Finite element model and size-dependent stability analysis of boron nitride and silicon carbide nanowires/nanotubes

H. M. Numanoğlu, K. Mercan, and Ö. Civalek

Division of Mechanics, Department of Civil Engineering, Akdeniz University, 07058 Antalya, Turkey.

Received 21 December 2018; received in revised form 20 February 2019; accepted 6 April 2019

KEYWORDS

Boron nitride; Silicon carbide; Nanotube; Nanowire; Buckling.

Abstract. In the present paper, stability analysis of boron nitride and silicon carbide nanotubes/nanowires is carried out using different size-effective theories, finite element method, and computer software. Size-effective theories used in this paper include Modified Couple Stress Theory (MCST), Modified Strain Gradient Theory (MSGT), Nonlocal Elasticity Theory (NET), Surface Elasticity Theory (SET), and Nonlocal Surface Elasticity Theory (NSET). As for the computer software, ANSYS and COMSOL multiphysics are used. Comparative results of theories and software and literature are given in the result section. Comparative results are in good harmony. In conclusion, it is clearly seen that the nonlocal elasticity theory yields the lowest results for every modes and structures, while the modified strain gradient theory yields the highest results.

© 2019 Sharif University of Technology. All rights reserved.

1. Introduction

Nanotubes and nanowires are used in a wide range of scientific areas since their discovery. The usage areas of nanotubes and nanowires can be divided into two main groups: current and potential usage areas. With its ultimate mechanical and adjustable geometric parameters, the second group of potential usage area can be described almost as 'limitless'. On the other hand, the current usage areas of nanotubes and nanowires are in bulk state, which means a mass of unorganized nanostructures [1-3]. Nanostructures in the bulk form are widely used as composite fibers to improve the mechanical, electrical, and thermal properties of polymers [4]. For example, one of the largest companies in the sport equipment-producing field that invests in futuristic research and developments seriously has produced carbon nanotube (CNT) reinforced bicycle components. By reinforcing bicycle components, they developed very high strain-stress resistance in addition to massive loss in weight [5]. Another current application of nanostructures is to absorb gases by their active surface area [6]. Absorbing gases has vital importance for environmental monitoring and the future of this planet. Otherwise, with ongoing improvements in nano-scale technology, nanostructures promise limitless, highly beneficial usage areas. In addition, new nanostructures such as three-dimensional nanoblocks are studied. These 3D nanoblocks are composed of nanostructures and have a limited size up to 1 mm in all dimensions. A new method was researched and published by Lahwani et al., which uses single- and multi-walled carbon nanotubes to eventually produce nanoblocks [7]. These developments can be described as promising for new supercapacitors, batteries with
super energy storage capacity, transistors used for field emission, and catalysts with high performance [8].

In related literature, the history of nanotubes is widely based on the research published by Iijima about nanotubes in 1991 [9]. However, this literature comprises older studies on nanotubes. These studies have also determined nanotubes without identifying their relevant structures. In this regard, the first research conducted was published by Watson and Kaufmann in 1946 [10]. Watson and Kaufmann investigated synthesis of carbon nanotube structures under the rubric of ‘tubular carbon’. The ‘tubular carbon’ was obtained with a diameter of almost 100 nm by examining cuprene over fine copper oxide catalyst up to 300°C. Following six years of research published by Watson and Kaufmann, Radushkevich and Lukyanovich published primary images of carbon nanotubes with diameters ranging from 30 nm to 50 nm by transmission electron microscopy in 1952 [11]. Moreover, the properties, structure, and growth methods of nanostructures using arc discharge were analyzed by Bacon in 1960 [12]. Another research was published by Oberlin et al. in 1976 [13]. Oberlin et al. observed carbon fibres by pyrolyzing a mixture of hydrogen and benzene at about 1100°C. The specimens obtained by this chemical vapor-growth method include carbon nanotubes with a diameter of 2-50 nm. These nanotubes are called ‘hollow tubes’. Hollow tubes obtained were actually multi-walled carbon nanotubes (MWCNTs). After that, in 1999, John Abrahamson [14] presented a research piece at the 14th Biennial Conference of Carbon at Pennsylvania State University. The research described the carbon nanotubes obtained from arc discharge on carbon anodes. Later, in 1982, the first chirality model of carbon nanotubes was proposed in two combinations [15]. Kolesnik et al. proposed that ‘carbon multi-layer tubular crystals’, also called multi-walled carbon nanotubes, could be obtained by simply rolling graphene layers into a cylinder. The circular rolling arrangement produces two different structures. These two structures include armchair and chiral nanostructures. On the other hand, the first samples of nanotubes in history were discovered in Damascus steel around 400 years ago. These samples are identified as the first carbon nanotube samples found in history [16].

Recently, with a rise in the popularity of renewable energy for transportation and electronics, studies about carbon nanotube usage for improving the durability, lifespan, and capacity of batteries have started to receive considerable attention [17-28]. Further, in the last decade, studies about the usage of CNT in one of the most effective usage areas, gas sensors, have soared [29-45]. The discovery of CNTs may be a revolutionary point for many application areas such as processor technology, biotechnology, gas/chemical sensors, aerospace technology, etc. [46-48]. Carbon nanotubes have attracted extreme attention due to their mechanical properties that are superior to traditional materials. However, within the foundation of CNTs, scientists have commenced producing nanosized materials with properties superior to CNTs. Later, novel nanotubes/nanowires have been produced based on a different atomic structure, compared to CNTs. Some of these novel nanostructures include boron nitride nanotube (BNNT) and silicon carbide nanotube (SiCNT). To illustrate, in the case of mechanical properties, CNT has Young’s modulus around 1 TPa, while BNNT has 1.8 TPa and 0.62 TPa for SiCNT. The Poisson’s ratio used for analysis in the current research is 0.37 for SiCNT and 0.25 for BNNT [49-51]. Moreover, CNTs can resist thermal environment up to 6000°C, while SiCNT can resist up to 1000°C in the air without any damage [52, 53]. BNNT and SiCNT have not been investigated as CNTs had been in the last decade. BNNT has very high potential to deliver drug into blood flow by binding drugs with BNNT [54]. Drugs can then be delivered into the cells for curing cancer cells by killing such cells without damaging healthy ones. Since BNNTs are bio-compatible and non-toxic, they can be used as nano-sized drug-delivery cargo vehicles of these anticancer drugs so that they can be delivered directly to cancer cells [55]. Recently, Ferreira et al. investigated the performance of BNNT in the biomedical application area to deliver protein drugs and kill cancer cells by magnetohyperthermia therapy in 2018 [56]. Based on the results obtained by Ferreira et al., BNNT nano-sized structures carried magnetite nanoparticles, and magnetic measurements illustrated that well coercivity and magnetization were observed following the incorporation of magnetite nanoparticles into the BNNT. In addition, the boron nitride structure was investigated in other forms than nanotube. Structures of nanoribbons and nanowires were investigated for use in gas sensors [57]. Although these nanostructures appear analogous, obtaining nanowires is much more laborious than obtaining nanotubes from a technical point of view. Nanotubes are both used in single- and multi-walled forms according to their application area and characteristics [58]. Furthermore, due to their limited resistance to thermal environment, nanosized technology demands novel nanostructures with superior thermal resistance. Carbon nanotubes and carbon nanowires are nanostructures based on graphene. The thermal resistance of graphene is up to 600°C in air. To address this issue, a new base nanostructure has been obtained and developed. In addition, by overcoming the thermal resistance, the limited usage area of graphene-based nanostructures has expanded. The novel nanostructure is based on Si atoms and named as silicene. Silicene has superior thermal resistance, which can stay stable until
1200°C [59]. Silicone is a layer of hexagonally arranged silicon atoms [60]. Despite superior thermal resistance, silicone has lower Young’s modulus, concluding that silicone is mechanically weaker than graphene. To illustrate, the length of Si-Si bond in silicone is 2.29 Å, while the length of the C-C bond is 1.42 Å in graphene and 1.46 Å for boron nitride sheet (base material of BNNT); therefore, silicone can perform higher chemical reactivity than graphene [61]. Longer bond length ends up with lower mechanical properties, making silicone weaker than boron nitride sheet and graphene. Later, silicone and graphene have been composed to obtain a nanostructured material with superior mechanical properties. The novel composition of silicone and carbon atoms formed ‘silicon carbide sheet’. NASA Glenn Research Center has cooperated with Rensselaer Polytechnic Institute to produce silicon carbide sheets from carbon and silicone atoms. This cooperation has led to the development of many methods for obtaining silicon carbide sheet, which is itself produced because of the same cooperation. Thermal resistance of silicon carbide sheet made the nanostructure capable to stay stable up to 1000°C with mechanical properties superior to silicone [59]. Silicon carbide nanowires and nanotubes are widely used in gas sensors [62]. These sensors have been used to detect CO and HCN gases in the environment. CO and HCN gases can be absorbed on SiCNWs at Si lattice sites. With the absorption, significant waves in binding energy to charge transfer can easily be observed. The wave in electrical conductivity of SiCNWs results from the chemisorption of gas molecules on the surface of nanowire metal oxides. The main structures of electro-transducers include Field Effect Transistors (FET), resistive gas micro-sensors, and resistive gas sensors [63].

