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Abstract. A new swarm intelligence optimization technique, called Arti�cial Coronary
Circulation System (ACCS), is proposed in this study. This optimization method simulates
the growth of coronary arteries (veins) in the human heart. In this algorithm, each capillary
is considered a candidate solution. This algorithm starts with a random initial population
of candidate solutions and evaluates them by using Coronary Growth Factor (CGF). In
each run, the best candidate solution is selected as the main coronary vessel (artery or
vein), and the other capillaries are considered as searchers of the search space. Then, the
heart decides whether other candidates move toward/away from the main coronary vessels
and searches for the optimal solution by using heart memory. Finally, the application of
the proposed algorithm is demonstrated with respect to some benchmark functions and
some mechanical problems, con�rming the potential and capability of the new algorithm.

© 2019 Sharif University of Technology. All rights reserved.

1. Introduction

Commonly, many optimization methods and algo-
rithms can be categorized into two groups of deter-
ministic and stochastic methods [1,2]. Deterministic
techniques are dependent on the mathematical nature
of the problems. These techniques are subject to a
number of weaknesses such as dependency on gradient,
local optimum, and ine�ciency in handling large-
scale problems [3]. Stochastic techniques are more
user-friendly, because they are not dependent on the
mathematical properties of a considered function; thus,
these are more suitable for �nding globally optimal
solutions for an arbitrary type of objective function [4].
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Optimization represents the process of determin-
ing the decision variables of a function such that the
corresponding function has its minimum or maximum
value [5]. For most of the optimization problems,
particularly engineering ones, involved variables should
be determined so that the system can operate in its best
operation point [6].

As an alternative to the conventional mathemat-
ical programming methods, the metaheuristics have
been utilized to obtain global or near global optimum
solutions. Capable of exploring and �nding suitable
regions of search space in an inexpensive time period,
these methods are quite appropriate for global searches
and, thus, lessen the need for continuous cost functions
and variables necessary for mathematical optimization
methods [4].

To overcome the drawbacks of numerical methods
including derivative, complexity, and being trapped in
local optimum points, some optimization approaches
known as metaheuristic algorithms have been intro-
duced and developed in recent decades [1]. In these
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methods, random operators are used, which are in-
spired by simple concepts. The metaheuristic methods
are simple methods that can be applied to both
continuous and discrete functions and require no other
complex mathematical operations such as derivative;
in addition, they rarely get trapped in local optima
and are employed extensively for various optimization
problems.

The Arti�cial Coronary Circulation System
(ACCS) algorithm is a new metaheuristic algorithm
that mimics the growth of coronary arteries tree of
the heart and coronary circulatory system in human
beings. This algorithm starts with a randomly gen-
erated initial population of candidate solutions for
the coronary tree growth; the objective function is
computed for them and, then, Coronary Growth Factor
(CGF) is calculated based on these values. Based
on this CGF, the best candidate solution is found
as the main artery, and the others form capillaries.
Then, the capillaries search the space and enforce other
candidates to grow on the coronary tree and search for
the optimal solution. The metaheuristic methods can
be classi�ed into six main categories:

1. Evolutionary algorithms. These methods sim-
ulate the evolution of nature. The �rst genera-
tion is randomly produced and evolved gradually.
The best answer forms the best solution among
the entire population in the last iteration of the
evolution. Genetic Algorithm (Miettinen & Pref-
ace By-Neittaanmaki [7]) is the �rst and most
well-known metaheuristic method that simulates
Darwin's theory of evolution. Evolution Strategy
(ES) [8] and Genetic Programming (GP) [9] are
some other evolutionary methods;

2. Physical-based optimization algorithms. In
these methods, physical rules are utilized to update
the solutions in each iteration. Charged sys-
tem search [10], colliding bodies optimization [11],
black hole algorithm [12], and water evaporation
optimization algorithm [13] are classi�ed as the
physical-based methods;

3. Behavior of animal-based optimization algo-
rithms. This type of method mimics the social
behavior of animals to enhance the knowledge of
their goal such as �nding a food source. The
most well-studied approach of this group is par-
ticle swarm ptimization [14,15]; other approaches
of theirs include cuckoo search [16], �rey algo-
rithm [17], Monkey Search Algorithm (MSA) [18],
Arti�cial Bee Colony (ABC) algorithm [19], whale
optimization algorithm [20], Krill Herd (KH) [21],
and grey wolf optimization algorithm [2];

4. Behavior of human-based optimization al-
gorithms. This type of algorithms mimics the

social behavior of human beings to increase their
knowledge of a goal. The most familiar methods
of this group are teaching-learning-based optimiza-
tion [22], imperialist competitive algorithm [23],
and cultural algorithms [24];

5. Chemical-based optimization algorithms. In
this type of approaches, chemical rules are used for
updating the solutions in each iteration. Chemi-
cal reaction optimization algorithm [25] and ions
motion algorithm [26] are classi�ed as the chemical
methods;

6. Biologically inspired algorithms. These meth-
ods are based on the biological rules of micro-
organisms. For examples, Neural Network [27] is
inspired by the network of interconnected neurons
with the aim of imitating neural activities in human
brains. Arti�cial immune systems [28] are inspired
by the immune system of human body. Virus
optimization algorithm [29] is also a biologically
inspired algorithm.

A good optimization algorithm should be able
to search all the search space, which is referred to
as exploration. The high exploration algorithms are
those with a large diversity of solutions in an iteration.
Although a large number of optimization algorithms
are introduced in the literature [30], it cannot be
claimed that an optimization method is capable of
solving all types of problems. Thus, new methods are
introduced to solve a wider range of problems.

Metaheuristic algorithms are successfully applied
to many engineering design problems, examples of
which can be found in the studies of Kaveh &
Shokohi [31], Kaveh & Talatahari [32], and Kaveh &
Ilchi Gazaan [33].

