiveness in di�erent densities, and number of nodes
are other characteristics which can be found out in most
of these inferences in response to the constraints on
nodes and the requirements of applications. We refer
to these characteristics as low maintenance cost, fast
inference, and scalability, respectively.

Research studies focused on a generic solution
to inference problems are neglected in WSN. Similar
characteristics of inference algorithms and resource
constraints on WSNs motivated us to propound a
framework as a generic approach to the development
of inference algorithms. It provides functionalities
common to the whole class of inference algorithms
and a set of left-blank modules to be �lled in by
the programmers. An inference algorithm is imple-
mented only by instantiating the left-blank modules
and �lling them in by the inference-speci�c logic. The
framework abstracts the inference algorithms from the
propagation protocol (gossiping) by providing some
standard services, which the programmer can exploit
to moderate the cost, speed, and scalability of an
inference algorithm. It brings separation-of-concerns
for a complex protocol or application when an inference
is needed.

The paper continues as follows. The next section
studies related work. Section 3 describes the problem
and Section 4 analyzes the RUbIn requirements. Sec-
tion 5 presents the RUbIn framework and Section 6
evaluates it. Finally, Section 7 concludes the paper
and describes possible future work.

2. Related work

Some types of ubiquitous, active, and reliable infer-
ences can be found within di�erent software layers of
many applications in WSNs. A framework like RUbIn
brings e�ciency and robustness to these inferences,
which are essential prerequisites for the e�ciency of
the main applications relying on them. To the best
of our knowledge, there is no similar framework to
facilitate the development of such inferences. Only

a few inference algorithms based on periodic message
passing are found in some applications or middleware.

In WSNs, key-distribution algorithms are catego-
rized into two types of random and regular [14]. In
both types of these algorithms, you can �nd tracks of
inference in identifying the overlay neighboring nodes
that are also physically neighboring nodes through
a shared key, �nding the overlay path, and �nally,
formulating the overlay network. With RUbIn, this
inference can be simply and e�ciently implemented
such that not only existing nodes but also future joined
nodes will participate in algorithms.

In Mate [15] middleware, nodes actively infer the
latest version of a code such that if a node obtains a
newer version of a code, after a while, all nodes will
obtain it. There are other protocols for the dissemina-
tion of codes in WSNs [16-18]. These protocols use
a gossiping protocol to reliably disseminate the meta-
data of a new code to all the nodes and make them
aware of the new code. In these protocols, if no change
occurs for a while, then the period of gossiping will
be increased to reduce maintenance cost; otherwise,
the period is reset to its lowest value to increase the
dissemination speed and hence, the inferring speed.

The RUbIn framework is also based on gossip-
ing protocols with some programming interfaces to
increase or decrease the gossiping period. Although
RUbIn employs the idea of these two protocols, it is
more than a dissemination protocol. For example, in
many inference problems, such as inferring the average
surrounding temperature, making an approximation of
local density, or identifying the shortest path to a sink,
each node may infer a di�erent value. Consequently,
many inference algorithms, which can be developed
in RUbIn, are more complicated than only inferring a
shared data (here, meta-data). Furthermore, in many
cases, in inference algorithms, a measure to score the
surrounding nodes or the information received from
them is required. To this aim, RUbIn provides one
of the most common measures, namely link quality, as
an existing default service. In many cases of inference
problems, the quality of links to surrounding nodes
can be exploited to develop more e�cient or precise
algorithms.

In collection routing protocol in [19], a tree is
established to collect information from nodes. Through
a gossiping protocol and a link quality estimator, an
e�cient, robust, and reliable routing protocol in WSNs
is achieved, even if the number of topology changes is
high. The design of the RUbIn architecture is inspired
by this protocol to take advantage of its characteristics.

In [20], middleware for simplifying application
development in WSNs using the publish/subscribe
model is proposed. Behind this middleware is a routing
protocol based on a tree construction, which should
be updated with any change in publishers, subscribers,
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or the network topology. In this middleware, periodic
beacon is used to establish a routing tree while in
RUbIn, a more stable routing tree can be e�ciently
inferred.

3. Problem statement

There is a multi-hop WSN consisting of n nodes. Every
node m executes an application am, which can be
di�erent from or identical to other applications. The
link between nodes m and k denoted by `m;k can vary
in quality for several reasons, such as noise, congestion,
battery energy reduction, periodic sleep, etc. All the
nodes, regardless of their running applications, have an
active inference on a deterministic set of information
C = [I1; I2; � � � ; IjCj] in their interaction with each
other. The value of any information Ij at node m at
time t, denoted by Ij(m; t), where 1 � j � jCj, may
vary in all nodes over the time. Every information Ij
in every node m is initialized with the value v0j and
then, updated for various reasons, such as changes in
the number of active nodes, variation in the quality
of links, updates of information of neighboring nodes,
changes applied by the application or a user, or changes
in sensing values. Even though these changes may be
mild and localized, they still may a�ect the accuracy of
information in other nodes. Therefore, all nodes should
trace these changes and consider them in their inference
algorithms. Also, they should inform the other nodes
of any changes in their own information to ensure that
after a short time, the information at all nodes is
accurate and up-to-date. In contrast, sometimes, there
is a high interval between changes and, meanwhile, the
information is stable. In this situation, the message
passing for keeping the information up-to-date is extra
overhead. Thus, a mechanism is needed to moderate
this overhead. In general, the inference framework
should consider the following challenges:

