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Abstract. In this paper, an e�cient reliability method is proposed. Asymptotic Sampling
(AS) and Weighted Simulation (WS) are two basic tools of the presented method. In AS,
the standard deviation of the distributions is ampli�ed at several levels to �nd an adequate
number of failed samples; then, by using a simple regression technique, the reliability
index is determined. The WS is another method that uses the uniform distribution for
sampling, in which the information about the distributions of the variables is taken into
account through the weight indexes. The WS provides interesting 
exibility where a sample
generated for a speci�c standard deviation can be used as a sample for another standard
deviation without having to reevaluate the limit state function. In AS, the deviations of
variables are scaled in each step, where one can use the 
exibility of the WS to decrease the
required calls of limit state function. Using this technique results in a new e�cient method,
so-called Asymptotic Weighted Simulation (AWS). In addition, using the strengths of both
AS and WS can be considered another superiority of the hybrid version. Performance
of the presented method is investigated by solving several mathematical and engineering
examples.
© 2019 Sharif University of Technology. All rights reserved.

1. Introduction

Failures in industrial systems may result in catas-
trophic consequences. In order to design safe systems
and prevent severe consequences, the engineers have
to deal with the arising uncertainties [1,2]. The un-
certainty comprises di�erent types, including physical,
statistical, and model uncertainties [3]. For instance,
some variations may occur in the forces acting on the
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structure during its lifetime. These variabilities are
usually quanti�ed by the probabilistic distributions.
Accordingly, the safety or failure state of the structures
can be represented by the probabilistic models. Struc-
tural safety requires the probability of failure to become
extremely small [4]. The reliability methods and their
applications have attracted a great deal of interest due
to their important role in system safety [5,6].

The failure probability of the systems can be
stated in the form of the following multiple integral:

Pf = Prob[g(X1; X2; � � � ; Xn) � 0]

=
Z

g(X)�0

� � �
Z
fX(X)dX; (1)
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where Xi (i = 1; 2; � � � ; n) is the ith basic random
variable representing load, structural dimensions, or
other existing uncertain quantities. The functions g(X)
and f(X) are the limit state function and the joint
Probability Density Function (PDF) of X, respectively.
The negative values for the limit state function rep-
resent the failure set [7]. The reliability index (�) is
de�ned as:

� = ��1(1� Pf ): (2)

In this equation, ��1(:) is the inverse standardized
Gaussian distribution function. When the number of
random variables increases or the failure regions have
complicated shapes, evaluation of Eq. (1) becomes ex-
tremely di�cult [7]. Therefore, various numerical and
computational approximate methods are introduced by
researchers as outlined in the following.

Hasofer and Lind, in their groundbreaking ar-
ticle [8], by de�nition of the reliability problem in
standard Gaussian space, established the First-Order
Reliability Method (FORM). In this paper, by us-
ing Rosenblatt-transformation, the correlated non-
Gaussian variables X were transformed to uncorrelated
Gaussian variables U with zero mean and unit variance.
For simplifying the integration, a linear approximation
(the �rst-order Taylor expansion) was utilized. By
maximizing the Probability Density Function (PDF)
within the failure domain, u� was found through an
optimization process. The point X� corresponding to
U� was called the design point. Finally, the reliability
index (â) was calculated. Further details about FORM
are available in [7].

The mathematical de�nition of failure probability
given in Eq. (1) can be rewritten in the following form:

Pf =
+1Z
�1

+1Z
�1
� � �

+1Z
�1

Ig(X1; � � � ; Xn)fX1;��� ;Xn

(X1; � � � ; Xn)dX1; � � � ; dXn: (3)

Herein, if g(X1; � � � ; Xn) � 0, then Ig(X1; � � � ; Xn) =
1; otherwise, Ig(X1; � � � ; Xn) = 0.