Of note, an optimization algorithm known as
Heart, inspired by heart, was previously proposed by
Hatamlou [34]. This algorithm employs heart actions
and circulatory system of human beings. In addition,
it starts with a random population of solutions and an
objective function computed for them. The best can-
didate solution is selected as the heart, and the others
form blood molecules. Then, the heart persuades other
candidates to move toward/away from the heart and
look for an optimal solution. The inspiration of both
Heart and the proposed ACCS is the same; however,
the view and the equations by which the solutions are
updated are completely di�erent from the algorithm
presented in this paper. A complete description of the
proposed method is presented in Section 2. In order to
distinguish the proposed ACCS from other methods,
the results of some benchmark functions are compared
in Section 3. The conclusion of the paper is presented
in Section 4.
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2. Arti�cial Coronary Circulation System
(ACCS) algorithm

2.1. Behaviors of coronary circulation system
In this section, the proposed algorithm and the source
of its inspiration are described. Coronary circulation is
the circulation of blood in the blood vessels of the heart
muscle (myocardium). Coronary circulation is part of
the systemic circulatory system that supplies blood and
provides drainage from the tissues of the heart.

Arterial trees are very important for the transfer
of oxygen and nutrients to tissue. Their anatomy has
been investigated for a long time period through the
dissection of cadavers, inspection of corrosion casts,
medical imaging methods, and interesting computa-
tional models. It has been shown that individual
arterial bifurcations follow optimality principles that
lower metabolic demand locally, as exhibited by the
scaling laws followed by arterial trees.

Recently, there has been a great interest in models
that mimic arterial growth (angiogenesis) by employing
physiological principles to simulate vascular anatomy.
These models are created based on local optimization
principles, where the anatomy of each branch in the
arterial tree is governed by a compromise between
maximizing uid dynamical e�ciency and minimizing
the quantity of blood required. The vessels that deliver
oxygen-rich blood to the myocardium are the coronary
arteries. The coronary arteries that run deep within the
myocardium are referred to as sub endocardial. Fur-
ther, the vessels that remove deoxygenated blood from
the heart muscle are known as cardiac veins. Cardiac
veins carry blood with a poor level of oxygen from the
myocardium to the right atrium. The anatomy of the
veins of the heart is quite variable [35].

Therefore, the coronary circulation system consti-
tutes the heart and three types of blood vessels, namely
arteries, veins, and capillaries. The heart is the main
part of the system and acts as a pump to distribute
nutrient- and oxygen-rich blood through the body; it
then takes away carbon dioxide and other wastes from
the body, which is not required. Therefore, in the
coronary circulation system, the growing patterns of
arteries and veins and their capillaries are similar.

2.2. Presentation of Arti�cial Coronary
Circulation System (ACCS)

A coronary tree begins from its main arterials (Left
Main or Left Coronary Artery (LCA) LAD, RCx,
and Right Coronary Artery (RCA)), and the growth
of arteries is indispensable for coronary arterial tree
growth. All arteries (veins) of a coronary arterial tree
can be considered as a system composed of a large
number of arterial (veins) stems and crowns. The stem-
crown units are de�ned in Figure 1. A schematic view
of the coronary arteries is illustrated in Figure 2. A

Figure 1. Schematic illustration of the stem-crown unit.

Figure 2. The schematic view of the coronary arteries.

coronary arterial tree structure consists of many stem-
crown units.

Each capillary searches for a feasible solution to
the problem. All arteries try to adjust their growing
directions and propagation strategies to search for
the optimal growing conditions, providing feedback
to improve vessels growth further. In the growing
process, all the terminal vessels can select their growth
strategies composed of the following three basic actions.

1. Each capillary leader can elongate forward (or
sideways) in the search space (Searching);

2. Each capillary leader can produce new stem-crown
(Bifurcation);

3. Each capillary leader can stop and become an
ordinary stem of the tree (Pruning).

In other words, a capillary may re-grow, produce
new stem-crown, or stop growing. According to �tness
values, the whole capillaries are divided into three
groups. The group with the best �tness values is called
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main vessels (stem). The group with the worst �tness
values is called Pruning aging vessels. The rest of
vessels are called lateral vessels. In the three groups,
except for aging vessels that will stop growing in the
next generation, the main vessels and lateral vessels
implement di�erent growth strategies.

The L-systems method was �rst employed to
categorize plant growth processes; however, it can be
applied to any divaricating system. L-systems are used
to describe the growing behavior of the coronary tree.

The main function of an arterial tree is to retain
su�cient blood perfusion with the least total metabolic
expense. The behavioral tendency of an arterial tree is
dominated by two features:

1. Since the blood is viscous, the power required to
pump blood through the vasculature should be
minimized;

2. Since energy is required to generate and maintain
blood, the volume of blood should be reduced to a
minimum.

Murray's law provides this for individual bifurcations;
however, the optimal organization of a large number of
connected bifurcations is far from obvious. The inter-
action between these tourney concerns for thousands of
arterial sectors leads to a complex optimization prob-
lem. Of note, in the following, bifurcation points will be
referred to as \nodes", arteries as \segments between
nodes", and terminal arterioles as \end nodes" [36].

Now, we have obtained a form for all of the
relevant costs corresponding to an arbitrary tree con-
�guration that provides an arbitrary tissue shape.
Therefore, one can de�ne total cost (CT ), which gives
a numerical measure for the �tness of a tree as in the
following:

CT = Aw;v(Cw + Cv) + C0; (1)

where Ai is the weighting value that scales any relevant
cost. There is no way to determine what weights to use
analytically, and appropriate weights must be found
experimentally. Although Cy is the metabolic cost due
to the tree volume and Cw is the total power required
to maintain a suitable ow through the tree that is
based on Poiseuille's law, �p = QR is also followed in
the parts, where Q is the ow and �p is the pressure
drop over the vessel. In addition, C0 indicates other
costs.