2. Continuum models of nanostructures

Due to the astronomically high cost of micro- and nano-sized experiments, mathematical and continuum models of these structures have always been cost-effective choices for researchers and developers [64-66]. In the literature, many mathematical and continuum mechanical models have been used to model nano- and micro-sized structures. Nanowires have been mostly modeled for conducting analysis using classic and size-effective Euler-Bernoulli and Timoshenko beam theories [67-71]. In addition, shell and plate theories have been used widely to make analysis possible without using any high-tech laboratory or real nanotubes [72-74]. Furthermore, these theories have been used for modeling nano- and micro-composite structures without the need for any lab or real composite materials [75-79]. In addition, various theories have been developed that demonstrate the importance of small-scale effects such as strain gradient theory [80-81], couple stress elasticity theory [81-84], modified couple stress theory [85-88], nonlocal elasticity theory [89,90], and surface elasticity theory [91-95].

In the last decade, many scientists have published a number of research pieces on the subject of the stability and analysis of micro-nanowires and micro-nanotubes. Ansari et al. [90] investigated the buckling behavior of single-walled silicon carbide nanotubes using ANSYS commercial FE code in 2012. After that, in 2013, Arani and Hashemian [97] investigated the surface stress effects on the dynamic stability of double-walled boron nitride nanotubes that convey viscous fluid based on nonlocal shell theory. Later, in 2014, Saljooghi et al. investigated the vibration and buckling behavior of functionally graded beams [98]. They used the reproducing kernel particle method with very good accuracy. In 2015, Darvizeh et al. demonstrated the pre- and post-buckling analyses of beams with Functionally Graded Material (FGM), a mixture of ceramic and metal, subjected to statically mechanical and thermal loads [99]. Nonlinear free vibration of symmetric circular fiber-metal-laminated hybrid plates was published by Shooshtari and Dalir in 2015. In addition, Shooshtari and Dalir demonstrated the effects of several parameters on linear and nonlinear frequencies and the free vibration response on circular fiber-metal-laminated plates [100]. Afterwards, Ansari and Gholami considered the size effect by Eringen’s nonlocal elasticity theory on the nonlinear first-order shear deformable beam model to carry out post-buckling analysis of magneto-electro-thermo-elastic nanobeams [101]. Rouzegar and Sharifpoor investigated the finite element formulations to carry out the free vibration analysis of isotropic and orthotropic plates using two-variable refined plate theory that predicts parabolic variations of transverse shear stresses along the thickness of the plate, satisfies the zero traction condition on the plate surfaces, and does not require the shear correction factor [102]. They demonstrated the effects of orthotropy ratio, side-to-thickness ratio, and types of boundary conditions on the natural frequencies of plates. Later, in 2017, Rafaeinejad et al. presented an analytical solution for bending, buckling, and free vibration of FG nanobeams [103]. Nanobeams were modeled resting on a double-parameter Winkler-Pasternak elastic foundation, and results were obtained using different nonlocal higher-order shear deformation beam theories. Rafaeinejad et al. showed clearly the effects of foundation, gradient index, aspect ratio, and nonlocal parameter on stability and vibration analysis. More recently, Jabbarian and Ahmadian conducted the free vibration analysis of a functionally graded stiffened micro-cylinder [104]. They took the size effect into consideration using the Modified Couple Stress Theory (MCST). Results demonstrated that the stiffeners yielded an increase
in natural frequencies due to an increase in stiffness of the micro-cylinder. Further, in 2018, Sahoo et al. investigated the natural frequency and transient responses of carbon/epoxy layered composite plate structures by two higher-order mid-plane kinematic models [105].

In this paper, nanotubes and nanowires were modeled using classical Euler-Bernoulli beam theory (CT), Nonlocal Elasticity Theory (NET), Surface Elasticity Theory (SET), Modified Couple Stress Theory (MCST), Modified Strain Gradient Theory (MSGT), finite element model and COMSOL Multiphysics analysis software [106], and ANSYS software [107] to investigate critical and other buckling loads of simply supported boron nitride and silicon carbide nanotubes and nanowires. Comparative results are given in figures and tables.

The atomic structure of boron nitride and silicon carbide sheets is demonstrated in Figure 1. The top structure is the boron nitride sheet structure composed of hexagonally arranged boron (B) atoms and nitrogen (N) atoms. The bottom structure consists of silicon (Si) and carbon (C) atoms. In addition, the bond lengths of structures are demonstrated on the right side. Si-C bond length in silicene is 2.29 Å, while the Si-N bond length is 1.42 Å in graphene; in this way, silicene can perform higher chemical reactivity than graphene, making silicene a weaker material than graphene.

As can be clearly seen from Figure 2, to obtain nanotubes, it is simply required to roll the nanosheet structured material. Nanostructures can be categorized into three main groups up to the angle they are rolled up. These three main groups are armchair, zigzag, and chiral [108].

To model nanotubes, classical Euler-Bernoulli beam theory is used with size-effective theories also by the hollow cylindrical beam model. Figure 3 shows transition from real BNNNT (top) and SiCNT (middle) to its continuum mechanic model (bottom). Geometric parameters are also represented in Figure 3. A comparative image of BNNW and SiCNW is demonstrated in Figure 4. Furthermore, to model nanowires, the cylindrical beam model is used. Similarly, to demonstrate transition from nanowire to cylindrical beam model, Figure 5 depicts the geometric parameters. As observed, L and D represent the length and the diameter of nanowire, respectively.

