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Abstract. In the present paper, stability analysis of boron nitride and silicon carbide
nanotubes/nanowires is carried out using di�erent size-e�ective theories, �nite element
method, and computer software. Size-e�ective theories used in this paper include Modi�ed
Couple Stress Theory (MCST), Modi�ed Strain Gradient Theory (MSGT), Nonlocal
Elasticity Theory (NET), Surface Elasticity Theory (SET), and Nonlocal Surface Elasticity
Theory (NSET). As for the computer software, ANSYS and COMSOL multiphysics are
used. Comparative results of theories and software and literature are given in the result
section. Comparative results are in good harmony. In conclusion, it is clearly seen that the
nonlocal elasticity theory yields the lowest results for every modes and structures, while
the modi�ed strain gradient theory yields the highest results.
© 2019 Sharif University of Technology. All rights reserved.

1. Introduction

Nanotubes and nanowires are used in a wide range
of scienti�c areas since their discovery. The usage
areas of nanotubes and nanowires can be divided
into two main groups: `current' and `potential' usage
areas. With its ultimate mechanical and adjustable
geometric parameters, the second group of `potential
usage area' can be described almost as `limitless'. On
the other hand, the current usage areas of nanotubes
and nanowires are in bulk state, which means a mass
of unorganized nanostructures [1-3]. Nanostructures
in the bulk form are widely used as composite �bers
to improve the mechanical, electrical, and thermal
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properties of polymers [4]. For example, one of the
largest companies in the sport equipment-producing
�eld that invests in futuristic research and develop-
ments seriously has produced carbon nanotube (CNT)
reinforced bicycle components. By reinforcing bicycle
components, they developed very high strain-stress
resistance in addition to massive loss in weight [5]. An-
other current application of nanostructures is to absorb
gases by their active surface area [6]. Absorbing gases
has vital importance for environmental monitoring and
the future of this planet. Otherwise, with ongoing
improvements in nano-scale technology, nanostructures
promise limitless, highly bene�cial usage areas. In
addition, new nanostructures such as three-dimensional
nanoblocks are studied. These 3D nanoblocks are com-
posed of nanostructures and have a limited size up to
1 mm in all dimensions. A new method was researched
and published by Lalwani et al., which uses single- and
multi-walled carbon nanotubes to eventually produce
nanoblocks [7]. These developments can be described
as promising for new supercapasitors, batteries with
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super energy storage capacity, transistors used for �eld
emission, and catalysts with high performance [8].

In related literature, the history of nanotubes
is widely based on the research published by Iijima
about nanotubes in 1991 [9]. However, this literature
comprises older studies on nanotubes. These studies
have also determined nanotubes without identifying
their relevant structures. In this regard, the �rst
research conducted was published by Watson and
Kaufmann in 1946 [10]. Watson and Kaufmann
investigated synthesis of carbon nanotube structures
under the rubric of `tubular carbon'. The `tubular
carbon' was obtained with a diameter of almost 100
nm by examining cuprene over �ne copper oxide
catalyst up to 300�C. Following six years of research
published by Watson and Kaufmann, Radushkevich
and Lukyanovich published primary images of carbon
nanotubes with diameters ranging from 30 nm to 50
nm by transmission electron microscopy in 1952 [11].
Moreover, the properties, structure, and growth meth-
ods of nanostructures using arc discharge were analyzed
by Bacon in 1960 [12]. Another research was published
by Oberlin et al. in 1976 [13]. Oberlin et al. observed
carbon �bres by pyrolyzing a mixture of hydrogen and
benzene at about 1100�C. The specimens obtained
by this chemical vapor-growth method include car-
bon nanotubes with a diameter of 2-50 nm. These
nanotubes are called `hollow tubes'. Hollow tubes
obtained were actually multi-walled carbon nanotubes
(MWCNTs). After that, in 1999, John Abrahamson
[14] presented a research piece at the 14th Biennial
Conference of Carbon at Pennsylvania State University.
The research described the carbon nanotubes obtained
from arc discharge on carbon anodes. Later, in 1982,
the �rst chirality model of carbon nanotubes was
proposed in two combinations [15]. Kolesnik et al.
proposed that `carbon multi-layer tubular crystals',
also called multi-walled carbon nanotubes, could be ob-
tained by simply rolling graphene layers into a cylinder.
The circular rolling arrangement produces two di�erent
structures. These two structures include armchair and
chiral nanostructures. On the other hand, the �rst
samples of nanotubes in history were discovered in
Damascus steel around 400 years ago. These samples
are identi�ed as the �rst carbon nanotube samples
found in history [16].