� Reliability: Topology changes should not prevent
a node from inferring accurate and up-to-date infor-
mation. Thus, all nodes connected to the network
should ultimately obtain any information needed to
update their information;

� Inference speed: Latency in an inference after
a change taking place anywhere in a network may
have side e�ects on the e�ciency or behavior of
an application. Thus, updating information should
start and end immediately from the changing origin
to where it is necessary;

� Scalability: The e�ciency of an inference frame-
work should be independent of the size or density of
the network, and it should preserve its characteris-
tics in large or small and in dense or sparse networks;

� Maintenance cost: Resource constraints in
WSNs, especially energy constraint, should be

considered in all mechanisms within the inference
framework. Thus, all the above characteristics,
namely reliability, inference speed, and scalability,
should be achieved considering these constraints.

Furthermore, in many cases, in inference algorithms,
quality of the link is a common measure to score the
surrounding nodes or the information received from
them. Using the quality of links in inference algorithms
may result in more stable information and lower cost.
In other words, inference algorithms based on the
information received from nodes having more stable
links prevent temporarily inferred values and their side
e�ects (successive inferences). Therefore, not only the
accuracy of the information is increased, but also its
maintenance cost also decreased.

4. Requirements analysis

In this section, we analyze the requirements of the
inference framework mentioned in Section 3 and discuss
important points that should be considered in its
architecture.

Monitoring all changes which have an e�ect on
information is one of the requirements of a ubiquitous
and reliable inference algorithm. We studied these
changes and divided them into three categories. In
other words, three main factors were identi�ed:

1. Application: Running applications may have
their own values in contributing to an inference.
Sometimes, they reset the information to a given
value. The given value can be a result of a new
sensor value, a new command from a user, the logic
of the application, etc. Thus, inference framework
should provide an interface for the applications to
contribute their values to the inference;

2. Time: Occasionally, the elapsed time from a given
point in the past, like the latest update time or
the latest con�rmation time, may be considered in
inference algorithms. Thus, time is another factor
a�ecting the information. Generally, in inference
algorithms, the time factor appears as a periodic
check of the validity of information. In some
inference problems, in which elapsed time is not
important, this factor is not considered;

3. Message: The most common factor in WSNs,
which participates in all inference algorithms, is the
messages received from neighboring nodes. Nodes
should inform each other about their information
and merge the received information with their own.
Changes in the received values from neighboring
nodes are the results of changes in the topology or
the nodes caused by the three main factors in the
neighboring nodes.
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The information is initialized at the beginning of the
inference algorithm and then, updated by these three
factors. To better understand these three factors, three
examples of inference problems with di�erent levels of
complexity are explained.

1. Providing a shared memory: To realize a
shared memory in WSNs, all nodes should have
their own allocated memory, which is always up-
dated with the latest modi�cation at any node. In
this inference problem, all nodes infer the values of
the node at which the latest modi�cation occurred.
Here, the two factors of application and message are
e�ective. The application factor initiates a change
in the local memory of a node while the message
factor transmits an update in the memories of all
the other nodes. Here, the time factor has no role;

2. Consensus on a quantity: One of the research
topics in WSNs is the consensus problem. For
example, when all nodes have their own values of
a quantity, and they all want to infer the maxi-
mum value, a consensus to �nd out the maximum
quantity is required. This problem is an inference
problem in which all three factors are present.
The application factor contributes a value of the
quantity to the inference. The time factor checks
whether the last consensus result is still valid by
keeping the elapse time from the latest update. The
message factor informs all the nodes of any change
in consensus result at any node;

3. Finding a robust route to a sink: In a WSN,
one or more nodes play the role of sink to collect
information. Nodes in interaction with each other
�nd a route (usually the shortest robust path) to
a sink to send their information. In this inference
problem, the three factors are present. The appli-
cation factor allows only a node to introduce itself
as a new or removed sink. The time factor checks
the route validity so that if the current route is
not con�rmed for a given time period, then it is
expired. The message factor informs other nodes if
a new route is found at any node. The other nodes
update their routes if a better one (shorter robust
path) is found.

Almost all the inference algorithms have a data struc-
ture for inferring information and the required meta-
data. The data structure consists of multiple data
�elds, which can be divided into private and public
parts. Both of these parts may change over time, but
only the public part is sent to the neighboring nodes.