In the current paper, nanostructures are analyzed for both with and without the elastic foundation.
The total deformation (strain) energy, U, based on MSGT can be written as follows [81]:

\begin{align}
U &= \frac{1}{2} \int_0^L \left(\sigma_{ij} \varepsilon_{ij} + \nu \partial_i + \tau_{ij}^{(1)} \eta_{ij}^{(1)} + m_i^s \chi_i^s \right) dA dx, \\
\varepsilon_{ij} &= \frac{1}{2} \left(\varepsilon_{i,j} + \varepsilon_{j,i} \right), \\
\gamma_i &= \varepsilon_{mm,i}, \\
\eta_{ij}^{(1)} &= \frac{1}{3} \left(\varepsilon_{k,i} + \varepsilon_{k,j} + \varepsilon_{ij,k} \right), \\
\chi_i^s &= \frac{1}{2} \left(\theta_{i,j} + \theta_{j,i} \right), \\
\theta_i &= \frac{1}{2} \varepsilon_{ij} u_{k,j},
\end{align}

where the rotation vector is denoted by θ, the strain tensor ε, the dilatation gradient vector γ, the deviatoric stretch gradient tensor $\eta^{(1)}$, and the symmetric rotation gradient tensor χ^s. Furthermore, δ is Kronecker delta symbol, and ε_{ij} is the permutation symbol. On the other hand, the components of the classical stress tensor σ (combined with the strain tensor) and the higher-order stress tensors p, $\tau^{(1)}$, and m^s (combined with the higher-order deformation gradient tensors) can be expressed as follows:

\begin{align}
\sigma_{ij} &= \lambda \varepsilon_{mm} \delta_{ij} + 2G \varepsilon_{ij}, \\
p_i &= 2G \varepsilon_{ij}^2 \gamma_i, \\
\tau_{ij}^{(1)} &= 2G \varepsilon_{ij} \eta_{ij}^{(1)} \eta_{ij}^{(1)}, \\
m_i^s &= 2G \varepsilon_{ij}^2 \chi_i^s,
\end{align}

where l_0, l_1, l_2 are length-scale parameters corresponding to dilatation gradient, deviatoric stretch gradients, and rotation gradients, respectively. Furthermore, λ and G represent Lamé constants. These Lamé constants can be expressed as follows:

\begin{align}
\lambda &= \frac{E \nu}{(1 + \nu)(1 - 2\nu)}, \\
G &= \frac{E}{2(1 + \nu)}.
\end{align}

According to Euler-Bernoulli beam theory, displacement components can be expressed as follows:
where u_1, u_2, and u_3 are the displacements in the x, y, and z directions, respectively. The transverse displacement is expressed by $w(x)$. By substituting Eq. (12) into Eq. (2), the non-zero strain component can be found as follows:

$$
\varepsilon_{11} = -\frac{d^2w}{dx^2},
$$

(13)

By using Eqs. (12) and (13) and substituting them into Eqs. (3)-(5), the non-zero higher-order gradients can be obtained as follows:

$$
\gamma_1 = -\frac{z d^3w}{dx^3},
$$

$$
\gamma_2 = -\frac{d^2w}{dx^2},
$$

$$
\eta_{111}^{(1)} = -\frac{2}{5} \frac{d^3w}{dx^3}, \quad \eta_{113}^{(1)} = \eta_{131}^{(1)} = \eta_{311}^{(1)} = -\frac{4}{15} \frac{d^2w}{dx^2},
$$

(14)

$$
\eta_{122} = \eta_{212} = \eta_{221} = \eta_{311} = \eta_{331} = \frac{1}{5} \frac{d^2w}{dx^2},
$$

(15)

$$
\chi_{12} = \chi_{21} = -\frac{1}{2} \frac{d^2w}{dx^2},
$$

(16)

To obtain the non-zero components of classical stress tensor, Eq. (13) needs to be substituted into Eq. (7):

$$
\sigma_{11} = -E \eta_{111} \frac{d^2w}{dx^2},
$$

$$
\sigma_{12} = \sigma_{33} = -\frac{E v}{(1+v)(1-2v)} \frac{d^2w}{dx^2},
$$

(17)

where:

$$
\eta = \frac{(1-v)}{(1+v)(1-2v)}.
$$

(18)

By using the above equations and substituting them into Eqs. (8)-(10), the non-zero components of higher-order stress tensors can be found as follows:

$$
p_1 = -2G_0^2 \frac{d^3w}{dx^3}, \quad p_3 = -2G_0^2 \frac{d^2w}{dx^2},
$$

(19)

$$
\tau_{111}^{(1)} = -\frac{4}{5} G_0^2 \frac{d^2w}{dx^2},
$$

$$
\tau_{113}^{(1)} = \tau_{131}^{(1)} = \tau_{311}^{(1)} = -\frac{8}{15} G_0^2 \frac{d^2w}{dx^2},
$$

(20)

$$
\tau_{122} = \tau_{212} = \tau_{221} = \tau_{131} = \tau_{311} = \tau_{331} = \frac{2}{5} G_0^2 \frac{d^2w}{dx^2},
$$

$$
\tau_{223} = \tau_{323} = \tau_{233} = \frac{2}{5} G_0^2 \frac{d^2w}{dx^2},
$$

(21)

$$
m_{12} = m_{21} = -2G_0^2 \frac{d^2w}{dx^2},
$$

(22)

Governing equations can be obtained by using the minimum total potential energy principle. According to the minimum total potential energy principle,

$$
\delta \int_A \frac{d^2w}{dx^2} dx = 0,
$$

(23)
The first variation of the work done by external forces can be expressed as follows:

\[\delta W = \int_0^L \left(k_w \delta w + (P - k_p) \frac{dw}{dx} \right) \delta w \, dx \]

\[\quad + \left[\left(V + (P - k_p) \frac{dw}{dx} \right) \delta w - M \delta \left(\frac{dw}{dx} \right) \right] \bigg|_0^L , \]

(24)

where the axial compressive force is denoted by \(P \). Likewise, the shear force and classical and non-classical bending moments are represented with \(V \), \(M \), and \(M^{nc} \), respectively. Winkler modulus and Pasternak modulus of the double-parameter elastic foundation are considered as \(k_w \) and \(k_p \), respectively. By substituting Eqs. (24) and (26) into Eq. (23) (by setting \(\delta w = 0 \)), the equilibrium equations for a Euler-Bernoulli beam can be obtained as follows:

\[\delta w : \left(EI + GA \left(\frac{l_0^2}{10} + \frac{8}{15} \frac{l_0^2 + l_1^2}{10} \right) \right) \frac{d^4 w}{dx^4} \]

\[- 2GI \left(\frac{\gamma^2}{10} + \frac{\gamma}{5} \frac{\gamma^2}{10} \right) \frac{d^3 w}{dx^3} \]

\[+ V + (P - k_p) \frac{dw}{dx} = 0, \quad (25) \]