In this suggested algorithm, ACCS (Arti�cial
Coronary Circulation System), any branch of the coro-
nary tree is supposed to be a new solution; the total
cost of a tree at any ends is considered to be the cost
of the objective function in any solution. Accordingly,
the Coronary Growth Factor (CGF) is calculated and
de�ned similar to Vascular Endothelial Growth Factor
(VEGF) for any solution. Then, the search space

of the problem is searched, and a new position is
introduced for the growth of the coronary tree as a new
solution to problems. This process is repeated to �nd
the optimum solution. The method suggested in this
paper is developed based on the biology of the human
heart's coronary arterial tree growth. In other words,
in the human heart, the coronary vein tree is the same
as the coronary arterial tree. This study focuses on
coronary arterial tree. Therefore, in an arti�cial model
presented herein, an objective function is considered as
the cost function of coronary arteries tree growth; in
addition, every young arteries are considered as agents
that explore the search space of the problem.

2.3. Mathematical model of the proposed
algorithm

In this part, a new e�ectual optimization algorithm
inspirited by the growth coronary arteries tree is
presented, which is called Coronary Circulation System
(CCS). In the CCS, any solution selects Xi, which
includes a number of decision variables (i.e., Xi =
fxi;jg) in a vessel (arteries, veins, and capillaries). The
vessels make the coronary arteries tree grow by the
Coronary Growth Factor (CGF) of the other arteries
(agents). It appears that a good artery (agent) has
more capillary leaders than a bad artery; therefore,
the amount of the Coronary Growth Factor (CGF)
will be considered as the objective function value,
fiti, to describe CCS. The subsequent basic laws are
developed:

Law 1: The initial positions of CLs are obtained
randomly in the search space as follows:

Xi
0; j = Ljband + rand � �U jband � Ljband

�
;

i = 1; � � � ; Npop; j = 1; � � � ; Nvar; (2)

where Xi;j
0 is the initial value of the jth variable for

the ith CL. Nvar is the total number of variables, and
Lband and Uband are the lower and the upper bounds of
decision variables, respectively. Here, rand is a random
variable selected uniformly in the range of [0,1]. Thus,
the Coronary Growth Factor (CGF) of the initial CLs
is determined based on the cost function (or fiti).

Law 2: Multitude of natural evolution algorithms
constitutes a population of solutions that are evolved
through random alterations and selection. Analo-
gously, ACCS supposes a number of Capillary Leaders
(CL), with each CL having a Coronary Growth Factor
(CGF).

CGFi =
fitiP
fiti

; i = 1; � � � ; Npop; (3)
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where fiti is the objective function value or the �tness
of agent i, fitmax represents the maximum of objective
function values, and Npop )shows the total number of
CLs.

Law 3: Three conditions could be supposed to be
related to the type of the Coronary Growth Factor
(CGF):
a) Any CL can grow in any direction;
b) The best CL can grow in its direction if the

amount of its Coronary Growth Factor (CGF) (in
minimizing problems) is higher than others, and the
worst CLs must be pruned (Selection).(

Xi
0 = Xi

new CGFi0 < CGFinew

Xi
0 = Xi

0 else
(4)

c) Any CL grows toward to the best direction. In
other words, other CLs grow in a good CL direc-
tion if the Coronary Growth Factor (CGF) of the
center CL is better (higher) than the random CL
(Searching).

Xc = mean
�
Xall

0
�
; (5)

fitc = mean(fit0): (6)

According to the above conditions, when the best CL
grows in the worst direction, the local search capability
of the algorithm should be prepared; if an unfavorable
CL growth becomes the best CL, the global search
is provided. When a CL grows toward the best CL,
its performance is improved; thus, the self-adaptation
principle is assured. Growth of the best CL toward
the worst direction can lead to the loss of the previous
favorable solution or, at least, an increase in calculation
costs in �nding a good solution. To resolve this
problem, Heart Memory (HM) is used, which retains
the best CLs (favorable solution).

Law 4: The new position of any CL is determined
through the equation below:
Xt+1
i;j = Xt

r;j + dir:Bf :
�
Xt
c;j � rand �Xt

r;j
�
; (7)(

dir = �1 if CGFtc < CGFti
dir = +1 else

(8)

where Xt+1
i;j denotes the new position value of the

jth variable for the ith CL; dir indicates the growth
direction; rand is a di�erent random number, uniformly
distributed in the range of (0,1); Bf is a Bifurcation
factor, which is equal to CGFi; Xt

r;j denotes a random
old position value of the jth variable for the rth CL
(r 2 1; � � � ; Npop). Note, r in Xt

r;j and CGFtr and (r�1)
is the same. Considering the above equations, any CL
searches the space for a new position for the growth of
the main arteries (Global Search).

Law 5: The new positions of the CLs should be
pruned and changed.

When the heart Coronary Growth Factor (CGF)
of a new position is better than an old value (in other
words, if the �tness function of a new point is more
favorable (lower) than the previous point), then the
branch changes to the main arteries; otherwise, it
prunes and the growing tree stops. The mathematical
formulation of this feature is presented in the following:(

Xi
0 = Xi

new CGFi0 < CGFinew

Xi
0 = Xi

0 else
(9)

This procedure is accomplished for all the old
positions, i.e., in this stage, all the new positions are
considered as the main artery leaders, and the best
CLs in the new position indicate tree growth in the
true direction, leading to the extension of the tree.
Moreover, the worst positions are replaced by the new
positions, meaning that the bad branch is removed and
pruning is done.

Law 6: The new position of any CL is obtained as
follows.