Recently, with a rise in the popularity of renew-
able energy for transportation and electronics, studies
about carbon nanotube usage for improving the dura-
bility, lifespan, and capacity of batteries have started
to receive considerable attention [17-28]. Further, in
the last decade, studies about the usage of CNT in
one of the most e�ective usage areas, gas sensors,
have soared [29-45]. The discovery of CNTs may be
a revolutionary point for many application areas such
as processor technology, biotechnology, gas/chemical

sensors, aerospace technology, etc. [46-48]. Carbon
nanotubes have attracted extreme attention due to
their mechanical properties that are superior to tra-
ditional materials. However, within the foundation
of CNTs, scientists have commenced producing nano-
sized materials with properties superior to CNTs.
Later, novel nanotubes/nanowires have been produced
based on a di�erent atomic structure, compared to
CNTs. Some of these novel nanostructures include
boron nitride nanotube (BNNT) and silicon carbide
nanotube (SiCNT). To illustrate, in the case of me-
chanical properties, CNT has Young's modulus around
1 TPa, while BNNT has 1.8 TPa and 0.62 TPa for
SiCNT. The Poisson's ratio used for analysis in the cur-
rent research is 0.37 for SiCNT and 0.25 for BNNT [49-
51]. Moreover, CNTs can resist thermal environment
up to 600�C, while SiCNT can resist up to 1000�C in
the air without any damage [52,53]. BNNT and SiCNT
have not been investigated as CNTs had been in the
last decade. BNNT has very high potential to deliver
drug into blood 
ow by binding drugs with BNNT [54].
Drugs can then be delivered into the cells for curing
cancer cells by killing such cells without damaging
healthy ones. Since BNNTs are biocompatible and
non-toxic, they can be used as nano-sized drug-delivery
cargo vehicles of these anticancer drugs so that they
can be delivered directly to cancer cells [55]. Recently,
Ferreira et al. investigated the performance of BNNT in
the biomedical application area to deliver protein drugs
and kill cancer cells by magnetohyperthermia therapy
in 2018 [56]. Based on the results obtained by Ferreira
et al., BNNT nano-sized structures carried magnetite
nanoparticles, and magnetic measurements illustrated
that well coercivity and magnetization were observed
following the incorporation of magnetite nanoparticles
into the BNNT. In addition, the boron nitride struc-
ture was investigated in other forms than nanotube.
Structures of nanoribbons and nanowires were inves-
tigated for use in gas sensors [57]. Although these
nanostructures appear analogous, obtaining nanowires
is much more laborious than obtaining nanotubes from
a technical point of view. Nanotubes are both used
in single- and multi-walled forms according to their
application area and characteristics [58]. Furthermore,
due to their limited resistance to thermal environment,
nano-sized technology demands novel nanostructures
with superior thermal resistance. Carbon nanotubes
and carbon nanowires are nanostructures based on
graphene. The thermal resistance of graphene is up
to 600�C in air. To address this issue, a new base
nanostructure has been obtained and developed. In
addition, by overcoming the thermal resistance, the
limited usage area of graphene-based nanostructures
has expanded. The novel nanostructure is based
on Si atoms and named as `silicene'. Silicene has
superior thermal resistance, which can stay stable until
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1200�C [59]. Silicene is a layer of hexagonally arranged
silicon atoms [60]. Despite superior thermal resistance,
silicene has lower Young's modulus, concluding that
silicene is mechanically weaker than graphene. To
illustrate, the length of Si-Si bond in silicene is 2.29 �A,
while the length of the C-C bond is 1.42 �A in graphene
and 1.46 �A for boron nitride sheet (base material of
BNNT); therefore, silicene can perform higher chemical
reactivity than graphene [61]. Longer bond length ends
up with lower mechanical properties, making silicene
weaker than boron nitride sheet and graphene. Later,
silicene and graphene have been composed to obtain
a nanostructured material with superior mechanical
properties. The novel composition of silicon and carbon
atoms formed `silicon carbide sheet'. NASA Glenn
Research Center has cooperated with Rensselaer Poly-
technic Institute to produce silicon carbide sheets from
carbon and silicon atoms. This cooperation has led to
the development of many methods for obtaining silicon
carbide sheet, which is itself produced because of the
same cooperation. Thermal resistance of silicon carbide
sheet made the nanostructure capable to stay stable
up to 1000�C with mechanical properties superior to
silicene [59]. Silicon carbide nanowires and nanotubes
are widely used in gas sensors [62]. These sensors
have been used to detect CO and HCN gases in the
environment. CO and HCN gases can be absorbed
on SiCNWs at Si lattice sites. With the absorption,
signi�cant waves in binding energy to charge transfer
can easily be observed. The wave in electrical conduc-
tivity of SiCNWs results from the chemisorption of gas
molecules on the surface of nanowire metal oxides. The
main structures of electro-transducers include Field
E�ect Transistors (FET), resistive gas micro-sensors,
and resistive gas sensors [63].