Considering a large collection of samples (m), the
failure probability can be estimated as [9]:

Pf =
1
m

mX
k=1

Ig
�
X(k)

�
: (4)

As seen, the new suggested form for calculating the
failure probability, known as the Monte-Carlo Simula-
tion (MCS), is not involved with the aforementioned
di�culties of integration. However, it should be noted
that for achieving accurate estimations, especially for
small values of Pf , the number of samples must be su�-
ciently large. For the sake of computational cost saving,

various strategies have been proposed that arti�cially
produce more samples than the primary distribution
functions. For instance, the Importance Sampling
method was suggested, in which the failure probability
was estimated using the following formulation:

Pf =
1
m

mX
k=1

fX(X)
hY (X)

Ig
�
X(k)

�
; (5)

where hY (X) is a positive weighting function. An ideal
weighting function requires a foreknowledge of failure
probability, while this probability is usually unknown.
Bucher proposed a fast procedure which utilized results
from the simulation for adapting hY (X) for the speci�c
problem [10].

In 2009, Bucher also developed an e�cient MC
based simulation method, so-called Asymptotic Sam-
pling (AS) [11]. This method provided an accurate
estimation of the failure probability with perceptibly
low computational cost. In asymptotic sampling, by
producing samples with scaled distributions in several
levels and �tting a regression, the reliability index is
calculated through an extrapolation. On the other
hand, in 2012, Rashki et al. introduced an approximate
method in which, by generating a small number of
uniformly distributed samples and multiplying the
probability density as a weighted index at each sample,
the failure probability was calculated [12]. Since this
Weighted Simulation (WS) method utilized the uni-
form distribution, it was independent of the standard
deviation of the variables and failure probability was
taken into account by weight indexes. This is a sub-
stantial point which means that the samples produced
for a speci�c standard deviation can be utilized for
another sampling with di�erent deviation, which is
desired in AS. This paper presents a hybrid framework
for incorporating the advantages of WS in the AS to
decrease the number of sample evaluations as well as
for entering the advantages of AS into the WS, thereby
achieving an e�cient method.

In recent years, many techniques have been
developed for optimal design of structures and sys-
tems [13,14]. These methods usually require a sig-
ni�cant number of analyses [15,16]. Especially when
the Reliability-Based Design Optimization (RBDO) is
considered, the amount of computations may grow
greatly [17,18]. The huge amount of computations may
dissuade engineers to design reliable systems due to
limitations on computing resources. Therefore, propos-
ing such e�cient reliability and sampling methods
would make an important contribution to this �eld.

The rest of this paper is organized as follows.
In Section 2, the AS and WS methods are brie
y
reviewed. After providing the necessary background,
a new hybrid method is developed in Section 3. In
Section 4, di�erent numerical experiments are chosen
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to examine the e�ciency of the new method. Finally,
the conclusions are drawn in Section 5.

2. Background theory

The proposed method is based on Asymptotic Sam-
pling (AS) and Weighted Simulation (WS) methods,
which are described in the following subsections.

2.1. Asymptotic sampling
As mentioned before, an important strategy to increase
the e�ciency of reliability sampling is to produce
more samples in the failure domain. AS attempts
to increase the chance of dropping samples in the
failure domain by increasing the standard deviations.
However, it should be noted that some increment of
the deviations may result in invalidity of the calculated
failure probability. In AS, this issue is resolved through
a certain asymptotic behavior of the failure probability
in the independent and identically distributed (i.i.d.)
Gaussian space [11,19]. Using the asymptotic behavior
also results in reliability assessment with fewer samples.
Assuming a linear limit state function as:

g(X) =
NX
k=1

akXk; (6)

the variance of Y = g(x) will be:

�2
y =

NX
k=1

a2
k: (7)

If the standard deviations of all variables are scaled to
1
f , the variance of Y will be changed to:

�2
y =

1
f2

NX
k=1

a2
k; (8)

thus, the distribution function, FY (�), becomes:

FY (�) = �
�
�f
�y

�
= �

0@ �fqPN
k=1 a2

k

1A ; (9)

and the safety index for an arbitrary standard deviation
(�) can be stated as follows:

�(f) =
�fqPN
k=1 a2

k

: (10)

According to Eq. (10), the following ratio is indepen-
dent of the value of f [20]:

�(f)
f

= const. (11)

As proven in [19], Eq. (11) for nonlinear cases is
true only when f approaches in�nity, as shown in the
following equation:

lim
f!1

�(f)
f

= const. (12)

This asymptotic property of the safety index is em-
ployed to construct a regression model as:

�(f)
f

= A+
B
f2 ; (13)

where the coe�cients A and B can easily be deter-
mined by a regression analysis based on samplings
with di�erent deviations. This formulation ensures the
convergence of �(f)

f to a constant value (A).
The pseudo-code of AS is provided in the follow-

ing.