As mentioned in the last steps, all of the new
positions are considered as the main artery leader, and
the coronary tree grows. In this stage, all of the new
positions are considered as the capillary leader, and
the coronary tree grows. In addition, the growth of
the capillary leader is based on the Coronary Growth
Factor (CGF) of arteries leader along the coronary
arteries tree. Thus, angiogenesis factor is de�ned as
follows:

� = 0:625
p

(itr=itrmax); (10)

where itr is the number of iterations, and itrmax is the
maximum number of iterations. The subsequent posi-
tions of the CL have a connection with the Coronary
Growth Factor (CGF) of the best and worst CLs in the
coronary arteries tree. Thus, the next positions of the
CLs are mathematically formulated as follows:

Xt+1
i;j = Xt

i;j + � � rand � �Xt
b;j �Xt

w;j
�
; (11)

where Xt+1
i;j indicates the new position value of the jth

variable for the ith CL; Xt
i;j shows the old position

value of the jth variable for the ith CL; � is the
angiogenesis index; rand represents random numbers
that are uniformly distributed in the range of (0,1);
Xt
b;j and Xt

w;j are the best and worst CLs of the
last (old) population, which hark back to the foremost
arteries leader and the worst arteries leader. By using
Eq. (11), any CL searches the space for a new position
for capillary growth (Local Search).
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Law 7: Considering a memory that saves the fore-
most CL vectors and their related Coronary Growth
Factor (CGF) values can improve the algorithm perfor-
mance without increasing computational costs. There-
fore, Heart Memory (HM) is employed to save a number
of the best-so-far solutions. In this paper, the size of
the HM (i.e., HMS) is taken as 0:25 � Npop. Another
pro�t of the HM results from employing this memory to
direct and guide the current CLs. On the other hand,
the vectors saved in the HM can be used to generate a
new position for the current CLs.

Law 8: The �nishing criterion is one of the followings:

\Maximum number of iterations or minimum objective
function error or..."

Now, a new optimization algorithm that employs the
above laws can be established. Algorithm 1 summarizes
the steps of the ACCS.

Algorithm 1. The Arti�cial Coronary Circulation System
(ACCS) algorithm.

3. Evaluation and validation of the ACCS

In this part, the suggested algorithm is appraised by
some benchmarks, and the outcomes are compared
with the results of some other metaheuristics. In this
paper, the �rst 15 benchmark functions are classi�ed
based on modality and separability, and 4 mechanical
problems are tested to evaluate the reliability and
e�ciency of the suggested algorithm. After that, the
performance of the ACCS is examined for 3 engineering
design problems (widely utilized in the literature), and
the optimization outcomes are compared with those
of the other optimizers. These instances have been
previously studied by various techniques, which are
useful to show the validity and e�ectiveness of the
suggested algorithm. To evaluate the e�ect of the
initial population on the �nal outcome, these instances
are independently optimized with di�erent initial pop-
ulations. The ACCS algorithm is programmed in
MATLAB R2016a.

The suggested method is assessed by means of
15 di�erent benchmark mathematical functions, and
the results are compared with those of some other
metaheuristic methods. Such trial functions are listed
in Tables 1-4, where n represents the dimension of
the function (i.e., the number of decision variables),
Range indicates the search area (i.e., the limitation
of variables), and fmin is the optimum value of the
test function. By using these optimization problems,
the ability of the suggested method to solve high
constraints and discrete problems is assessed.

The metaheuristic algorithms with which the
suggested method is compared include:

1. Cuckoo Search Algorithm (CS) [37];
2. Firey Optimization Algorithm (FFA) [3,38];
3. Lightning Search Algorithm (LSA) [39].

The population number is speci�ed for any
method so that the evaluation process of the overall
objective function in the whole iterations remains the

Table 1. Unimodal and separable test functions.

Function ID Name Expression n Range fmin

F1 Sphere f1(x) =
Pn
i=1 x

2
i 30 �100 0

F2 Step f2(x) =
Pn
i=1 (bxi + 0:5c)2 30 �10 0

F3 Quartic with noise f3(x) =
Pn
i=1 ix

4
i + rand 30 �1:28 0

Table 2. Unimodal and non-separable test functions.

Function ID Name Expression n Range fmin

F4 Schwefel 1.2 f4(x) =
Pn
i=1

�Pi
j=1 xj

�2
30 �100 0

F5 Schwefel 2.21 f5(x) = max(jxij; 1 � i � n) 30 �100 0
F6 Schwefel 2.22 f6(x) =

Pn
i=1 jxij+Qn

i=1 jxij 30 �10 0
F7 Rosenbrock f7(x) =

Pn
i=1[100(xi+1 � x2

i )2 + (xi � 1)2] 30 �30 0
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Table 3. Multimodal and separable test functions.

Function ID Name Expression n Range fmin

F8 Rastrigin f8(x) =
Pn
i=1[x2

i � 10 cos(2�xi) + 10] 30 �5:12 0
F9 Branin f9(x) =

�
x2 � 5:1

4�2x2
1 + 5

�x1 � 6
�2 + 10

�
1� 1

8�

�
cosx1 + 10 2 �5 0.398

Table 4. Multimodal and non-separable test functions.