Because of the high dynamics of the network, en-
suring reliability and robustness of WSNs applications
is possible only through repetition. In other words, a
message from a node will be reliably received by its
neighboring nodes if it is periodically disseminated for

a �nite or in�nite number of times. Thus, to reliably
achieve a precise inference in all nodes after a change
in any node, periodic information dissemination, like
gossiping protocols in wireless networks, is needed.

Wireless communication is the main energy con-
sumer in a sensor node. Thus, hereafter, cost refers
to the number of sent messages. The speed and
cost of gossiping protocols are inversely related to the
gossiping period; i.e., the shorter the period, the higher
the speed and the cost and vice versa. Thus, a dynamic
gossiping period is recommended.

Due to repetition in gossiping protocols, increas-
ing the network size will not decrease e�ciency, unless
this increase brings an excessive increment to the den-
sity. A gossiping protocol in a dense network results in
congestion and collision of messages and, consequently,
reduction in e�ciency. In most inference algorithms,
the number of needed messages for a reliable inference
in a proximity is independent of the number of nodes
located in that proximity. This fact is not considered
in gossiping protocols. A solution to this problem
is to provide a mechanism by which the nodes that
eavesdrop the messages in their proximity can eliminate
sending if it is wasteful. Consequently, whenever
density of a proximity increases, the probability of
such eliminations is also increased. Therefore, this
mechanism can restrict sending to a small number in
each proximity.

Link quality estimation in WSNs is a kind of ubiq-
uitous inference algorithm that is frequently needed
in many other inference algorithms. The 4-bit link
estimation algorithm [21] is adapted in our framework.
To reduce the overhead of this algorithm, its messages
(beacons) can piggyback on other messages of the
framework.

5. Framework design

The RUbIn framework is a general solution to the infer-
ence problems mentioned in Section 3. This framework
facilitates the development of inference algorithms by
providing all the functionalities common to this class
of inferences. We designed the RUbIn framework with
regard to the analysis of its requirements in Section 4.

5.1. RUbIn framework stack
As depicted in Figure 1, the stack of the RUbIn
framework consists of three layers and each layer has a
data unit.

In the information inference layer, information
is included in a data structure consisting of public
and private parts. Both of these parts participate
in an inference algorithm and are accessible by the
applications, but only the public part is available to the
lower layers and consequently, to other nodes. Thus,
the length of the public part is restricted to a few bytes
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Figure 1. Stack of the RUbIn framework and data unit of each layer.

less than the maximum packet size so that it can be sent
in one packet. Unlike the public part, the private part
consists of information only bene�cial to the current
node with an arbitrary length.

The gossiping control layer controls the dissem-
ination of information. As depicted in Figure 1, the
data unit of this layer adds an 8-bit unique identi�er
of the information as a header to the public part of the
upper-layer information.

The network access control provides services for
the gossiping control layer to interact with the network.
The data unit of this layer (RUbIn data unit) consists
of a header and a footer in addition to a gossiping
message of the upper layer. Both the header and the
footer are used for link quality estimation according to
our modi�ed version of the 4-bit link quality estimation
algorithm. The header contains two �elds: an 8-bit
�eld as the sequence number of the sent messages and
another 8-bit �eld consisting of a 4 bits as the number
of entries in the footer and a 4 bits as the 
ags used
in the link quality estimation algorithm. The footer
consists of some pairs each including a 16-bit node
address and an 8-bit estimation of the input link from
this node. The number of pairs, N , depends on the
extra available spaces of each packet, so a round-robin
manner is used to send all such pairs. If we consider
Lpckt as the maximum length of a packet and Lpub as
the length of the public part of information, then we
have Lpub � Lpckt�3. Therefore, N = bLpckt�Lpub�3

3 c.
When N > 0, the information in the estimation
algorithm can piggyback on gossiping messages. Thus,
at least for one case, we should have Lpub � Lpckt � 6
to attain a precise estimation of the links.

5.2. RUbIn framework architecture
In Figure 2, the architecture of the RUbIn framework
and its layers is depicted by a component diagram. In
this diagram, components are divided into the skeleton
and extended components. The skeleton components
are components which have already been implemented
in the RUbIn framework, while the extended ones
denote the components that users develop and add to
the framework. Therefore, the network access layer and
the gossiping control layer belong to the skeleton part,
while the information inference layer has components

Figure 2. Component diagram of the RUbIn framework.

in both parts. In the following, we describe each of the
RUbIn components in more details.

The network access control component manages
the transmission of RUbIn packets between network
access layers of neighboring nodes. This component
uses the network interface provided by the operating
system to distinguish, send, and receive RUbIn packets
from the network.