Procedure AS

begin
sampling
t 0
m 0

i) Initialize f0, �, N0, N , and Ns
ii) While t < Ns

iii) Carry out simulation with N samples for f
iv) Count the number of failed events (Nf )
v) if Nf � N0

vi) Compute �(f)
vii) Store pair �(f) and f (support point)
ix) t t+ 1
x) end

xi) f  �:f
m m+ 1

end
regression analysis

xii) Perform regression using Eq. (13) for saved
pairs of f and �(f) (support points)

xiii) Perform an extrapolation for �(1)
end

The pseudo-code of AS is clari�ed in the following:

i) In the sampling step, the values of f0 (the
initial value of f), � (the decreasing factor of
f), N0 (the lowest value of occurring failures),
and Ns (the number of support points for
regression) are determined. Here, f0 is set
to 1 and � is considered as 0.9;

ii) To get enough support points, the loop is
repeated until the number of Ns pairs are
stored. Here, each repetition of the loop is
called a \level";

iii) MCS is performed by considering the scaling
factor f ;
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Figure 1. Regression concepts of the asymptotic
sampling.

iv) The number of failed samples is counted to be
compared with N0;

v to ix) The number of failed samples (Nf ) is com-
pared with N0; if the condition is ful�lled,
then the reliability index is calculated and the
pair (f , �) is stored;

x, xi) The factor f is decreased to �:f ;
xii) A regression model is constructed according

to the stored support points and Eq. (13)
(Figure 1). Thus, the coe�cients A and B
are determined;

xiii) The reliability index of the model (�(1)) is
calculated. As seen in Eq. (13), the reliability
index is equal to A+B.

It should be noted that in AS, the number
of evolutions of the limit state function is equal to
� �nal value of m, which is equal to or higher than
N �Ns. An illustration of this method is provided in
Figure 2.

2.2. Weighted simulation method
In WS, after the generation of the samples using
the uniform random distribution and evaluation of
the limit state function, the probability of failure is
approximated by:

Pf =
1
m
:
Pm
k=1 Ig

�
x(k)� :WkPm

k=1Wk
; (14)

where the weight indexes (Wk) are calculated via the
following relationship:

Wk =
sY
j=1

fj
�
x(k)
j

�
; (15)

in which s is the number of random variables and fj is
the PDF of the jth variable.

The pseudo-code of the WS method is provided
in the following:

Figure 2. Illustration of the asymptotic sampling for
three levels.

Procedure WS

begin
i) Select proper intervals;

ii) Distribute the uniform sample in the selected
interval;

iii) Calculate the weight indexes;
iv) Evaluate the limit state function;
v) Approximate the failure probability.
end

The following explanations further clarify the steps of
the pseudo-code:

i) In order to �nd the region of sampling, the
intervals must be determined. Two techniques
have been suggested for this purpose [12]. The
�rst technique determines the maximum and min-
imum values of samples using the corresponding
sample boundaries of an MCS with the PDF of
the variables;

ii) The samples are distributed uniformly within the
intervals calculated in the previous step;

iii) The weight index of each sample is calculated by
Eq. (15);

iv) The limit state for each of the samples is evalu-
ated and Ig is calculated;

v) The failure probability is approximated using
Eq. (14).