Function ID Name Expression n Range fmin

F10 Ackley
f10(x) = 20� 20 exp

�
�0:2

nP
i=1

x2
i
n

�
� exp

�
nP
i=1

cos(2�xi)
n

�
+ e

30 �32 0

F11 Griewank f11(x) = 1 +
nP
i=1

x2
i

4000 �
nQ
i=1

cos
�
xip
i

�
30 �600 0

F12 Penalized no.1

f12(x) = �
n

(
10 sin2(�y1)

+
nP
i=1

(yi � 1)2[1 + 10 sin2(�yi+1)] + (yn � 1)2

)
+

nP
i=1

ui(xi; 10; 100; 4),

yi = 1 + xi+1
4 ,

ui(xi; a; k;m) =

8>><>>:
k(xi � a)m xi > a

0 �a � xi � a
k(�xi � a)m xi < �a

30 �50 0

F13 Penalized no.2

f13(x) = 10

(
sin2(3�x1) + (xn � 1)2

+
nP
i=1

(xi � 1)2[1 + sin2(3�xi+1)]

)
+

nP
i=1

ui(xi; 5; 100; 4),

ui(xi; a; k;m) =

8>><>>:
k(xi � a)m xi > a

0 �a � xi � a
k(�xi � a)m xi < �a

30 �50 0

F14 6-Hump Camel Back f14(x) = 4x2
1 � 2:1x4

1 + 1
3x

6
1 + x1x2 � 4x2

2 + 4x4
2 2 �5 -1.0316

F15 Goldstein-Price

f15(x) = [1 + (x1 + x2 + 1)2(19� 14x1 + 3x2
1

�14x2 + 6x1x2 + 3x2
2)]

�[30 + (2x1 � 3x2)2(18� 32x1

+12x2
1 + 48x2 � 36x1x2 + 27x2

2)]

2 �2 3.0
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Table 5. Parameter settings used in LSA, CS, and FFA.

Algorithm Function evaluation
in each iteration

Populations size Other parameter

CS 2 25 Discovery rate (Pa)=0.25
LSA 2 25 Maximum channel time=10
FFA 1 50 � = 0:25, � = 1,  = 1

ACCS 2 25 |

Table 6. Test 1 global optimization results for benchmark functions in Table 1.

Function ID Statistics ACCS LSA CS Firey

F1

Best 1:138� 10�55 8:951� 10�7 1.638 2:024� 10�7

Average 1:211� 10�49 0.00398 4.634 2:388� 10�7

Worst 2:040� 10�48 0.0283 8.792 2:739� 10�7

Standard deviation 4:141� 10�49 0.00702 1.867 2:131� 10�8

F2

Best 0 2.0 6.0 20
Average 0 19.7 15.533 185.3
Worst 0 110.0 36.0 875.0

Standard deviation 0 22.085 7.147 187.684

F3

Best 0.00612 5.60947 0.42498 0.96311
Average 0.01964 16.0165 1.07974 1.75927
Worst 0.05142 48.6114 2.19394 3.56069

Standard deviation 0.01195 9.47034 0.42321 0.61097

same for all methods. For example, the evaluation
function is assessed two times in any iteration in the
suggested ACCS algorithm, while this is done only once
in any iteration for the FFA.

Therefore, the population of ACCS is half of
the population of the FFA. The algorithm-dependent
parameter settings for any algorithm in comparison are
given in Table 5, as mentioned in the literature.

The maximum cycle number for all the algorithms
is 500 for the mathematical functions and 200 for
the engineering design problems. In addition, the
MATLAB programs of the compared algorithms can
be taken from the Appendix.

Since the metaheuristic methods are based on ran-
dom movement of their particles, statistical analysis is
required. In order to validate the suggested algorithm,
the e�ciency of the ACCS is assessed by using ten real-
world structural optimization problems.

3.1. Experimental results and discussion of
unconstrained functions

3.1.1. Unimodal and separable functions
This trial is used to estimate the reliability and
performance of the ACCS in exploring the global
minimum value when it is due to benchmark functions

with unimodal and separable characteristics. Table 1
provides details of these functions. This trial also
compares the ACCS with three other methods (namely
LSA, CS, and FFA) for validation. Each benchmark
function is tested 30 times. The outcomes consist of
the best, worst, average, and standard deviation of the
objective function, as illustrated in Table 6. The best
e�ciency for each function is boldfaced.

The ACCS reaches the best global minimum
or near global minimum for F1, F2, and F3, and
its e�ciency is acceptable because it has the lowest
standard deviation and average global minimum value.
Figure 3(c) clearly shows this which has been obtained
from the data determined in 30 runs.

Therefore, the convergence characteristic curves
illustrated in Figure 3 are used for e�ciency compari-
son. According to this �gure, it should be noted that
the ACCS converges faster than the other methods and,
thus, possesses superior convergence characteristics for
this kind of function optimization.

3.1.2. Unimodal and non-separable functions
To appraise the e�ciency and consistency of the ACCS
in solving unimodal and non-separable functions, four
benchmark functions represented in Table 2 are ex-
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Figure 3. Comparison of convergence curves relative to the best design and average optimization run and global search
speed and local search speed of all algorithms for the sphere function: (a) ACCS, (b) LSA, (c) CS, and (d) �rey.

amined in this test: Schwefel 1.2 (F4), Schwefel 2.21
(F5), Schwefel 2.22 (F6), and Rosenbrock (F7). These
functions have the same dimension size (n = 30) as
those used in Test 1; however, the obstacle level is
higher because these functions are non-separable. The
test outcomes achieved by the ACCS are compared

with those calculated by the four optimization methods
(Table 7). The best e�ciency for any function is
boldfaced. Table 7 shows that the ACCS can �nd the
best near-optimum solution for functions F4, F5, and
F6. For F7, the ACCS fails to achieve the best solution,
and the LSA �nds a better outcome. In any case, its
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Table 7. Test 2 global optimization results for benchmark functions in Table 2.