The estimation information can piggyback on
messages of the dissemination engine through the link
quality estimator component. Therefore, link quality
estimation is performed during gossiping of other infor-
mation and in case there is no information for inference
or no space for piggybacking, quality estimation of the
links would be unfeasible. To solve this problem, when
the sending rate of the information on the links is lower
than a threshold, we send a few distinct beacons to
achieve a precise estimation of the links. The following
services to access the quality of input, output, and
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bidirectional links are now available by the link quality
interface for use in inference modules:

� getBackwardLinkQuality (neighborId:Addr): int;

� getForwardLinkQuality (neighborId:Addr): int;

� getLinkQuality (neighborId:Addr): int.

The exponential timer component provides an ar-
ray of exponential timers for the dissemination engine,
one for each inferring information. An exponential
timer is a virtual timer the period T of which increases
exponentially so that it is initialized at a minimal value
t` (about a few seconds) and becomes automatically
c times after each period. The period increases at
most k times and �nally reaches a maximum value th,
where th = ckt` (about a few hours). Afterwards, the
number of periods remains constant at about a few in
a day. When an exponential timer �res, it requests
the dissemination engine to send the corresponding
information. To decrease the probability of congestion,
collision, and energy waste, we follow the idea of the
trickle timer [22] so that in a period T , the timer �res
at a random time ttick, where ttick 2 [T2 ; T ], instead of
the end of the period. At time ttick in each period, if a
timer has not received a cancellation request from the
dissemination engine, then it �res immediately. Each
timer can be reset by the dissemination engine to t` at
any moment of time, even before T = th.

The dissemination engine is the core of the RUbIn
framework and responsible for information gossiping.
This component is in interaction with some informa-
tion control units equal to the number of inferring
information units, and an exponential timer component
with one virtual timer per information unit. When
this engine is initiated, it initiates all the informa-
tion control units and then, requests the exponential
timer component to launch an exponential timer per
control unit. Then, when a timer �res, the dissem-
ination engine sends a gossiping message consisting
of the public part of the corresponding information
to the link quality estimator component. Also, if a
gossiping message is received from the link quality
estimator component, this engine delivers it to the
corresponding information control unit. Furthermore,
the dissemination engine provides the following services
for each of the information control units with the aim
of managing the dissemination period. In other words,
we summarize all modi�cations to the default gossiping
trend of each information unit by the following four
services.

1. SendFast(): This service increases the dissemina-
tion speed of the information. To this aim, it resets
the exponential timer to t`, which increases the
dissemination speed and consequently, the inference
speed of the corresponding information for a while.

In contrast, this service will also increase the
inference cost;

2. SendImmediately(): This service immediately sends
the information. However, the engine disseminates
the information once per period, but immediate
sending of a message before or after ttick may
occasionally be needed. This service does not
in
uence the dissemination period, but can be
used instead of SendFast in inference algorithms to
immediately disseminate information and increase
inference speed with no signi�cant change in cost;

3. BeQuiet(): This service eliminates dissemination of
information in the current period. In fact, if this
service is invoked before ttick, the corresponding
exponential timer will not �re in the current period.
This service does not in
uence the dissemination
period and is used to decrease the inference cost,
especially when the density of nodes is very high;

4. SendImmediatelyAndFast(): This service combines
the �rst two services such that, at �rst, immediate
sending is performed and then, the dissemination
period is reset to t` with the aim of increasing the
inference speed. In this service, propagation over
one path is at least t`

2 less than the SendFast service
per hop and can totally be about a fraction of one
second.

Some information control units are in interaction
with the dissemination engine. A programmer instan-
tiates these units as many as the number of distinct
inferences required in an application so that each
one knows its information structure and the relevant
inference module de�ned by the programmer. An
information control unit is a gateway for all the three
main factors to participate in an inference. In other
words, an information control unit can receive messages
(message factor) from the dissemination engine, com-
mands from the application (application factor) using
the application interface, and check requests from a
dedicated periodic timer (time factor).

The inference module of information is the only
place in which the information can be modi�ed. The
information is initialized in this module and then,
modi�ed in response to the requests of the three main
factors over time. The requests of these factors are
sent to this module by the corresponding information
control unit using the inference interface. Therefore,
for each inference module, the following list of services
(de�ned in inference interface) should be implemented:

� init (curInfo:InfoType): void;

� set (curInfo:InfoType, newInfo:InfoType): Diss-
Cmd;

� check (curInfo:InfoType): DissCmd;
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� aggregate (curInfo:InfoType, newPubInfo: PubInfo-
Type, senderId:Addr): DissCmd.

The information control unit initializes the infor-
mation by calling the init service. Then, it handles
requests of the application, time, and message factors
by calling the set, check, and aggregate services,
respectively. The return value of these three services
is the only means a programmer has to manage the
dissemination trend and consequently, the inference
speed and cost. The set service sets or merges the
information value with an application value. The check
service performs periodic validation or modi�cation
of information, if needed. Finally, the aggregate
service aggregates the newly received message with
the local information. Since the sender identi�er or
the quality of its input or output links is needed in
some inferences, the sender identi�er is also known in a
request for aggregate service. The type of return values
(DissCmd) in these services is one of the following �ve
values:

enum DissCmdfGoOn, SendFast, SendImmediately,
BeQuiet, SendImmediatelyAndFastg.