2. Continuum models of nanostructures

Due to the astronomically high cost of micro- and
nano-sized experiments, mathematical and continuum
models of these structures have always been cost-
e�ective choices for researchers and developers [64-66].
In the literature, many mathematical and continuum
mechanic models have been used to model nano- and
micro-sized structures. Nanowires have been mostly
modeled for conducting analysis using classic and size-
e�ective Euler-Bernoulli and Timoshenko beam theo-
ries [67-71]. In addition, shell and plate theories have
been used widely to make analysis possible without us-
ing any high-tech laboratory or real nanotubes [72-74].
Furthermore, these theories have been used for model-
ing nano- and micro-composite structures without the
need for any lab or real composite materials [75-79].
In addition, various theories have been developed that
demonstrate the importance of small-scale e�ects such
as strain gradient theory [80,81], couple stress elasticity

theory [81-84], modi�ed couple stress theory [85-88],
nonlocal elasticity theory [89,90], and surface elasticity
theory [91-95].

In the last decade, many scientists have published
a number of research pieces on the subject of the
stability and analysis of micro-nanowires and micro-
nanotubes. Ansari et al. [96] investigated the buckling
behavior of single-walled silicon carbide nanotubes
using ANSYS commercial FE code in 2012. After
that, in 2013, Arani and Hashemian [97] investigated
the surface stress e�ects on the dynamic stability of
double-walled boron nitride nanotubes that convey
viscous 
uid based on nonlocal shell theory. Later, in
2014, Saljooghi et al. investigated the vibration and
buckling behavior of functionally graded beams [98].
They used the reproducing kernel particle method
with very good accuracy. In 2015, Darvizeh et al.
demonstrated the pre- and post-buckling analyses of
beams with Functionally Graded Material (FGM), a
mixture of ceramic and metal, subjected to statically
mechanical and thermal loads [99]. Nonlinear free
vibration of symmetric circular �ber-metal-laminated
hybrid plates was published by Shooshtari and Dalir in
2015. In addition, Shooshtari and Dalir demonstrated
the e�ects of several parameters on linear and nonlinear
frequencies and the free vibration response on cir-
cular �ber-metal-laminated plates [100]. Afterwards,
Ansari and Gholami considered the size e�ect by
Eringen's nonlocal elasticity theory on the nonlinear
�rst-order shear deformable beam model to carry
out post-buckling analysis of magneto-electro-thermo-
elastic nanobeams [101]. Rouzegar and Sharifpoor
investigated the �nite element formulations to carry
out the free vibration analysis of isotropic and or-
thotropic plates using two-variable re�ned plate theory
that predicts parabolic variations of transverse shear
stresses along the thickness of the plate, satis�es the
zero traction condition on the plate surfaces, and does
not require the shear correction factor [102]. They
demonstrated the e�ects of orthotropy ratio, side-to-
thickness ratio, and types of boundary conditions on
the natural frequencies of plates. Later, in 2017,
Rafaeinejad et al. presented an analytical solution for
bending, buckling, and free vibration of FG nanobeams
[103]. Nanobeams were modeled resting on a double-
parameter Winkler-Pasternak elastic foundation, and
results were obtained using di�erent nonlocal higher-
order shear deformation beam theories. Rafaeinejad
et al. showed clearly the e�ects of foundation, gradient
index, aspect ratio, and nonlocal parameter on stability
and vibration analysis. More recently, Jabbarian and
Ahmadian conducted the free vibration analysis of
a functionally graded sti�ened micro-cylinder [104].
They took the size e�ect into consideration using
the Modi�ed Couple Stress Theory (MCST). Results
demonstrated that the sti�eners yielded an increase
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in natural frequencies due to an increase in sti�ness
of the micro-cylinder. Further, in 2018, Sahoo et
al. investigated the natural frequency and transient
responses of carbon/epoxy layered composite plate
structures by two higher-order mid-plane kinematic
models [105].