To solve Eq. (25), boundary conditions need to be implemented. Simply supported boundary conditions placed at \(x = 0 \) and \(x = L \) can be expressed as follows:

\[\left(EI + GA \left(\frac{l_0^2}{10} + \frac{8}{15} \frac{l_0^2 + l_1^2}{10} \right) \right) \frac{d^3 w}{dx^3} \]

\[- 2GI \left(\frac{\gamma^2}{10} + \frac{\gamma}{5} \frac{\gamma^2}{10} \right) \frac{d^2 w}{dx^2} \]

\[+ V + (P - k_p) \frac{dw}{dx} = 0, \quad (26) \]

or \(\delta w = 0, \)

\[-(EI + GA \left(\frac{l_0^2}{10} + \frac{8}{15} \frac{l_0^2 + l_1^2}{10} \right) \frac{d^2 w}{dx^2} \]

\[+ 2GI \left(\frac{\gamma^2}{10} + \frac{\gamma}{5} \frac{\gamma^2}{10} \right) \frac{dw}{dx} = M \]

or \(\delta \left(\frac{dw}{dx} \right) = 0, \quad (27) \]

\[- 2GI \left(\frac{\gamma^2}{10} + \frac{\gamma}{5} \frac{\gamma^2}{10} \right) \frac{d^2 w}{dx^2} = M^{nc} \]

or \(\delta \left(\frac{d^2 w}{dx^2} \right) = 0. \quad (28) \]

By applying Eqs. (26)-(28), the boundary conditions (classical and possible non-classical) can be considered as follows:

\[w = 0, \quad M = 0, \quad w'' = 0, \quad (29) \]

where:

\[w'' = \frac{d^2 w}{dx^2}. \quad (30) \]

In the case of simply supported boundary conditions:

\[B.w^{(4)} - D.w^{(6)} + Nw'' = 0. \quad (31) \]

The solution of Eq. (31) can be expressed as follows:

\[w(x) = C_1 + C_2 x + C_3 \sin Kx + C_4 \cos Kx \]

\[+ C_5 \sinh Mx + C_6 \cosh Mx, \quad (32) \]

where:

\[K = \left(\frac{-B + \sqrt{B^2 + 4DN}}{2D} \right)^{1/2}, \]

\[M = \left(\frac{B + \sqrt{B^2 + 4DN}}{2D} \right)^{1/2}, \quad (33) \]

\(C_i \) \((i = 1, 2, \ldots, 6) \) are integral constants. These constants can be calculated by using boundary conditions. Substituting the boundary conditions of simply supported beams present in Eq. (29) and (30) into Eq. (32), we obtain the following:

\[C_i = 0 \] excluding \(C_2 \) sin \(KL = 0. \quad (34) \]

The non-trivial solution to Eq. (34) can be considered as follows:

\[\sin KL = 0, \quad (35a) \]

\[K = \frac{n\pi}{L} \quad (n = 1, 2, \ldots), \quad N_{cr} = \frac{\pi^2}{L^2} \left(B + \frac{\pi^2 D}{L^2} \right). \quad (35b) \]

To solve Eq. (36), Navier’s solution procedure can be applied as follows:

\[w(x) = \sum_{n=1}^{\infty} W_n \sin \left(\frac{n\pi x}{L} \right). \quad (36) \]

By using Navier’s solution, the critical buckling loads for the simply supported nanowire on the double-parameter elastic foundation can be expressed as follows:

For MSGT:
\[P_{(n)} = \frac{a^2 \pi^2 n^2}{L^2} \left[EI + GA \left(\frac{2a^2}{15} + \frac{8}{15} \frac{a^2}{3} + \frac{10}{9} \right) \right] + \frac{a^2 \pi^2 n^2}{L^2} \left(2GI \left(\frac{2a^2}{15} + \frac{8}{15} \frac{a^2}{3} + \frac{10}{9} \right) \right) + k_w \frac{L^2}{n^2 \pi^2} + k_p. \]

(37a)

For MCST:

\[P_{(n)} = \frac{a^2 \pi^2 n^2}{L^2} \left[EI + GA(a) \right] + k_w \frac{L^2}{n^2 \pi^2} + k_p. \]

(37b)

3.2. Nonlocal Elasticity Theory (NET)

According to Eringen [89], the constitutive equation of Nonlocal Elasticity Theory (NET) can be expressed as follows:

\[[1 - (\varepsilon a)^2 \nabla^2] \sigma_{ij} = C_{ijkl} \left(\epsilon_{kl} \right), \]

(38)

where \(\sigma_{ij} \) is the nonlocal tensile tensor, \(C_{ijkl} \left(\epsilon_{kl} \right) \) is the local or classical tensile tensor at any \(x' \) point, \(a \) is a constant related to the characteristics of each material, and \(\varepsilon a \) is the nonlocal parameter chosen within a range for each material.

The displacement of a thin beam (Euler-Bernoulli) can be expressed as follows:

\[u_1(x, z) = -z \frac{\partial w(x)}{\partial x}, \]

\[u_2(x, z) = 0, \]

\[u_3(x, z) = w(x), \]

(39)

where \(u_1, u_2, u_3 \) are the \(x, y, z \) components of the displacement vector, and \(w \) represents the transverse displacement of the beam. According to thin beam theory, the relation between stress and displacement can be expressed as follows:

\[\varepsilon_{11} = \frac{du_1}{dx} = -z \frac{\partial^2 w}{\partial x^2}, \]

\[\varepsilon_{22} = \varepsilon_{33} = \varepsilon_{12} = \varepsilon_{13} = \varepsilon_{23} = 0, \]

(40)

where \(\varepsilon_{11} \) is the axial stress. In addition, the stress-strain equation according to thin beam theory can be expressed as follows:

\[\sigma_{11} = -E \varepsilon_{11} = -E z \frac{\partial^2 w}{\partial x^2}, \]

\[\sigma_{22} = \sigma_{33} = \tau_{12} = \tau_{13} = \tau_{23} = 0. \]

(41)

According to Eq. (38), the nonlocal stress-strain equation can be expressed as follows:

\[\sigma_{11} - \mu \frac{\partial^2 \sigma_{11}}{\partial x^2} = E \varepsilon_{11}, \quad \mu = (\varepsilon a)^2, \quad \sigma_{22} = 0 \]

\[\sigma_{33} = 0, \quad \tau_{12} = \tau_{21} = 0, \quad \tau_{13} = \tau_{31} = 0, \quad \tau_{23} = \tau_{32} = 0. \]

(42)

To obtain governing equations, the minimum total energy principle is used. According to the minimum total energy principle:

\[\delta \Pi = \delta U - \delta W = 0, \]

(43)

where \(\Pi \) denotes the total potential energy, and \(\delta U \) and \(\delta W \) are the first variation of stress and total energy from external loads, respectively. According to thin beam theory, \(\delta U \) and \(\delta W \) can be expressed as follows:

\[\delta U = \int_0^L \int_A (\sigma_{11} \delta \varepsilon_{11}) \, dA \, dx \]

\[= \int_0^L \int_A \left(\sigma_{11} - z \frac{d^2 \delta w}{dx^2} \right) \, dA \, dx, \]

(44)

\[\delta W = \int_0^L \left(P \frac{d^2 w}{dx^2} + q \delta w(x) \right) \, dx. \]

(45)

Substituting Eqs. (44) and (45) into Eq. (43), we obtain:

\[\int_0^L \left(-M \frac{d^2 \delta w}{dx^2} \right) \, dx - \int_0^L \left(P \frac{d^2 w}{dx^2} + q \delta w(x) \right) \, dx = 0, \]

(46)

where \(P \) is the axial load.