If the return value is GoOn, the information control
unit will not do anything. Otherwise, it calls the
equivalent service of the dissemination engine for the
information.

An application can access the following services
provided by the information control unit using the
application interface.

� get (): InfoType;
� set (newInfo:InfoType): void;
� setChangeEventHandler (funcName:FuncPtr): void;
� setCheckTimer (period:Time): void.

The �rst two services request the information control
unit to set and get the information, while the third
one asks it to register an event handler for the case a
modi�cation occurs. The last service is used to activate
the time factor by setting the period duration to a
positive value. Zero value means that no time factor is
needed.

In summary, to add a new inference algorithm, a
programmer should de�ne the data structure of infor-
mation and implement init, set, check, and aggregate
services.

6. Evaluation

We evaluate the RUbIn framework from two aspects
of e�ectiveness and e�ciency. To this aim, with the
two examples in Section 6.1, we demonstrate how an
inference algorithm can be implemented. Then, in
Section 6.2, we evaluate the e�ectiveness of RUbIn and
the e�ciency of inferences developed with RUbIn.

6.1. Developing inferences in RUbIn
We develop the pseudo-codes of the two inference
problems discussed in Section 4 using our framework.
The required data structures and the services of rel-
evant inference modules are de�ned. Development
of these two examples demonstrates how the RUbIn
framework e�ectively helps the programmer to focus
on the inference algorithm and simply manage the
dissemination trend.

6.1.1. Awareness of the latest version of an
application (shared memory)

In every in-situ reprogramming protocol in WSNs,
all nodes should be aware of the latest version of
an application introduced by any node and make an
e�ort to receive it. Furthermore, when a node has
recently resumed from sleep mode or has been joined
to the network, it should also infer the information
and then, proceed to receiving any new applications,
if required. Thus, a ubiquitous and reliable inference
about application version is appealing and this can be
simply and e�ciently implemented using RUbIn. The
required data structure and the services of the relevant
inference module are depicted in Algorithm 1.

As can be seen in this algorithm, the information
does not have a private part. The application version
is an ordered pair of a version number and a node
address < V erNo;Addr >. The element Addr is the
address of the node introducing a new version (V erNo)
of an application to the network. When more than
one new application are introduced simultaneously to
di�erent nodes, all will be labeled by the same version,
which is more than the latest known version. To break
the tie, when V erNos are identical, the information
with the biggest Addr will be inferred in all nodes.
The set service is in charge of introducing a new
version of the application to a node. This service
returns a SendImmediatelyAndFast request to the
inference module to immediately and more frequently
disseminate the new version information. Here, the
version information will never expire and thus, the
time factor (check service) does not in
uence the
inference.

The aggregate service processes all receive mes-
sages with the aim of inferring the latest version consid-
ering speed, cost, and scalability. In other words, when
a node hears the same information as it already has, it
returns a BeQuiet request in line 24 of Algorithm 1
to eliminate the dissemination in the current period.
This brings scalability to the inference independent of
the network density. When a new version is inferred,
the SendFast request (lines 27 and 34) is returned to
request more frequent information dissemination. Also,
when a lower version from one of the neighboring nodes
is heard, the SendImmediately request (lines 29 and
36) is returned to immediately inform the neighbor
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Algorithm 1: Inference of the latest version of an application using RUbIn.

node of the newer version without any change in the
dissemination period. The incorrect use of these return
values can signi�cantly decrease the inferring speed or
increase its cost.

6.1.2. Finding the shortest path to a sink (routing)
In a WSN, some nodes play the role of a sink to collect
information from other nodes. Finding an optimum
path to one of these sinks is the problem of routing
algorithms. This problem is an inference needed at all
nodes and should be quickly updated when a change
in the network topology occurs. An optimum path
has di�erent de�nitions. Here, we consider two of
them. The �rst is to �nd the shortest path to a
sink, and the second is to �nd the shortest robust
path (the path through which the intermediate links
have an appropriate quality to relay messages) to a
sink. To this aim, the getLinkQuality service of the
link quality estimator component (named LE here) is
utilized. Each path is speci�ed by its length, next hop,
and update time. The public part consists of the length
while the private part encapsulates the other two. The

required data structure and the services of the relevant
inference module are depicted in Algorithm 2.

The sink nodes (HopCount = 0) are added and
removed using the set service. The check service
investigates the validity of a path in non-sink nodes.
A path should be con�rmed or updated once in each
MAXV ALIDTIME seconds. Otherwise, it will be
expired. In both set and check services, if a change in
the information occurs, a SendImmediatelyAndFast
is returned. Therefore, all the paths will be quickly
updated according to the new change.