Function ID Statistics ACCS LSA CS Firey

F4

Best 5:611� 10�12 16.674 435.93 2136.13
Average 1:037� 10�6 117.655 1232.33 6522.55
Worst 2:307� 10�5 354.017 2060.69 16004.4

Standard deviation 4:214� 10�6 74.345 418.89 3304.3

F5

Best 5:3136� 10�16 6.795 4.904 5.9682
Average 3:7424� 10�14 27.088 8.423 8.3848
Worst 1:9806� 10�13 65.486 11.818 11.6706

Standard deviation 5:2905� 10�14 15.125 1.814 1.70011

F6

Best 2:662� 10�33 9:974� 10�3 1.009 12.375
Average 1:643� 10�31 1.522 1.606 23.005
Worst 1:888� 10�30 10.093 2.792 42.143

Standard deviation 3:532� 10�31 2.412 0.408 7.622

F7

Best 21.5317 12.0247 40.724 50.995
Average 22.6195 56.1413 78.252 147.232
Worst 24.0443 182.264 176.352 314.053

Standard deviation 0.6932 40.671 31.609 74.1709

Table 8. Test 3 global optimization results for benchmark functions in Table 3.

Function ID Statistics ACCS LSA CS Firey

F8

Best 0 56.7125 66.1701 69.6471
Average 1.88747 109.142 83.4389 114.022
Worst 11.56313 186.305 100.363 174.117

Standard deviation 3.10235 33.3461 9.8677 24.948

F9

Best 0.39788 0.39788 0.39788 0.39788
Average 0.39788 0.39788 0.39788 0.39788
Worst 0.39788 0.39788 0.39788 0.39788

Standard deviation 0 5:5501� 10�6 0 1:48131� 10�14

e�ciency is admissible since it has the lowest standard
deviation and average global minimum value.

3.1.3. Multimodal and separable functions
In this test function, the obstacle level of the opti-
mization problem becomes higher by multimodal and
separable functions (Table 3).

F8 and F9 are associated with high- and low-
dimensional problems, respectively. Each benchmark
function is run again 30 times. The results considering
the best, worst, average, and standard deviation of
the objective functions are illustrated in Table 8. The
best e�ciency for any function is boldfaced. All the
algorithms achieve the best global minimum or near
global minimum for F9. For F8, only the ACCS
algorithm �nds the best solution. The comparative

outcomes illustrate better e�ciency of the ACCS than
other algorithms.

3.1.4. Multimodal and non-separable functions
The global and local search capabilities of the suggested
ACCS are examined with six multimodal and non-
separable high- and low-dimensional benchmark func-
tions. Table 4 provides the details of these functions.
Similar to the previous test function analysis, this test
also compares the ACCS with three other methods,
namely LSA, CS, and FFA, for validation using the
same statistical indices (Table 9). The best e�ciency
for each function is boldfaced. The ACCS reaches
the best global minimum or near global minimum
for all the tested functions. These outcomes con�rm
the exploration and exploitation capabilities of the
suggested ACCS.
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Table 9. Test 4 global optimization results for benchmark functions in Table 4.

Function ID Statistics ACCS LSA CS Firey

F10

Best 8:8817� 10�16 2.01374 0.11665 1.15514
Average 1:0066� 10�15 3.674301 0.33521 1.83652
Worst 4:4408� 10�15 5.05808 0.89566 2.53809

Standard deviation 6:4863� 10�16 0.78941 0.22182 0.28382

F11

Best 0.000000 5:60705� 10�6 0.847211 2:7863� 10�7

Average 0.006555 0.007863 1.005346 0.334255
Worst 0.041631 0.04462 1.066508 1.857301

Standard deviation 0.010733 0.011281 0.046827 0.589796

F12

Best 1:42603� 10�6 4:29435� 10�6 1.20636 1.50081
Average 0.006926 3.23765 2.75402 2.97896
Worst 0.103681 17.16439 4.30311 4.33802

Standard deviation 0.0263 4.521759 0.872652 0.781504

F13

Best 5:59887� 10�6 3:81127� 10�5 1.09591 0.63735
Average 0.030906 1.74476 6.49742 31.9031
Worst 0.073753 18.3532 20.8961 66.4301

Standard deviation 0.041681 4.23541 4.175104 16.39227

F14

Best -1.03163 -1.03163 -1.03163 -1.03163
Average -1.03163 -1.03163 -1.03163 -1.03163
Worst -1.03163 -1.03163 -1.03163 -1.03163

Standard deviation 5:215� 10�16 6:5194� 10�16 4:8781� 10�16 2:6225� 10�14

F15

Best 2.99999 2.99999 2.99999 2.99999
Average 2.99999 2.99999 2.99999 3.00000
Worst 2.99999 2.99999 2.99999 3.00000

Standard deviation 6:2744� 10�15 2:9836� 10�15 3:1811� 10�15 2:1989� 10�13

Finally, Figure 4 shows the convergence his-
tory of the ACCS for the best-viewed outcomes and
the average of 30 independent runs for many func-
tions.

3.2. Experimental results and discussion on
engineering problems

Herein, the suggested ACCS is utilized for the solution
of 3 classic engineering optimization problems consist-
ing of a tension/compression spring, a welded beam,
and a pressure vessel. For these problems, there are
some equality and inequality constraints that must be
satis�ed during the solution of the problem. In this
paper, the constraint management is carried out by
utilizing penalty factors, i.e., whenever the constraints
are violated for a solution, a great �tness function is
assigned to the solution.