3. An e�cient asymptotic weighted sampling
method

As mentioned in Section 2.2, the WS method utilizes
the uniform distribution instead of other probabilistic
distributions. This feature provides 
exibility for WS
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and, by modifying the weight indexes, the generated
samples can be adapted for di�erent distributions,
instead of generating new samples and re-evaluation
of the limit state function. Sometimes the limit state
functions are complex and the evaluation of samples is
computationally expensive. From this point of view,
the 
exibility feature of WS is attractive. On the other
hand, as mentioned in Section 2.1, AS has a loop in
which several samplings with di�erent scaled standard
deviations are generated and evaluated. Employing the

exibility feature of WS makes it possible to use the
samples generated in the previous levels for the next
levels of the loop. Indeed, the AWS utilizes the WS
for sampling and making support points of AS, where
applying the 
exibility feature decreases the number
of generated samples in the next levels. The steps
of this new hybrid method, known as the Asymptotic
Weighted Sampling (AWS), are designed and provided
in the following:

Procedure AWS

begin
Initialization
t 0
m 0

i) Initialize f0, �, N0, N , and Ns
Sampling

ii) While t < Ns
iii) Select the proper intervals for sampling like

WS;
iv) Calculate the number of samples required

to generate out of the previous intervals
(Nreq);

v) Remove the number of Nreq samples;
vi) Generate the number of Nreq samples out

of the previous intervals using uniform
random distribution;

vii) Evaluate only the newly generated samples;
viii) Count the number of failed events (Nf );
ix) if Nf � N0

x) Calculate the weight indexes using
Eq. (15);

xi) Estimate the failure probability by
Eq. (14) and compute �(f);

xii) Store pair �(f) and f ;
xiii) t t+ 1

end
xiv) f  �:f

m m+ 1
end
regression analysis

xv) Perform regression using Eq. (13) for saved
pairs of f and �(f)

xvi) Perform an extrapolation for �(1)
end

The steps of AS-WS are discussed here. For the sake of
brevity, the similar steps refer to the previous section.

i) In the �rst step, the values of f0, �, N0, N , and
Ns are initialized as explained in Section 2.1;

ii, iii) To obtain the number of Ns support points,
a loop is repeated. At the �rst step of the
loop, the proper intervals must be determined
as explained in Section 2.2;

iv) Since the samples are distributed uniformly,
the required number of new samples in each
step is de�ned by Eq. (16):

Nm
req = N �

�
1� Vm�1

Vm

�
; (16)

where Vm is the volume of the mth sampling
space, de�ned by:

Vm =
sY
j=1

Lmj ; (17)

where V is determined by multiplying the
length of all intervals (Lmj ) described in
step iii. Since at the �rst level of the loop,
there is no generated sample to be used, N0

req
is assumed to be equal to N . Because of
growing of the deviations, it is expected that
the bounds of the new intervals will be further
than those of the previous levels. However,
in some levels, it is possible that the bounds
of the new intervals may be trapped in the
previous one. In this cases, the trapped bound
is replaced by the corresponding bound of the
previous interval. Hence, it is expected that
the value of (Vm�1

Vm ) should be equal to or less
than one. According to Eq. (16), Nm

req will
be equal to or less than N , which is shown in
Figure 3. Comparing Figure 3 with Figure 2, it
is clear that, unlike AS, the proposed method
avoids making new samples in intervals of the
previous levels (void space). The numbers of
generated samples are also lower than N , while
the AS generates the number of N samples in
all levels;

v) In order to have the number of N samples,
the same number of generated new samples
(Nreq) should be removed from the samples.
Here, two types of removing are suggested;
in the �rst type (AWS-1), the samples are
selected randomly, while in the second type
(AWS-2), some of the failed samples are not
removed. In AWS-1, the number of failed
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Figure 3. The schematics of sampling by the proposed
method for a 2D problem in three levels.

samples which should be saved is equal to
min(N0; Nf). Once the condition of (Nf �
N0) is satis�ed, satisfaction of the next levels is
guaranteed. In Section 4, both of the proposed
versions are investigated;

vi, vii) Only the newly generated samples are eval-

uated and the number of failed samples is
counted.

Other steps are identical to the steps of the AS and
WS methods provided in Section 2. Figure 4 displays
the 
owchart of the proposed method.