In the aggregate service, only messages of senders
whose bidirectional link quality is equal to or more
than LQTHERSHOLD are processed. This condition
means that each node selects a path in which the link
to the �rst node of the path is quali�ed. Compliance
with this condition will implicitly result in reliable and
quali�ed paths in all of the nodes. This condition
is checked in line 29 of Algorithm 2. Removing this
condition results in the shortest path to a sink while
considering it results in the shortest robust path to
a sink in each node. In this service, when a node
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Algorithm 2: Inference of the shortest robust path to a sink using RUbIn.
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hears information the same as what it has, it sends the
BeQuiet request to eliminate the redundant sending
in its proximity. Furthermore, when a better path is
inferred, by SendFast or SendImmediatelyAndFast
request, the node will inform the other nodes to update
accordingly. Also, if a node infers that a path is a better
one to one of its neighbors, it informs the neighbor by
a SendImmediately request. In other situations, the
GoOn request is returned.

6.2. Studying e�ectiveness of RUbIn and
e�ciency of inferences

We implemented RUbIn and two inference samples
given in Section 6.1 with NesC on TinyOS. Then,
we examined both of these samples with a TinyOS
simulator, namely TOSSIM. Also, we examined these
samples in a real testbed with MicaZ nodes.

We establish a multi-hop WSN with prerequisite
conditions for each experiment. Some initial changes
needed to make the network ready for the experiment
are made. We should wait for the whole network to
become stable after the initial changes. Then, accord-
ing to the experiment, a new change in information is
made somewhere in the network and all the subsequent
changes in the network for a few hours are studied.
Hereafter, we refer to a change occurring when the
whole network is in the stability state as a wake-up
change. Also, the inference time of a node refers to
the duration between the occurrence times of a wake-
up change in network and the consequent inference
of information in that node. Inference speed is the
inverse of inference time. The maximum inference time

of nodes is the inference time of the network. Also,
the instability time of network refers to the duration
between the occurrence time of a wake-up change in
the network (T = t` in the changing node) and the
time the whole network becomes stable (T = th in all
nodes) again. During instability time, at least one node
in the period of T , where t` � T < th, exists.

6.2.1. Evaluation by TOSSIM simulator
TOSSIM enables us to run a real application on a
virtual network with custom setting. Accordingly, we
tested RUbIn on large-scale networks with TOSSIM.
Figure 3 demonstrates the reliability of inferences
developed in RUbIn. This �gure shows the inference
times of nodes for inference of the latest version of
an application and the shortest robust path to a sink
in four di�erent topologies of a 20 � 20 grid network.
These four networks are distinguished by the distances
of physically neighboring nodes, which are 15, 20, 25,
and 30 meters.

In inference of the latest version of an applica-
tion (Figure 3(a)) at time zero, the top-right node
introduces a new version to the network. After a
short time, between 8 and 20 seconds, all 400 nodes
infer the latest version of the application. As depicted
in this �gure, the new information is disseminated
through the network from the source node to all other
nodes. Nevertheless, there are nodes that infer the new
information later than their neighbors due to collisions
and topology changes. The repetition characteristics of
RUbIn reliably lead to updates in these nodes as well.

In inference of the shortest robust path to a sink

Figure 3. Inference times of nodes for two inference examples in four di�erent topologies of a 20 � 20 grid network.
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(Figure 3(b)), the node in the bottom left is a sink.
At time zero, the top-right node introduces itself as a
new sink. The nodes that are closer to the new sink
will update their paths. Change in path information is
disseminated from the top-right node to the middle of
the network. Path information of the other nodes will
not be changed as they are still located closer to the
old sink. Like the prior sample, there are nodes that
infer the new information later than their neighbors.
Nevertheless, the repetition causes all nodes to reliably
infer the correct information after a short period.

Although the network is a large multi-hop one in
these inferences, the speed of inference is an order of
seconds (at most one minute).

Figure 4 demonstrates the scalability of inferences
developed in RUbIn. We show the inference time for
the inference of the latest version of an application
(Figure 4(a)) and the shortest robust path to a sink
(Figure 4(b)) in 10 n�n(n 2 1; 2; 3; 4; 6; 8; 12; 16; 20; 28)
grid networks. In each of these �gures, we show the
e�ect of increasing nodes in two di�erent scenarios.
In the �rst scenario (�xed distance), the distance of
neighboring nodes is �xed at 25 meters while in the

second scenario (�xed area), all nodes are placed in an
environment with a �xed area (50 � 50 meters).

In the �xed distance scenario, nodes are increased
with the aim of increasing the covered area and di-
ameter of the network. An increase in the diameter
of the network results in an increase in its inference
time. Figure 4 demonstrates that the ratios of the
inference times of the two networks for both inference
examples are almost equal to the ratios of their network
diameters while in some rare cases, they are at most
equal to the ratios of their covered areas.