By partially integrating Eq. (46), the buckling equation and boundary conditions can be obtained as follows:

\[\delta w : \frac{dw}{dx} \left(P \frac{dw}{dx} \right) - q = \frac{d^2 M}{dx^2}, \]

(47)

\[\frac{dM}{dx} - P \frac{dw}{dx} = 0, \quad M = 0. \]

(48)

The nonlocal moment can be written by using Eq. (42) as follows:

\[M - \mu \frac{d^2 M}{dx^2} = -EI \frac{d^2 w}{dx^2}. \]

(49)

By substituting Eq. (47) in Eq. (49), the nonlocal moment can be obtained as follows:

\[M = \mu \left(\frac{d}{dx} \left(P \frac{dw}{dx} \right) - q \right) - EI \frac{d^2 w}{dx^2}. \]

(50)

Using the fourth-order derivative of nonlocal moment into Eq. (47), we obtain:

\[\delta w : \frac{d^2}{dx^2} \left(-EI \frac{d^2 w}{dx^2} \right) + \mu \frac{d^2}{dx^2} \left(\frac{d}{dx} \left(P \frac{dw}{dx} \right) - q \right) \]

\[+ q - \frac{d}{dx} \left(P \frac{dw}{dx} \right) = 0. \]

(51)

The nonlocal boundary conditions are as follows:
\[
\frac{d}{dx} \left(\mu \left(\frac{d}{dx} \left(P \frac{dw}{dx} \right) - q \right) - EI \frac{d^2w}{dx^2} \right) - P \frac{dw}{dx} = 0
\] (52)

\[
\mu \left(\frac{d}{dx} \left(P \frac{dw}{dx} \right) - q \right) - EI \frac{d^2w}{dx^2} = 0.
\] (53)

The relation between load and elastic foundations can be established as follows:
\[
p(x) = k_{w}w - k_{p} \frac{d^2w}{dx^2}.
\] (54)

In the case of simply supported nanobeams, the fundamental boundary conditions can be expressed as follows:
\[
\varepsilon \left[w \right]_{x=0}^{L} = 0, \quad \varepsilon \left[\frac{dw}{dx} \right]_{x=0}^{L} = 0.
\] (55)

Natural boundary conditions are also expressed as follows:
\[
\left[(-EI + P\mu - k_p\mu) \frac{d^2w}{dx^2} + \mu k_{w}w \right]_{x=0}^{L}, \quad \text{and}
\]
\[
\left[(-EI + P\mu - k_p\mu) \frac{d^2w}{dx^2} + (k_{w}\mu - P) \frac{dw}{dx} \right]_{x=0}^{L}.
\] (56)

The nonlocal buckling equation is given in Eq. (54). To simplify the equation, the expressions expressed below can be used:
\[
A = -EI + P\mu - k_p\mu,
\]
\[
B = k_{w}\mu - P + k_p,
\]
\[
C = k_{w}.
\] (57)

A simplified version of Eq. (54) is obtained after implementing Eq. (57):
\[
Aw'' + Bw' - Cw = 0.
\] (58)

To solve Eq. (58), it can be assumed that \(w = e^{rx} \). Then, Eq. (58) can be expressed as follows:
\[
Ar^2 e^{rx} + Br e^{rx} - C e^{rx} = 0.
\] (59)

Roots of Eq. (59) are as follows:
\[
r_{1,2} = \pm \sqrt{\frac{B - \sqrt{B^2 + 4AC}}{2A}},
\]
\[
r_{3,4} = \pm \left[\sqrt{\frac{B^2 + 4AC}{2A}} - \frac{B}{2A} \right].
\] (60)

\[
\psi = \sqrt{\frac{B - \sqrt{B^2 + 4AC}}{2A}},
\]
\[
\zeta = \sqrt{\frac{B^2 + 4AC}{2A}} - \frac{B}{2A}.
\] (61)

By substituting roots into Eq. (58) and solving it, we obtain:
\[
w = C_1 \sin \psi x + C_2 \cos \psi x + C_3 \cosh \zeta x + C_4 \sinh \zeta x.
\] (62)

As stated before, \(C_1, C_2, C_3, \) and \(C_4 \) are the constants that can be found by using boundary conditions.

The first derivative of Eq. (62) can be stated as follows:
\[
w' = \psi C_1 \cos \psi x - \psi C_2 \sin \psi x + \zeta C_3 \sinh \zeta x + \zeta C_4 \cosh \zeta x.
\] (63)

The second derivative of Eq. (62) can be expressed by Eq. (64) as shown in Box I. Similarly, the third derivative of Eq. (62) can be expressed as follows:
\[
V = - \left((k_{w}e \alpha^2 + P)(\psi^2 C_2 \cos \psi x - \psi^2 C_3 \cosh \zeta x + \psi^2 C_1 \sin \psi x - \psi^2 C_4 \sinh \zeta x) - \psi C_1 \cos \psi x + \psi C_4 \cosh \zeta x + \zeta C_3 \sinh \zeta x \right) / (EI - P e \alpha^2 + e \alpha^2 k_p).
\] (65)

Boundary conditions of a simply supported beam can be expressed as follows:
\[
w(0) = M(0) = w(l) = M(l) = 0.
\] (66)

By substituting Eq. (66) into Eqs. (64) and (65), the following equations can be obtained:
\[
w(0) = C_2 + C_3 = 0.
\] (67)

\[
M(0) = - \psi^2 - \frac{e \alpha^2 k_w}{EI - P e \alpha^2 + e \alpha^2 k_p} C_2 + \zeta^2
\]
\[
- \frac{e \alpha^2 k_w}{EI - P e \alpha^2 + e \alpha^2 k_p} C_3 = 0.
\] (68)
\[M = -\psi^2 C_1 \sin \psi l - \psi^2 C_2 \cos \psi l + \zeta^2 C_3 \cosh \zeta l + \zeta^2 C_4 \sinh \zeta l \]
\[- e_o \alpha^2 k_w (C_2 \cos \psi l + C_3 \cosh \zeta l + C_4 \sin \psi l + C_4 \sinh \zeta l) \]
\[\frac{EI - Pe_o a^2 + e_o a^2 k_p}{} \]

\[(64) \]

Box I

\[w(l) = C_1 \sin \psi l + C_2 \cos \psi l + C_3 \cosh \zeta l \]
\[+ C_4 \sinh \zeta l = 0, \]

\[(69) \]

\[M(l) = -C_1 \left(\psi^2 \sin \psi l + \frac{e_o \alpha^2 k_w \sin \psi l}{EI - Pe_o a^2 + e_o a^2 k_p} \right) \]
\[- C_2 \left(\psi^2 \cos \psi l + \frac{e_o \alpha^2 k_w \cos \psi l}{EI - Pe_o a^2 + e_o a^2 k_p} \right) \]
\[+ C_3 \left(\zeta^2 \cosh \zeta l + \frac{e_o \alpha^2 k_w \cosh \zeta l}{EI - Pe_o a^2 + e_o a^2 k_p} \right) \]
\[+ C_4 \left(\zeta^2 \sinh \zeta l + \frac{e_o \alpha^2 k_w \sinh \zeta l}{EI - Pe_o a^2 + e_o a^2 k_p} \right) \]
\[= 0. \]

\[(70) \]