4. Numerical experiments

To examine the performance of the proposed method,
several problems are solved and the results are dis-
cussed and compared with other methods. All the
algorithms and problems were implemented in MAT-
LAB, and the tests were accomplished on a 2.40 GHz
Intel Core(TM) with 8.00 GB-RAM laptop. In order
to provide statistical con�dence, each problem was run
30 times independently. It should be noted that while
for the MCS and WS algorithms, we can exactly set
the number of state function evaluations, it cannot be
precisely controlled in the AS, AWS-1 , and AWS-2
methods. Therefore, we adjusted the average amounts
of the Number of Function Evaluations (NFE) to make
them close to the aforementioned numbers. During
computations, we managed to ensure that the values
of NFE for the proposed methods (AWS-1 and AWS-
2) were smaller than those for other algorithms. Par-

Figure 4. The 
owchart of the introduced AWS method.
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ticularly, in parameter analysis, N (not NFE) for the
proposed methods was equalized to that for the AS.

4.1. Example 1: A mathematical example with
a small failure probability

The �rst example is a challenging mathematical exam-
ple with a small failure probability Pf = 1:41 � 10�13

and high reliability index � = 7:30. Suppose X is a
two-dimensional variable X = (X1; X2), where both
X1 and X2 are independent random variables which
follow a normal standard distribution with zero mean
and unit standard deviation. The failure event is
de�ned as minfx� xr2; x� xl2g < 1, so the limit state
function can be de�ned as g(x) = minfx�xr; x�xlg�1,
where xr = (8; 2) and xl = (�8; 2) [21].

For the sake of fairness in comparison, two sets
of results with approximately equal NFEs are repre-
sented in Table 1. Considering the average value of
NFE(NFE) equal to 3500, N0 = 1 and Ns = 6,
neither MCS nor WS can �nd any failed sample. In
this set, the values of the averages of reliability indexes
( ��) for both versions of AWS are meaningfully close to
the exact value (7.30). The calculated values of Root
Mean Square Error (RMSE) for the AWS-1 and 2 are
considerably lower than those for AS, which shows the
good accuracy of this method in comparison with AS.
The percentages of the Coe�cient of Variation (CV)
for AWS-1 and 2 are 5:07% and 19:78%, respectively,
while the AS method has 118:73%, which shows slight
change in the results of the proposed methods. The
results of the AS, AWS-1, and AWS-2 are illustrated
in Figure 5. As it can be seen, the reliability indexes
calculated by AWS-1 and 2 oscillate in a narrow range,
while those of AS oscillate in a wider unstable range.
Again, in the second set, MCS and AS cannot �nd any
failed sample. In this set, the average values of the
reliability indexes calculated by AWS-1 and 2 match
the exact answer (7.30). Also, the CV and RMSE for
both versions of the proposed methods are less than
those for the AS method.

To monitor the samples of AWS method against
WS and AS methods, the positions of samples are

Table 1. Comparison of the performances of the di�erent
methods for Example 1.

MCS AS WS AWS-1 AWS-2

NFE 3500 3700 3500 3367 3309
�� | 4.76 | 7.51 7.31

RMSE | 6.11 | 0.42 1.42
CV (%) | 118.73 | 5.07 19.78

NFE 35000 37167 35000 26668 26311
�� | 8.73 | 7.30 7.30

RMSE | 1.79 | 0.45 0.44
CV (%) | 15.88 | 3.43 3.34

Figure 5. Reliability indexes obtained in 30 runs by
di�erent algorithms.

Figure 6. Positions of samples generated by di�erent
methods for Example 1.

scattered in Figure 6. As can be seen, since the
standard version of WS does not have the ability to
search wider spaces, none of its samples fall in the
failure domain (black rings). On the other hand, in the
10th level of AS, it also cannot drop any of the samples
inside the black rings, because it follows Monte-Carlo
simulation, which generates the samples near the mean.
On the other hand, AWS method, using the WS with
intervals determined by the same Monte-Carlo samples,
drop more than 15 samples inside the failure regions.