In the �xed area scenario, an increase in the num-
ber of nodes leads to an increase in density with a mild
change in the diameter of the network. Increasing the
density leads to an increase in collisions in the network,
which lead to a longer inference time. Nevertheless,
the BeQuiet mechanism prevents redundant messages
and their collisions in dense networks. Accordingly,
we can observe in the �gure that the increase in the
number of nodes slightly a�ects the inference times in
both inference examples.

In Figures 5 and 6, the maintenance costs of both
inference examples in the stability state are illustrate.

Figure 4. Network inference time for two inference examples in two di�erent scenarios of �xed distance and �xed area for
10 di�erent networks.

Figure 5. Maintenance cost of the inference of the latest version of an application in stability state in comparison to
max-speed and min-cost scenarios.



A. Shamsaie et al./Scientia Iranica, Transactions D: Computer Science & ... 26 (2019) 3540{3555 3551

Figure 6. Maintenance cost of the inference of the shortest robust path to a sink in stability state in comparison to
max-speed and min-cost scenarios.

We examined such inferences in a grid network of 400
nodes (20 � 20) with a distance of 20 meters between
physically neighboring nodes for 10 hours after the
stability of inferences. The cost was measured in terms
of the number of sent messages. Figures 5 and 6
compares the maintenance costs of the two inference
examples with a case in which the dissemination period
is the constant t` (2 seconds in our implementation)
in order to maximize dissemination speed (max-speed)
and a case in which the dissemination period is the
constant th (1024 seconds in our implementation) in
order to minimize maintenance cost (min-cost).

Figure 5(a) shows the maintenance cost for the
inference of the latest version of an application (API)
using RUbIn in comparison with the max-speed and
min-cost scenarios during 10 hours. These costs are
drawn in log2 of sent packets. As a result, the
precise use of the BeQuiet mechanism declines the
maintenance cost of this inference to even less than
the cost in min-cost scenario.

Figure 5(b) shows the probability density function
of the number of sent packets per node and its average
during 10 hours. The average number of sent packets
per node during 10 hours is about 21, which is 15
packets less than that in the min-cost scenario.

Figure 6(a) shows the maintenance cost for the
inference of the Shortest Robust Path (SRP) to a sink
using RUbIn in comparison with the costs of max-
speed and min-cost scenarios during 10 hours. The
maintenance cost of this inference is again less than
the cost of min-cost by the use of BeQuiet mechanism.
Figure 6(b) shows the probability density function of
the number of sent packets per node and its average for
10 hours. The average number of sent packets during
10 hours is about 30, which is 6 packets less than those
in the min-cost scenario.

These �gures demonstrate the e�ciency of infer-
ences based on RUbIn such that using RUbIn and
its mechanisms leads to an inference speed equivalent
to the speed in max-speed scenario and maintenance

cost less than or comparable to the cost in min-cost
scenario.

6.2.2. Evaluation in a real testbed
We also evaluated and examined both developed infer-
ences in a real testbed with MicaZ nodes. To this aim,
we constructed a multi-hop network (Figure 7) in the
laboratory by decreasing the RF power of nodes. We
assumed c = 2, th = 1024 seconds, and t` = 2 seconds.

Figure 8(a) show the inference times of nodes for
the inference of the latest version of an application
after introducing a new version by the top-right node at
time zero. Both networks are grid networks consisting
of 25 MicaZ nodes with two di�erent distances of 23
and 30 cm between physically neighboring nodes. This
�gure demonstrates how reliably a new information is
propagated in the network. Also, Figure 8(b) show
the inference times of nodes for the inference of the
shortest robust path to a sink after the top-right node
introduces itself as a new sink. In this scenario, we
suppose that all nodes have already recognized the
bottom-left node as their old sink. Two grid networks
consisting of 25 MicaZ nodes with di�erent distances of
15 and 27 cm between physically neighboring nodes are

Figure 7. A multi-hop network consisting of MicaZ nodes
with decreased RF power.



3552 A. Shamsaie et al./Scientia Iranica, Transactions D: Computer Science & ... 26 (2019) 3540{3555

Figure 8. Inference times for the two examples in a grid network consisting of 25 MicaZ nodes with di�erent physical
distances between neighboring nodes.

Figure 9. Results for the inference of the latest version of an application in two scenarios of �xed distance and �xed area.

Figure 10. Results for inference of the shortest robust path to a sink in two scenarios of �xed distance and �xed area.

used as a testbed. Inference about the new path begins
from areas around the top-right node and spreads to
the middle of the network. Inference time in all of these
scenarios is between 3 and 4 seconds. In both of these
examples, the repetition causes all nodes to reliably in-
fer the correct information after a short period of time.