In this paper, nanotubes and nanowires were
modeled using classical Euler-Bernoulli beam theory
(CT), Nonlocal Elasticity Theory (NET), Surface Elas-
ticity Theory (SET), Modi�ed Couple Stress Theory
(MCST), Modi�ed Strain Gradient Theory (MSGT),
�nite element model and COMSOL Multiphysics anal-
ysis software [106], and ANSYS software [107] to
investigate critical and other buckling loads of simply
supported boron nitride and silicon carbide nanotubes
and nanowires. Comparative results are given in �gures
and tables.

The atomic structure of boron nitride and silicon
carbide sheets is demonstrated in Figure 1. The top
structure is the boron nitride sheet structure composed
of hexagonally arranged boron (B) atoms and nitrogen
N atoms. The bottom structure consists of silicon (Si)
and carbon (C) atoms. In addition, the bond lengths
of structures are demonstrated on the right side. Si-
C bond length in silicene is 2.29 �A, where the B-N
bond length is 1.42 �A in graphene; in this way, silicene
can perform higher chemical reactivity than graphene,
making silicene a weaker material than graphene.

As can be clearly seen from Figure 2, to obtain

Figure 1. Atomic structure of boron nitride and silicon
carbide sheets.

Figure 2. Transition from sheet structure to nanotube
structure.

nanotubes, it is simply required to roll the nanosheet
structured material. Nanostructures can be catego-
rized into three main groups up to the angle they
are rolled up. These three main groups are armchair,
zigzag, and chiral [108].

To model nanotubes, classical Euler-Bernoulli
beam theory is used with size-e�ective theories also by
the hollow cylindrical beam model. Figure 3 shows
transition from real BNNT (top) and SiCNT (middle)
to its continuum mechanic model (bottom). Geometric
parameters are also represented in Figure 3. A com-
parative image of BNNW and SiCNW is demonstrated
in Figure 4. Furthermore, to model nanowires, the
cylindrical beam model is used. Similarly, to demon-
strate transition from nanowire to cylindrical beam
model, Figure 5 depicts the geometric parameters.
As observed, L and D represent the length and the
diameter of nanowire, respectively.

In the current paper, nanostructures are analyzed
for both with and without the elastic foundation

Figure 3. Demonstration of real and continuum models
of nanotubes with geometric parameters.

Figure 4. Structures of nanowires: (a) BNNW and (b)
SiCNW.
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Figure 5. Transition from the real nanowire to its
continuum model: (a) BNNT and (b) SiCNT.

Figure 6. Continuum models of nanostructures on elastic
foundation: (a) BNNT and (b) BNNW.

e�ect. Images of the continuum models on the double-
parameter elastic foundation are shown in Figure 6 for
nanotubes and nanowires. The Winkler foundation is
attributed to springs in terms of its behavior, while the
Pasternak foundation is demonstrated as vertical rods.

3. Formulations

3.1. Modi�ed couple stress and modi�ed strain
gradient theory

The total deformation (strain) energy, U , based on
MSGT can be written as follows [81]:

U=
1
2

LZ
0

Z
A

(�ij"ij+pi
i+�
(1)
ijk�

(1)
ijk+ms

ij�
s
ij)dAdx; (1)

"ij =
1
2

(ui;j + uj;i); (2)


i = "mm;i; (3)

�(1)
ijk =

1
3

("jk;i + "ki;j + "ij;k)

� 1
15

�
�ij("mm;k + 2"mk;m)

+ �jk("mm;i+2"mi;m)+�ki("mm;j+2"mj;m)
�
; (4)

�sij =
1
2

(�i;j + �j;i); (5)

�i =
1
2
eijkuk;j ; (6)

where the rotation vector is denoted by �, the strain
tensor ", the dilatation gradient vector 
, the deviatoric
stretch gradient tensor �(1), and the symmetric rotation
gradient tensor �s. Furthermore, � is Kronecker delta
symbol, and eijk is the permutation symbol. On the
other hand, the components of the classical stress
tensor � (combined with the strain tensor) and the
higher-order stress tensors p, � (1), and ms (combined
with the higher-order deformation gradient tensors)
can be expressed as follows:

�i;j = �"mm�ij + 2G"ij ; (7)

pi = 2Gl20
i; (8)

� (1)
ijk = 2Gl21�

(1)
ijk�

(1)
ijk ; (9)

ms
ij = 2Gl22�

s
ij ; (10)

where l0; l1; l2 are length-scale parameters correspond-
ing to dilatation gradient, deviatoric stretch gradients,
and rotation gradients, respectively. Furthermore,
� and G represent Lam�e constants. These Lam�e
constants can be expressed as follows:

� =
E�

(1 + �)(1� 2�)
;