The sensitivity of CV, RMSE, and NFE for the
AS method and both versions of AWS to Ns and N0 is
investigated and the results are illustrated in Figure 7.
According to the provided results, in most cases, the
proposed algorithms, by increasing the number of
support points, lead to a decrease in the values of
RMSE and CV. Considering Ns = N0 = 1, creates
interesting versions of the MCS (for AS) and WS (for
AWS-1 and 2), which, after �nding the �rst sample
and creating the �rst support point, go to calculate
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Figure 7. Sensitivity analysis of the CV, RMSE, and NFE for Example 1.

the reliability index. However, considering only one
support point is not compatible with regression process
and, as can be seen in Figure 7, for this example,
results in high values of CV and RMSE. Despite the
single support point, CV and RMSE of AWS-1 and 2
are about 7% and 0.8, respectively, while these values
for AS are about 20% and 2.4. The values given
for the average number of limit state functions (for
N = 10000) show that AS utilizes almost 88333 to
158000 function evaluations, while the values of NFE
for the proposed methods are about 21121 for a single
support point and 30864 for six support points, which
show four to �ve times reduction. It also can be seen
that the values of NFE for AWS-1 and AWS-2 are
almost the same.

The regression curve and support points of the
algorithms are plotted in Figure 8. This �gure shows
not only better accuracy of the proposed methods, but

Figure 8. The regression curves of AS method
(NFE = 40000), AWS-1 method (NFE = 30830), and
AWS-2 method (NFE = 28013).
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also quick access of the hybrid methods (7th level)
compared to the AS method (10th level).

4.2. Example 2: Hypothetical limit state
The explicit nonlinear equation given in Eq. (18) is
selected as the limit state function of the second
example [22]:

g(X) = exp(0:2X1 + 6:2)� exp(0:47X2 + 5:0); (18)

where X1 and X2 are independent and have standard
normal distributions. The failure probability is 0.00937
and the reliability index is 2.35 [22]. According to
Figure 9(a), Eq. (18) has higher nonlinearity in the safe
region and the limit state is linear. As it can be seen in
Figure 9(b), the samples of MCS are gathered along the
mean point (0,0) and the distributions of the samples
of WS are more uniform, but still all the samples
are in the safe region (lower than the red line). The
asymptotic methods (AS and AWS) �nd failed samples
(upper than the red line); however, the failed samples
of the AWS are more than those of the AS. Indeed,

Figure 9. Schematics of Example 2: (a) Surf of limit
state function, and (b) sampling by di�erent methods.

Table 2. Comparison of the performances of the di�erent
methods for Example 2.

MCS AS WS AWS-1 AWS-2
NFE 215 215 215 208 205

�� | 2.46 | 2.62 2.58
RMSE | 0.71 | 0.36 0.32

CV (%) | 31.92 9.67 8.94
NFE 2000 2353 2000 1950 1943

�� 2.35 2.43 2.38 2.35 2.37
RMSE 0.087 0.19 0.06 0.085 0.077

CV (%) 3.75 7.35 2.43 3.68 3.10

because of the uniform distribution conducted in AWS,
the possibility of the failure of its samples is higher.

Two sets of statistical results obtained by
di�erent methods are given in Table 2. As can be
seen, only asymptotic methods (AWS and AS) are
able to estimate the reliability index for an average
number of 215 function evaluations. The estimations
provided for the �rst set also demonstrate the lower
RMSE and CV of the hybrid methods (AWS-1 and
2) than those of the standard AS. For the second set,
the NFE is almost 2000, where, because of the high
failure probability of this example, all methods reach
nearly acceptable results.

The parameter studies of the asymptotic methods
for N = 10000 are illustrated in Figure 10. As it can
be seen, unlike the AS, CV values for most cases of
the introduced methods are less than one percent. The
average RMSE of the AS is about 0.04, while those of
the hybrid methods are about 0.02. It should be noted
that NFE of the AS is almost three times those of the
hybrid methods. The NFE values for both versions of
the AWS are almost equal.

4.3. Example 3: A conical structure under
compressive axial load and bending
moment

In this example, the buckling reliability of a conical
structure is studied. The perspective and di�erent
variables of this structure are demonstrated in Fig-
ure 11. As it can be seen, the structure is subjected
to a compressive axial load P and a bending moment
M . The mechanical and geometrical variables are inde-
pendent and follow a normal distribution as presented
in Table 3.

Table 3. Random variables for Example 3.

Variable Mean Deviation
X1 E (MPa) 70000.00 3500.00
X2 t (m) 0.0025 0.000125
X3 � (rad) 0.524 0.010480
X4 r1 (m) 0.90 0.022500
X5 M (N.m) 80000.00 6400.00
X6 P (N) 70000.00 5600.00
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Figure 10. Sensitivity analysis of CV , RMSE, and NFE for Example 2.