As stated before, \(C_1, C_2, C_3, \) and \(C_4 \) are these constants that can be determined through Eqs. (67)-(70). To solve these four equations with four unknown constants, Eqs. (67)-(70) can be written in the matrix form as follows:

\[
\begin{bmatrix}
0 & 1 & 0 & 0 \\
0 & -\psi^2 + \frac{e_o \alpha^2 C}{A} & \zeta^2 + \frac{e_o \alpha^2 C}{A} & 0 \\
\sin \psi l & \cos \psi l & \cosh \zeta l & \sinh \zeta l \\
\lambda_1 & \lambda_2 & \lambda_3 & \lambda_4
\end{bmatrix}
\begin{bmatrix}
C_1 \\
C_2 \\
C_3 \\
C_4
\end{bmatrix} = 0
\]

Taking the determinant of the matrix given in Eq. (71), we obtain:

\[\sin \psi l \sinh \zeta l (\psi^2 + \zeta^2)^2 = 0. \]

\[(72) \]

There are three possibilities to equalize Eq. (72). These three possibilities can be explored as follows:

\[(\psi^2 + \zeta^2)^2 = 0, \]

\[\sin \psi l = 0, \]

\[\sinh \zeta l = 0. \]

The non-trivial solution can be found as follows:

\[\sin \psi l = 0, \quad \psi = n \pi, \quad n = 0, 1, 2, \ldots \]

\[(76) \]

\[\psi^2 + \zeta^2 = n^2 \pi^2. \]

\[(77) \]

\[\frac{B - \sqrt{B^2 + 4AC}}{2A} \]

By substituting the values of \(A, B, \) and \(C \) given in Eqs. (57) to (78), the final form of nonlocal buckling equation can be obtained:

\[P(n) = \frac{(\overline{EI} + k_w \mu)(\frac{\mu}{T})^2 + (k_w \mu + k_p)(\frac{\mu}{T})^2 + k_w}{\mu(\frac{\mu}{T})^2 + (\frac{\mu}{T})^2} \]

\[(79) \]

3.3. Surface Elasticity Theory (SET)

Gurtin and Murdoch have proposed the surface constitutive as follows [109,110]:

\[\tau_{11} = \tau_0 + (2\mu_0 + \lambda_0) u_{11}, \]

\[(80) \]

where Lamé constants are denoted by \(\mu_0 \) and \(\lambda_0 \) and residual surface stress by \(\tau_0 \). The displacement of a Timoshenko beam can be expressed as follows:

\[u_1 = z \phi(x, t), \]

\[u_2 = w(x, t), \]

\[(81) \]

where \(u_1 \) and \(u_2 \) are the components of the displacement vector, respectively, and \(w \) represents the transverse displacement of the beam. The relation
between strain and displacement can be expressed as follows:

\[
\varepsilon_1 = \frac{du}{dx} = - \frac{d^2 w}{dx^2},
\]

\[
\varepsilon_{22} = 0,
\]

\[
\varepsilon_{12} = \frac{1}{2} \left(\frac{du}{dx} + \frac{dz}{dx} \right) = \frac{1}{2} \left(\frac{dw(x,t)}{dx} + \frac{\phi(x,t)}{r(x,t)} \right).
\] \tag{82}

To obtain surface stress field, Eq. (81) needs to be substituted into Eq. (80):

\[
\tau_{11} = \tau_0 - z(2\mu_0 + \lambda_0)\frac{d^2 w(x)}{dx^2},
\]

\[
\tau_{n1} = \frac{dw(x)}{dx} n_2.
\] \tag{83}

By using Eq. (83), the vertical stresses of both top and bottom surfaces of the layer can be obtained in the case of \(n_2 = 1 \):

Top layer:

\[
\tau_{21} = \tau_0 \frac{dw(x)}{dx},
\]

Bottom layer:

\[
\tau_{21} = - \tau_0 \frac{dw(x)}{dx}. \tag{84}
\]

By using Eqs. (84) and (81), the vertical stress can be obtained as follows:

\[
\sigma_{22} = \frac{2}{H} \tau_0 \frac{d^2 w(x)}{dx^2} - \rho_0 \frac{d^2 w}{dx^2}. \tag{85}
\]

The non-zero bulk stresses can be expressed by using Eq. (85) as follows:

\[
\sigma_{11} = E \left(\frac{d\phi}{dr} \right) + \frac{2\nu}{H} \tau_0 \frac{d^2 w}{dx^2} - \rho_0 \frac{d^2 w}{dx^2}, \tag{86}
\]

\[
\sigma_{12} = GK \left(\frac{dw(x)}{dx} + \phi \right), \tag{87}
\]

\[
\sigma_{22} = \frac{2}{H} \left(\tau_0 \frac{d^2 w(x)}{dx^2} - \rho_0 \frac{d^2 w}{dx^2} \right). \tag{88}
\]

In Eq. (87), \(K \) represents the shear correction coefficient, which is neglected for Euler-Bernoulli beams. The stress field of the beam can be found by Eqs. (86)-(88) and (83). Consequently, the governing equation including surface effect for a Timoshenko beam can be expressed as follows:

\[
GKA \left(\frac{d^2 w(x)}{dx^2} + \frac{d\phi}{dx} \right) + \tau_0 s^2 \frac{d^2 w}{dx^2} - q(x)
\]

\[
= (\rho A + \rho_0 s^2) \frac{d^2 w}{dx^2}, \tag{89}
\]

\[
(4I + (2\mu_0 + \lambda_0)I^*) \frac{d^2\phi}{dx^2} + \frac{2\nu I_0}{K} \frac{d^2 w}{dx^2} - \frac{2\nu I_0}{K} \frac{d^2 w}{dx^2} \tag{90}
\]

where \(I^* \) represents the perimeter moment of inertia, and \(s^2 \) is calculated by the following equation:

\[
s^2 = \int s^2 ds. \tag{91}
\]

To calculate these values for ZnO nanowire with circular cross-section, the following are used:

\[
H = 2\tau_0 D, \tag{92}
\]

\[
s^2 = \frac{\pi D^2}{2}. \tag{93}
\]

\[
I^* = \frac{\pi D^3}{8}. \tag{94}
\]

To obtain the governing equation for a Euler-Bernoulli beam, the rotational inertia needs to be ignored in Eq. (90) as follows:

\[
GKA \left(\frac{d^2 w(x)}{dx^2} + \phi \right) = (EI + (2\mu_0 + \lambda_0)I^*) \frac{d^2\phi}{dx^2}.
\]

\[
+ \frac{2\nu I_0}{H} \frac{d^2 w}{dx^2} = \frac{2\nu I_0}{H} \frac{d^2 w}{dx^2}, \tag{95}
\]

By taking the first derivative of Eq. (95) and using Eq. (89), we obtain:

\[
\frac{\left(EI + (2\mu_0 + \lambda_0)I^* \right) d^2 w}{dx^2} - \frac{\tau_0 s^2 d^2 w}{dx^2}
\]

\[
+ q(x) = 0. \tag{96}
\]

By simplifying Eq. (96), we obtain:

\[
\frac{\left(EI + (2\mu_0 + \lambda_0)I^* \right) d^2 w}{dx^2} + P - \tau_0 s^2 \frac{d^2 w}{dx^2}
\]

\[
+ q(x) = 0. \tag{97}
\]

where:
\[q(x) = H \frac{d^2 w}{dx^2} - k_w w + k_p \frac{d^2 w}{dx^2}. \tag{98} \]