Figures 9 and 10 illustrate the scalability of these
inferences in the two scenarios of �xed distance and
�xed area.

Figures 9(a) and 10(a) show that when the num-
ber of nodes increases, the inference time in the �xed
distance scenario increases such that the ratio of the
inference times of the two networks is approximately
an order of the ratio of their covered areas, while in the
�xed area scenario, the inference time is approximately
constant.

Also, in Figures 9(b) and 10(b), for both the
�xed distance and �xed area scenarios, it is evident
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that the instability time of network is between 800
and 900 seconds. After a change, the dissemination
period is reset to 2 seconds and then, doubled each
time. Finally, after 9 periods, it becomes 1024 seconds.
Hence, it takes 510 (2+4+8+16+32+64+128+256)
seconds to reach the beginning of the period with a
duration of 512 seconds. From the middle to the
end of this period, nodes can send information and
then, the next period is set. Therefore, when the
period duration is 512 seconds, a message may be sent
between seconds 256 and 512 of this period and then,
for the next period, the duration of 1024 (stability
state period) seconds is considered. In other words, the
instability state lasts about 766 to 1024 seconds after
the last change and we observe this in the empirical
experiments depicted in Figures 9(b) and 10(b). These
�gures demonstrate that the duration of instability
state is about 14 minutes after a signi�cant change.
To ensure a fast and reliable inference, even in a high
dynamic topology, this duration should be met.

Figures 9(c) and 10(c) depict the sum of periodic
and sporadic sent messages during instability time.
Depending on the type of inference, the number of sent
messages in this interval is various. In the inference of

the latest version of an application, during instability
time, the BeQuiet service decreases the the number of
sent messages to less than 9 (number of periods takes
T to reach 1024 seconds from 2) messages per node.
This issue is more severe in a scenario of increasing
the number of nodes in a �xed area. Nevertheless,
in the inference of the shortest robust path to a sink,
because of numerous path changes and gossiping period
resetting, the number of sent messages to infer a correct
path in each node increases slightly up to more than 9
messages per node. Thus, the instability state cost is
a few messages per node in most inference algorithms.

We measured the maintenance costs of the two
inference examples in the stability state. To this aim,
we traced 2 hours of sent messages after a change
at time zero and then, considered the second hours
as the stability state. The number of sent packets,
the probability density function of the number of sent
packets per node, and its average in stability state
are depicted in Figures 11 and 12. In these �gures,
the maintenance costs of the two inference examples
are compared with those of min-cost and max-speed
scenarios.

In Figure 11(a), for inference of the latest version

Figure 11. Maintenance cost of the inference of the latest version of an application in stability state in comparison with
the max-speed and min-cost scenarios.

Figure 12. Maintenance cost of the inference of the shortest robust path to a sink in stability state in comparison with
max-speed and min-cost scenarios.
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of an application, it is evident that the cost in the
stability state is always less than that in the min-cost
scenario. In other words, after one hour of being in the
stability state, based on Figure 11(b), each node has
on average of 2 sent messages less than those in the
min-cost scenario. Therefore, in long-time execution of
this inference, despite that its inference speed is equal
to that in the max-speed scenario, the cost is less than
that in the min-cost scenario. Indeed, the BeQuiet ser-
vice brings such e�ciency to this inference algorithm.

In Figure 12(a), for the inference of the shortest
robust path to a sink, it is again evident that the cost
in the stability state is approximately equal to the cost
of the min-cost scenario, i.e., on average, 2.5 more sent
messages (based on Figure 12(b)). Therefore, in long-
time execution of this inference, despite that the in this
application, inference speed is equal to that in the max-
speed scenario, the cost is slightly more than that in
the min-cost scenario.

Both inference examples evaluated by the
TOSSIM simulator and the testbed of MicaZ nodes
reveal the e�ciency of our framework in developing
inferences in terms of speed and cost while preserving
scalability.

7. Conclusion and future work

In this paper, we proposed the RUbIn framework as an
extendable middleware for the development of reliable
and ubiquitous inferences in WSNs. We described
the design of this framework and demonstrated that
the RUbIn approach and its supporting mechanisms
brought e�ectiveness to this framework. In other
words, we showed that by using this framework, reliable
inferences could be simply developed independent of
the nodes density and the coverage area. After a sig-
ni�cant change anywhere in the network, information
at all nodes could be quickly updated. Furthermore, we
demonstrated that the mechanisms of RUbIn provided
e�ciency of inferences so that despite the high inference
speed, the cost for each node was about a few messages
sent per hour.

RUbIn framework provided a completely dis-
tributed approach to solving the inference problems.
As a result, our framework facilitated the development
of networked smart systems by reducing their design
and implementation costs when a ubiquitous inference
needed to be intelligent. Therefore, as future work, we
will use RUbIn to develop IoT applications when local
smartness is appealing in line of the new computing
paradigm named \Fog computing" [23].
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