Figure 11. Schematics of the conical structure: (a)
Random variables and (b) 3D perspective view.

The failure of this structure can happen by buck-
ling due to instability or loss of strength. In the anal-
ysis, only the buckling mode will be investigated [23].
The buckling criterion is [24]:

P
Pcrit.

+
M

Mcrit.
� 1; (19)

where Pcrit. and Mcrit. are the critical axial load and

bending momentum for buckling, respectively. They
are calculated by the following equations:

Pcrit. = 

2�Et2 cos2 �p

3(1� �2)
; (20)

Mcrit. = �
�Et2r1 cos2 �p

3(1� �2)
: (21)


 and � are respectively considered equal to 0.33 and
0.41 for correlation of the theoretical results with the
experimental ones [24].

According to Eqs. (19)-(21), the limit state func-
tion can be formulated as:

g(X) = 1�
p

3(1� �2)
�X1X2

2 cos2X3

�
X6

2

+

X5

�X4

�
: (22)

The variables are de�ned in Table 3. The failure
probability of this engineering example is 1:86 � 10�6

and the reliability index is � = 4:63, which are obtained
using the MCS with 100 million samples.
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Figure 12. Sensitivity analysis of CV , RMSE, and NFE for Example 3.

The results of di�erent methods for approximately
equal values of NFE are given in Table 4. As can
be seen, by considering NFE = 1300, unlike the
asymptotic methods, MCS and WS cannot �nd any
failed samples. However, the AWS methods can es-
timate the reliability index with RMSEs less than

Table 4. Comparison of the performances of the di�erent
methods for Example 3.

MCS AS WS AWS-1 AWS-2
NFE 1300 1274 1300 1271 1219

�� | 5.52 | 5.16 5.12
RMSE | 1.55 | 0.75 0.63

CV (%) | 23.29 | 10.32 8.01
NFE 12000 11880 12000 11062 11134

�� | 5.49 4.73 4.63 4.63
RMSE | 1.00 0.12 0.12 0.13

CV (%) | 9.51 1.34 2.97 3.36

0.8. By increasing NFE to 12000, the WS estimates
the failure probability with good accuracy, and the
AWS-1 and 2 methods achieve averagely exact re-
sults.

By considering N = 10000, the sensitivity of CV,
RMSE, and NFE of the asymptotic methods to Ns
and N0 is provided in Figure 12. The average values
of CV for AWS-1 and 2 are about 1.9, while this value
for AS is 8.2 and the minimum value of AS is equal
to 3.4, which is higher than the maximum CV of the
introduced methods. The maximum values of RMSE
for AWS-1 and 2 are 0.17 and 0.18, respectively, which
are less than the minimum AS (RMSE = 0:48). As
expected, the value of NFE increases by increasing the
number of support points. NFE of the AS is almost
three to four times that of the proposed methods. In
comparison of the two versions of the AWS, it can be
seen that NFEs of the second version are slightly lower
than those of the �rst version (0:2%).
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4.4. Example 4: The roof truss problem
This example is a well-known problem studied in the
literature [25,26]. The geometry details and loading
of the roof truss are illustrated in Figure 13. As
can be seen, the compression bars and top boom (red
members) are reinforced, but the tension bars and the
bottom boom (blue members) are made of steel. A
uniformly distributed load q is assigned to roof truss,
which is transformed into nodal loads p = ql=4. The
perpendicular de
ection of the peak node (C) is limited
to 3 cm, so the limit state function can be constructed
by Eq. (23):

g(X) = 0:03��C ; (23)

where �C can be obtained by:

�C =
ql2

2

�
3:81
ACEC

+
1:13
ASES

�
; (24)

in which l, A, and E are the length, area, and
module of elasticity of the members, respectively, and
C and S subscriptions are related to concrete and
steel members, respectively. The details of random

Figure 13. Roof truss: (a) Steel and concrete members
and (b) geometry and loading.

variables are provided in Table 5. Using MCS with
100 million samples, the failure probability is obtained
as Pf = 0:00936 and the reliability index is obtained
as � = 2:35.