The general solution of Eq. (97) can be obtained through the following equation:

\[w(x) = C_1 \cos \beta x + C_2 \sin \beta x + C_3 x + C_4 + w_q(x), \tag{99} \]

where:

\[\beta = \sqrt{\frac{P - \tau_0 s}{EI + (2\mu_0 + \lambda_0)I^2 - \frac{2h^2}{h}}}. \tag{100} \]

In addition, \(C_1, C_2, C_3, \) and \(C_4 \) need to be calculated by using boundary conditions. By substituting the boundary conditions given in Eq. (66), we obtain:

\[\begin{align*}
 C_1 + C_4 &= 0, \\
 -\beta^2 C_1 &= 0, \\
 C_1 \cos \beta L + C_2 \sin \beta L + C_3 L + C_4 &= 0, \\
 -C_1 \beta \cos \beta L - C_2 \beta \sin \beta L &= 0. \tag{101}
\end{align*} \]

By solving the above equations, the buckling formulation of Euler-Bernoulli beam including surface effect on the double-parameter elastic foundation can be obtained as follows:

\[P(n) = \frac{ET (\frac{u_x}{L})^4 + (H + k_p)(\frac{u_x}{L})^2 k_w}{(\frac{u_x}{L})^2}. \tag{102} \]

where \(ET \) is the flexural rigidity and can be calculated as follows:

\[ET = EI + EI^*. \tag{103} \]

3.4. Finite element model

The stiffness matrix obtained by bending effect can be expressed as follows:

\[K = \int_{t_1}^{t_2} \int_0^L E I^* \phi'' \phi'''' dx dt, \]

\[K_{wy} = \int_{t_1}^{t_2} \int_0^L k_w \phi'' dt dx dt, \]

\[K_{wxy} = \int_{t_1}^{t_2} \int_0^L (\epsilon_0 a)^2 k_w \phi'' \phi' dx dt, \]

\[K_{py} = \int_{t_1}^{t_2} \int_0^L k_p \phi'' \phi' dx dt, \]

\[K_{py} = \int_{t_1}^{t_2} \int_0^L (\epsilon_0 a)^2 \frac{\partial \phi'}{\partial t} \phi'' dx dt, \tag{104} \]

\[K_{py} = \int_{t_1}^{t_2} \int_0^L (\epsilon_0 a)^2 k_p \phi'' \phi' dx dt, \tag{105} \]

\[K_{w} = K_{wxy} + K_{wxy} = \int_{t_1}^{t_2} \int_0^L k_w \phi'' \phi'' dx dt, \tag{111} \]

Similarly, the effect of Winkler foundation can be expressed as follows [111]:

\[K_{w} = k_w \phi'' \phi'' dx dt, \]

\[K_{w} = K_{wxy} + K_{wxy} = \int_{t_1}^{t_2} \int_0^L k_w \phi'' \phi'' dx dt, \tag{111} \]
\[
\begin{align*}
&= \int_0^1 k_w L \begin{bmatrix}
\phi_1 \phi_1 & \phi_1 \phi_2 & \phi_1 \phi_3 & \phi_1 \phi_4 \\
\phi_2 \phi_1 & \phi_2 \phi_2 & \phi_2 \phi_3 & \phi_2 \phi_4 \\
\phi_3 \phi_1 & \phi_3 \phi_2 & \phi_3 \phi_3 & \phi_3 \phi_4 \\
\phi_4 \phi_1 & \phi_4 \phi_2 & \phi_4 \phi_3 & \phi_4 \phi_4
\end{bmatrix} \partial \xi \, + (e_0 a)^2 \frac{k_p}{L^3} \begin{bmatrix}
12 & 6L & -12 & 6L \\
6L & 4L^2 & -6L & 2L^2 \\
-12 & -6L & 12 & -6L \\
6L & 2L^2 & -6L & 4L^2
\end{bmatrix} (107)
\end{align*}
\]

The matrix caused by axial load:

\[
K_g = K_{yy} + K_{yy} = \int_0^1 \frac{1}{L^2} \partial \phi^T \partial \phi L \partial \xi
\]

\[
= \int_0^1 P \frac{\partial \phi^T \partial \phi}{L^3} \partial \xi
\]

The matrix form of the Pasternak foundation can be expressed as follows:

\[
K_k = K_{yy} + K_{yy} = \int_0^1 \frac{1}{L^2} k_p \partial \phi^T \partial \phi L \partial \xi
\]

\[
= \int_0^1 \frac{(e_0 a)^2 k_p}{L^2} \partial \phi^T \partial \phi L \partial \xi
\]

\[
= \int_0^1 \frac{k_p}{L} \begin{bmatrix}
\phi_1 \phi_1 & \phi_1 \phi_2 & \phi_1 \phi_3 & \phi_1 \phi_4 \\
\phi_2 \phi_1 & \phi_2 \phi_2 & \phi_2 \phi_3 & \phi_2 \phi_4 \\
\phi_3 \phi_1 & \phi_3 \phi_2 & \phi_3 \phi_3 & \phi_3 \phi_4 \\
\phi_4 \phi_1 & \phi_4 \phi_2 & \phi_4 \phi_3 & \phi_4 \phi_4
\end{bmatrix} \partial \xi
\]

\[
= \int_0^1 \frac{(e_0 a)^2 k_p}{L^2} \partial \phi^T \partial \phi L \partial \xi
\]

\[
K_g = \frac{P}{30L} \begin{bmatrix}
36 & 3L & -36 & 3L \\
3L & 4L^2 & -3L & -L^2 \\
-36 & -3L & 36 & -3L \\
3L & -L^2 & -3L & 4L^2
\end{bmatrix} (108)
\]

In Figure 7, the solving method in finite element is plotted. Basically, finite element analysis slices an object into numerous pieces and, then, connects the intersections.
To obtain the results, the following eigenvalue problem needs to be solved:

$$|K - \lambda K_g| = 0.$$ \hspace{1cm} (109)

The stiffness matrix is:

$$[K] = [K_g] + [K_w] + [K_h].$$ \hspace{1cm} (110)

If the axial load is any compression load, then:

$$K_g = [K_g].$$ \hspace{1cm} (111)

4. Numerical results and discussion

The stability analysis of silicon carbide and boron nitride nanotubes and nanowires resting on an elastic substrate was carried out in the present study. To model the nanostructures, Euler-Bernoulli beam theory was employed. Since the analysis was done on a nano-scale, different small-scale effective theories were used to take small-scale effect into consideration. Nonlocal elasticity theory, surface elasticity theory and its combination with the former theory, modified strain gradient theory, and modified couple stress theories were used and compared to investigate their influence on the buckling results. In addition, finite element analysis was applied to nanostructures both by the continuum model and computer software products. In figures, nonlocal elasticity theory is represented as NET, surface elasticity theory as SET, the combination of nonlocal elasticity theory and surface elasticity theory as NSET, modified strain gradient theory as MSGT, and modified couple stress theory as MCST. To obtain dimensionless analysis results, Winkler and Pasternak foundation parameters are used in the dimensionless form as $K_w = \frac{k_w L^4}{E'}$ and $K_h = \frac{k_h L^4}{E'}$, respectively.