3.2.1. The tension/compression spring design problem
In this problem, the objective is to minimize the
weight of a tension/compression spring with a certain
number of constraints such as the shear stress, the
surge frequency, and minimum deection, as shown in
Figure 5. The design variables include the mean coil
diameter D(= x1), the wire diameter d(= x2), and the
number of active coils N(= x3). The problem can be
expressed better with the cost function as:

fcost(X) = (x3 + 2)x2x2
1;

that has to be minimized by considering the following
constraints:

g1(X) = 1� x3
2x3

71785x4
1
� 0;
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Figure 4. Comparison of convergence curves relative to the best design and average optimization run and global search
speed and local search speed of the ACCS: (a) f1, (b) f3, (c) f7, and (d) f10.

g2(X) =
4x2

2 � x1x2

12566(x2x3
1 � x4

1)
+

1
5108x2

1
� 1

� 0;

g3(X) = 1� 140:45x1

x2
2x3

� 0;

g4(X) =
x1 + x2

1:5
� 1 � 0;

0:05�x1�2:0 0:25�x2�1:3 2:0�x3�15:

This problem is tackled by various methods con-
sisting of some metaheuristic methods and mathemat-
ical programming approaches. The best outcomes
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Figure 5. A tension/compression spring.

for this problem, according to the author's knowl-
edge, are obtained by metaheuristic algorithms. In
this regard, GA-based method [40], Co-evolutionary
Particle Swarm Optimization (CPSO) [41], Evolution
Strategies (ESs) [42], Charged System Search (CSS)
algorithm [10], and Bat Algorithm (BA) [37], Water
Evaporation Optimization (WEO) [13] are used suc-
cessfully for this problem.

Table 10 provides the statistical results obtained
by ACCS and other metaheuristics for the present
problem. The best result is obtained by the CSS
algorithm. As is clear, the ACCS is competitively
better than other algorithms in terms of accuracy,
demonstrating the most robust results. Table 11 shows
the optimum design achieved by ACCS and some other
metaheuristic algorithms. It can be observed that the
best outcomes are achieved by the presented ACCS
algorithm.

3.2.2. The welded beam design
In this problem, the aim is to minimize the fabrication
cost of a welded beam, as shown in Figure 6. The
considered variables contain the thickness of weld (x1 =
h), the length of attached part of bar (x2 = l), the
height of the bar (x3 = t), and the thickness of the
bar (x4 = b). The constraints include shear stress
(s), bending stress in beams (h), and buckling load
on the bar (Pc), end deection of the beam (d), and
the side constraints. The mathematical formulation of
this problem is as follows:

Minimize:

f(X) =1:10471x2x2
1

+ 0:04811x3x4(14:0 + x2);

Subject to:

g1(X) = �(x)� �max � 0;

g2(X) = �(x)� �max � 0;

g3(X) = �(x)� �max � 0;

g4(X) = x1 � x4 � 0;

g5(X) = P � Pc(x) � 0;

Table 10. Comparison of accuracy, robustness, and
reliability of ACCS and other metaheuristics regarding the
spring design problem.

Algorithm Best Mean Worst SD

GA 0.012681 0.012742 0.012973 5.90e-05
CPSO 0.012675 0.01273 0.012924 5.20e-05
ESs 0.012698 0.013461 0.16485 9.66e-04

IACO 0.012643 0.01272 0.012884 3.49e-05
CSS 0.012638 0.012852 0.013626 8.36e-05
BA 0.012665 0.013501 0.016895 0.00142

WEO 0.012665 0.012669 0.012697 0.000006
ACCS 0.012665 0.012728 0.012845 4.90e-05

Table 11. Optimum designs obtained by ACCS and
various metaheuristic algorithms for the spring design
problem.

Methods
optimal

Design variables fmin
x1(d) x2(D) x3(N)

GA 0.051989 0.363965 10.89052 0.012681
CPSO 0.051728 0.357644 11.24454 0.012675
ESs 0.051643 0.35536 11.39793 0.012698

IACO 0.051865 0.3615 11.0000 0.012643
CSS 0.051744 0.358532 11.1657 0.012638
BA 0.05169 0.35673 11.2885 0.012665

WEO 0.051685 0.35663 11.2941 0.012665
ACCS 0.051758 0.35837 11.19226 0.012665

Figure 6. A welded beam system.

g6(X) = 0:125� x1 � 0;

g7(X) =1:10471x2x2
1

+ 0:04811x3x4(14:0 + x2)�5:0 � 0;

0:1 � x1 � 2:0; 0:1 � x2 � 10:0;

0:1 � x3 � 10:0; 0:1 � x4 � 2;

where:
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;

P = 6000 lb; L = 14 in;

�max = 13600 psi; �max = 30000 psi;

�max = 0:25 in; E = 30� 106 Psi;

G = 12� 106 Psi:

Table 12 contains the statistical results attained by
ACCS and the GA-based method for this prob-
lem [40], Co-evolutionary Particle Swarm Optimization
(CPSO) [41], Evolution Strategies (ESs) [42], Charged
System Search (CSS) algorithm [10], Bat Algorithm
(BA) [16], and Water Evaporation Optimization
(WEO) [13]. The best result is obtained by the ACCS
algorithm. As is clear, ACCS results are the best,
and ACCS is competitively superior to others in terms
of robustness. Table 13 presents the details of the
optimum design obtained by the ACCS and some other
considered metaheuristic algorithms.

Table 12. Comparison of accuracy, robustness, and
reliability of ACCS and other metaheuristics regarding the
welded beam design problem.

Algorithm Best Mean Worst SD

GA 1.728226 1.792654 1.993408 0.074713
CPSO 1.728024 1.748831 1.782143 0.012926
ESs 1.7373 1.81329 1.994651 0.0705

IACO 1.724918 1.729752 1.775961 0.0092
CSS 1.724866 1.739654 1.759479 0.008064

WEO 1.724852 1.739437 1.818454 0.02314
ACCS 1.724852 1.724852 1.724853 1.486e-07

Figure 7. A pressure vessel.

3.2.3. The pressure vessel design problem
This main objective of this problem is to minimize the
total cost of the materials used and the cost of the
welding of the cylindrical vessel, as shown in Figure 7.
The two ends of the vessel are hemispherical shaped
caps. The variables of this problem consist of the
thickness of the shell (x1 = Ts), thickness of the head
(x2 = Th), inner radius (x3 = R), and length of
the cylindrical section without considering the head
(x4 = L).