The statistical results by considering three sets
of experiments with NFE values almost equal to 110,
300, and 3000 are provided in Table 6. In the �rst set,
the asymptotic methods estimate the reliability index
based on the experiments. Neither MCS nor WS can
obtain the failed sample. The RMSE and CV of the
proposed methods are also better than those of the
AS. Increasing NFE to 300 evaluations enables the
WS to estimate the reliability index. However, AS
and WS are outperformed by AWS-1 and 2 in terms of
RMSE and CV. In the third set, because of the higher
number of samples for the low reliability index, the
MCS outperforms other methods. However, the results
of the other methods are also acceptable and AWS-1 is
ranked the second for this set.

Since the failure probability of this example
is relatively high, N is considered 500 to perform
the parameter study of the methods. According to
Figure 14, the CV and RMSE of the AS method

Table 6. Comparison of the performances of the di�erent
methods for Example 4.

MCS AS WS AWS-1 AWS-2

NFE 110 116 110 104 106
�� | 2.08 | 2.72 2.67

RMSE | 2.05 | 0.59 0.54
CV (%) | 99.21 17.55 16.39

NFE 300 300 300 300 300
�� | 2.30 2.42 2.51 2.47

RMSE | 0.47 0.29 0.29 0.25
CV (%) | 20.70 11.63 9.86 9.18

NFE 3000 3000 3000 3000 3000
�� 2.36 2.40 2.38 2.34 2.37

RMSE 0.06 0.13 0.12 0.10 0.12
CV (%) 2.65 5.32 4.91 4.35 5.1

Table 5. Random variables for Example 4.

Variable Distribution type Mean Standard deviation

Uniform load, q (N/m) Normal 20000 1400

Length, l (m) Normal 12 0.12

Sectional area, As (m2) Normal 9:82� 10�4 5:892� 10�5

Sectional area, Ac (m2) Normal 0.04 4:8� 10�3

Elastic modulus, Es (N/m2) Normal 1� 1011 6� 109

Elastic modulus, Ec (N/m2) Normal 2� 1010 1:2� 109
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Figure 14. Sensitivity analysis of CV , RMSE, and NFE for Example 4.

are 0.17 and 6:5%, while these values for AWS-1 are
0.24 and 8:8%, and for AWS-2 are 0.24 and 9:0%,
respectively. It should be noted that NFE values
of the AWS-1 and AWS-2 are respectively 1113 and
1110, while for AS, it is 2419, which is almost two
times that of the proposed methods.

5. Concluding remarks

This paper proposes a new hybrid reliability method
for approximating the reliability index, in which the
Weighted Simulation (WS) is accompanied by Asymp-
totic Sampling (AS). The WS provides a means of mak-
ing samples of a speci�c standard deviation compatible
with another standard deviation only by adjusting the
weight indexes. On the other hand, AS is an e�cient
sampling method, which estimates the reliability index
using the Monte Carlo Sampling (MCS) with di�er-
ently scaled deviations. It was found that the AS
method was a suitable approach to applying the above-
mentioned feature of the WS. This property made the
AS an appropriate tool to �nd rare failure probabilities

e�ciently. Moreover, in comparison with the MCS,
the WS estimated the failure probability by generating
a low number of samples. The algorithm of the new
method was designed and two versions were considered.
In theory, the second version seemed to be more
computationally economical; however, the �rst version
was simpler than the second one. In order to verify
the capabilities of the proposed method, several exper-
iments were conducted. This study showed that the
proposed method meaningfully reduced the number of
state function evaluations (i.e., from two to �ve times,
dependent on the problem and parameter setting) in
comparison to the standard AS. Also, it outperformed
the AS method in most cases. When the WS method
was unable to �nd the failure samples, the hybrid
method was capable to do so. The results also indicated
the computational e�ciency of the proposed method.
It should be mentioned that the proposed method is
very useful speci�cally when the failure probability is
low, a large number of samples are needed (e.g., for
MCS), and the evaluation of the limit state function is
computationally expensive. In such cases, it can esti-
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mate the reliability index of the problem by using fewer
evaluations and providing an acceptable accuracy.
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