In Figure 8, the mode shape of nanostructures is plotted by ANSYS computer software. Parameters of size-effective theories were selected as follows: $E' = 353$, $\mu = 4$, $l_0 = h_1 = l_2 = 0.5$ [46]. The effect of Winkler parameter was investigated for all size-effective theories, as shown in Figure 9. The dimensionless buckling loads were calculated with a change in the Winkler foundation parameter. For the calculation shown in Figure 9, the effect of Pasternak foundation was neglected by setting the value of the Pasternak foundation parameter to zero.

As observed clearly from Figure 9, the effect of Winkler foundation gets dramatically lower on higher modes. It can also be observed that the nonlocal elasticity theory lowers buckling load due to the fragile nanostructure, while modified couple stress theory, modified strain gradient theory, and surface elasticity theory produce higher results by strengthening the nanostructure. Between size-effective theories, modified strain gradient theory always yields the highest results, while the nonlocal elasticity theory yields the lowest results for all modes.

The dimensionless buckling loads were calculated with a change in Pasternak foundation parameter in Figure 10. The effect of Winkler foundation was neglected by setting the value of the Winkler foundation parameter to zero. Similar to previous results, the effect of the foundation gets lower, yet not as low as that of Winkler foundation.

In Table 1, critical buckling loads of nanostructures are calculated and compared. To validate the results, the comparison of the results with those of Naidu and Rao [112] is made, and they appear to be in good harmony. In Table 1, N represents the element number used for finite element analysis. Finite element method results are both given for various nonlocal elasticity parameters and classic analysis. Similar to Figures 9 and 10, the lowest results are obtained for the highest nonlocal parameter ($\epsilon_{np} = 10$ nm). Choosing a higher value of the size-effective parameter for MCST and MSGT ends with a higher buckling load value.

5. Concluding remarks

The effect of the double-parameter elastic foundation on buckling of silicon carbide and boron nitride nanotubes and nanowires was investigated in the current study. To model the nanostructures, Euler-Bernoulli beam model and computer software products were used. Since the beams were of nano-size to consider small scales, three different small-scale effect theories were used, whose results were compared with finite element results. Small-scale effective theories used include nonlocal elasticity theory, surface elasticity theory and their combination, modified strain gradient theory, and modified couple stress theory. The substrate was modeled by using the two-parameter (Winkler and Pasternak) elastic foundation model. Buckling loads
Figure 9. Buckling analysis results with a change in Winkler foundation for the first five modes: (a) BNNT and (b) SiCNT.
Figure 10. Buckling analysis results with a change in Pasternak foundation for the first five modes (a) BNNT and (b) SCNT.
Table 1. Dimensionless critical buckling load of nanostructures with various foundation and theory parameters.

<table>
<thead>
<tr>
<th>Elastic foundation parameters (K_w, K_s)</th>
<th>Geometrical properties $(l_2, 0.5 \pi^2)$</th>
<th>Geometrical properties $(0.5, 2 \pi^2)$</th>
<th>Geometrical properties $(1, 0)$</th>
<th>Geometrical properties $(10^2, \pi^2)$</th>
<th>Geometrical properties $(10^3, \pi^2)$</th>
<th>Geometrical properties $(10^4, 2.5 \pi^2)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>MCST</td>
<td>$(l_2 = 0.1 \text{ mm})$</td>
<td>$(0, 0)$</td>
<td>$(0, 0.5) \pi^2$</td>
<td>$(0.5, 2) \pi^2$</td>
<td>$(1, 0)$</td>
<td>$(10^2, \pi^2)$</td>
</tr>
<tr>
<td></td>
<td>9.87105</td>
<td>14.88058</td>
<td>34.5451</td>
<td>0.07297</td>
<td>29.8728</td>
<td>211.288</td>
</tr>
<tr>
<td></td>
<td>9.90629</td>
<td>14.84043</td>
<td>34.5766</td>
<td>0.08889</td>
<td>29.9073</td>
<td>211.539</td>
</tr>
<tr>
<td></td>
<td>10.0137</td>
<td>14.84849</td>
<td>34.6877</td>
<td>0.11500</td>
<td>29.9154</td>
<td>212.572</td>
</tr>
<tr>
<td></td>
<td>$E' = 20 \text{ N/m}$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>$E' = 35.3 \text{ N/m}$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>$E' = 50 \text{ N/m}$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NET</td>
<td>$(c_{sl} = 0.5 \text{ mm})$</td>
<td>$(0, 0)$</td>
<td>$(0.5, 2) \pi^2$</td>
<td>$(1, 0)$</td>
<td>$(10^2, \pi^2)$</td>
<td>$(10^3, \pi^2)$</td>
</tr>
<tr>
<td></td>
<td>9.85441</td>
<td>14.78621</td>
<td>34.5284</td>
<td>0.05457</td>
<td>29.8561</td>
<td>210.056</td>
</tr>
<tr>
<td></td>
<td>9.81410</td>
<td>14.74390</td>
<td>34.4831</td>
<td>0.09145</td>
<td>29.8157</td>
<td>208.065</td>
</tr>
<tr>
<td></td>
<td>$c_{sl} = 1 \text{ mm}$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>9.80300</td>
<td>14.74390</td>
<td>34.4831</td>
<td>0.09106</td>
<td>29.8110</td>
<td>206.715</td>
</tr>
<tr>
<td></td>
<td>$c_{sl} = 10 \text{ mm}$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>9.85446</td>
<td>14.78621</td>
<td>34.5284</td>
<td>0.05457</td>
<td>29.8561</td>
<td>210.056</td>
</tr>
<tr>
<td></td>
<td>9.80300</td>
<td>14.74390</td>
<td>34.4831</td>
<td>0.09106</td>
<td>29.8110</td>
<td>206.715</td>
</tr>
</tbody>
</table>

were calculated for the maximum fifth mode. To validate the calculations, comparative results with those in the literature are given in the table. Comparative results were in good harmony. To conclude, based on the small-scale theories used in the study, the highest buckling loads were obtained in the case of modified strain gradient theories used and the lowest in the case of nonlocal elasticity theory. Furthermore, the effect of foundation on buckling reduced with an increase in the number of modes.

Acknowledgements

This study has been supported by The Scientific and Technological Research Council of Turkey (TÜBİTAK) with Project No. 117M493. This support is gratefully acknowledged.

References

107. ANSYS® Academic Research Mechanical.

Biographies

Hayri Metin Numanoglu currently works on his MSc thesis on nanocasted mechanics in Akdeniz University Civil Engineering Department. His research interest lies in vibration analysis of nano- and micro-scaled continuous components by analytical and finite element methods.

Kadir Mercan graduated from Suleyman Demirel University Civil Engineering program in 2013 with first degree. He is currently working as a Research Assistant at Mehmet Akif Ersoy University, Architecture and Engineering Faculty, Civil Engineering Department, Mechanical Division. He is currently studying PhD degree under the advice of Prof. Ömer Civelek at Akdeniz University following obtaining a master degree.

Ömer Civelek is an Professor at the Faculty of Engineering, University of Akdeniz. He holds two PhD Degrees in Structural and Mechanical Engineering, one from Dokuz Eylul University in Structural Engineering and the other from the University of Frat in Applied Mechanics. He has authored 220 refereed journal papers (about 125 in SCI Journals) with 6000 citations, over 30 papers presented at various conferences, and 40 papers in various national journals. His research emphasis has been on solid mechanics, vibration, buckling analyses of plates and shells, computational mechanics, modeling of nanostructures, and composites mechanics.