This problem is formulated as follows:

Minimize:

f(X) =0:6224x1x3x4 + 1:7781x2
3x2

+ 3:1661x2
1x4 + 19:84x2

1x3;

Subject to:

g1(X) = 0:0193x3 � x1 � 0;

g2(X) = 0:0095x3 � x3 � 0;

g3(X) = 1296000��x2
3x4� 4

3
�x3

3�0;

g4(X) = x4 � 240 � 0;

0:0 � x1; x2 � 99:0;

10:0 � x3; x4 � 200:

Many investigators optimized the present problem
by di�erent mathematical, numerical, and metaheuris-
tic optimization approaches. The best outcomes of
this problem, based on the author's knowledge, are
obtained almost by metaheuristic algorithms. Ac-
cordingly, GA-based method [40], Co-evolutionary
Particle Swarm Optimization (CPSO) [41], Evolution
Strategies (ESs) [42], Charged System Search (CSS)
algorithm [10], Bat Algorithm (BA) [16], and Water
Evaporation Optimization (WEO) [13] were used suc-
cessfully for solving this problem.

Table 14 shows the statistical results yielded by
ACCS and other metaheuristics for this problem. The
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Table 13. Optimum designs obtained by ACCS and various metaheuristic algorithms for the welded beam design problem.

Methods optimal Design variables fmin
x1(h) x2(l) x3(t) x4(b)

GA 0.205986 3.471328 9.020224 0.20648 1.728226
CPSO 0.202369 3.544214 9.04821 0.205723 1.728024
ESs 0.199742 3.61206 9.0375 0.206082 1.7373

IACO 0.2057 3.471131 9.036683 0.205731 1.724918
CSS 0.20582 3.468109 9.038024 0.205723 1.724866

WEO 0.20573 3.470489 9.036624 0.20573 1.724852
ACCS 0.205729 3.470488 9.036623 0.205729 1.7248523

Table 14. Comparison of accuracy, robustness, and
reliability of ACCS and other metaheuristics regarding the
pressure vessel design problem.

Algorithm Best Mean Worst SD

GA 6059.95 6177.25 6469.32 130.9297

CPSO 6061.08 6147.13 6363.8 86.4545

ESs 6059.75 6850 7332.88 426

IACO 6059.73 6081.78 6150.13 67.2418

CSS 6059.09 6067.91 6085.48 10.2564

BA 6059.71 6179.13 6318.95 137.223

WEO 6059.71 6138.61 6410.19 129.9033

ACCS 5885.71 5904.01 5967.45 20.8378

best results are obtained �rstly by the CSS and, then,
by BA algorithm. In addition, ACCS was able to
�nd the same best results as those obtained by the
BA, and the di�erence between the results obtained
by the two mentioned methods was found negligible.
Robustness of the ACCS is competitively better than
that of other algorithms, except the CSS. Table 15
presents the optimum designs obtained by ACCS and
other metaheuristic algorithms.

4. Conclusion

Nature-inspired algorithms that mimic the speci�c
phenomena or behaviors of nature have become quite
popular for use in computational optimization in recent
years. Further, modeling the behavior of natural
phenomena for the purpose of search and problem
solving is a dynamic research area. In this article, a
novel optimization algorithm was developed to solve
engineering problems that are inspired by the growth
of coronary arteries tree on the heart and coronary
circulation system.

In other words, this article proposed a new opti-
mization algorithm called arti�cial coronary circulation
system algorithm, which simulates the arteries growth
and the capillaries search strategies for growth in/on
the heart. The present method utilizes three main
behaviors: exploring capillaries (searching), creating
stem-crown (bifurcation), and removing bad capillaries
(pruning).

In the �rst phase, each capillary by the normal
random walk method generated a new capillary around
its current position. The second phase simulated the
bifurcation procedure. By evaluating some of the worst
capillaries �rst, the last phase mimicked the pruning
process of worse capillaries based on the CGF.

The simulation and statistical outcomes of the

Table 15. Optimum designs obtained by ACCS and various metaheuristic algorithms for the pressure vessel design
problem.

Methods optimal
Design variables fmin

x1(Ts) x2(Th) x3(R) x4(L)

GA 0.8125 0.4375 42.0974 176.6541 6059.946
CPSO 0.8125 0.4375 42.09127 176.7465 6061.078
ESs 0.8125 0.4375 42.09809 176.6405 6059.746

IACO 0.8125 0.4375 42.09835 176.6378 6059.726
CSS 0.8125 0.4375 42.10362 176.5727 6059.089
BA 0.8125 0.4375 42.09845 176.6366 6059.714

WEO 0.8125 0.4375 42.09844 176.6366 6059.71
ACCS 0.7783 0.38474 40.32626 199.9076 5885.715
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constraint optimization problems illustrate that the
suggested ACCS algorithm can be equal to or out-
perform other nature-inspired algorithms used in this
paper. In order to evaluate the performance of the
proposed algorithm, it was compared with the perfor-
mance results of other popular algorithms using many
benchmark engineering problems. The experimental
outcomes indicate the high potential and e�ciency of
the ACCS algorithm. This research was conducted
based on di�erent dimensions of the research directions
that could be combined with local search strategy or
hybridized with other metaheuristic algorithms. The
application of the suggested algorithm can be extended
to other optimization problems.
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Appendix

CS:
http://www.mathworks.com/matlabcentral/
�leexchange/29809-cuckoo-search-cs-algorithm

LSA:
https://www.mathworks.com/matlabcentral/
�leexchange/ 54181-lightning-search-algorithm-lsa-

Firey:
https://www.mathworks.com/matlabcentral/
�leexchange/29693-�rey-algorithm
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