G =
E

2(1 + �)
: (11)

According to Euler-Bernoulli beam theory, dis-
placement components can be expressed as follows:
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u1(x; z) = �z dw(x)
dx

;

u2(x; z) = 0;

u3(x; z) = w(x); (12)

where u1, i = 1; 2; 3 are x; y; and z components of
the displacement vector, respectively. The transverse
displacement is expressed by w(x). By substituting
Eq. (12) into Eq. (2), the non-zero strain component
can be found as follows:

"11 = �z d2v
dx2 : (13)

By using Eqs. (12) and (13) and substituting them into
Eqs. (3)-(5), the non-zero higher-order gradients can be
obtained as follows:


1 = �z d3w
dx3 ;


3 = �d2w
dx2 ; (14)

�(1)
111 = �2

5
z
d3w
dx3 ; �(1)

113 = �(1)
131 = �(1)

311 = � 4
15
d2w
dx2 ;

�(1)
122 = �(1)

133 = �(1)
212 = �(1)

221 = �(1)
313 = �(1)

331 =
1
5
z
d3w
dx3 ;

(15)

�(1)
223 = �(1)

232 = �(1)
322 =

1
15
d2w
dx2 ; �(1)

333 =
1
5
d2w
dx2 ;

�s12 = �s21 = �1
2
d2w
dx2 : (16)

To obtain the non-zero components of classical stress
tensor, Eq. (13) needs to be substituted into Eq. (7):

�11 = �E�z d2w
dx2 ;

�22 = �33 = � Ev
(1 + v)(1� 2v)

z
d2w
dx2 ; (17)

where:

� =
(1� v)

(1 + v)(1� 2v)
: (18)

By using the above equations and substituting them
into Eqs. (8)-(10), the non-zero components of higher-
order stress tensors can be found as follows:

p1 = �2Gl20z
d3w
dx3 ; p3 = �2Gl20

d2w
dx2 ; (19)

� (1)
111 = �4

5
Gl21z

d3w
dx3 ;

� (1)
113 = � (1)
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311 = � 8

15
Gl21
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dx2 ;
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221 = � (1)
313 = � (1)
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=
2
5
Gl21z
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dx3 ; (20)

� (1)
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2
15
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d2w
dx2 ;

� (1)
333 =

2
5
Gl21

d2w
dx2 ;

ms
12 = ms

21 = �Gl22 d
2w
dx2 : (21)

Governing equations can be obtained by using the
minimum total potential energy principle. According
to the minimum total potential energy principle,

�
Y

= �U � �W = 0; (22)

where � is the total potential energy. Furthermore,
the �rst variation of strain energy and the work done by
external forces are denoted by �U and �W , respectively.
The �rst variation of the strain energy, �U , can be
expressed as follows:

�U =
LZ

0

Z
A

(�ij�"ij + p�
i + � (1)
ijk��

(1)
ijk +ms

ij��
(1)
ijk

+ms
ij��

s
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0

���
EI +GA(2l20
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8
15
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�
d4w
dx4 �2GI

�
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2
5
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�
d6w
dx6

�
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�
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+
LZ

0

��
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8
15
l21 + l22))

d3w
dx3

+ 2GI(l20 +
2
5
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d5w
dx5

�
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�
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�
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8
15
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�
)
d2w
dx2

� 2GI
�
l20 +

2
5
l21

�
d4w
dx4

�
�
�
dw
dx

�
+ 2GI

�
l20 +

2
5
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�
d3w
dx3 �

�
d2w
dx2

��L
0
: (23)
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The �rst variation of the work done by external forces
can be expressed as follows:

�W =
LZ

0

�
�
kww + (P � kp)dw

2

dx2

�
�wdx

+
��
V + (P � kp)dwdx

�
�w �M�

�
dw
dx

�
�M�c�

�
dw2

dx2

��L
0
; (24)

where the axial compressive force is denoted by P .
Likewise, the shear force and classical and non-classical
bending moments are represented with V , M , and
Mnc, respectively. Winkler modulus and Pasternak
modulus of the double-parameter elastic foundation are
considered as kw and kp, respectively. By substituting
Eqs. (24) and (26) into Eq. (23) (by setting �w = 0),
the equilibrium equations for a Euler-Bernoulli beam
can be obtained as follows:

�w :
�
EI +GA

�
2l20 +

8
15
l21 + l22

��
d4w
dx4

� 2GI
�
l20 +

2
5
l21

�
d6w
dx6 + (P � kp)d

2w
dx2 = 0:

(25)

To solve Eq. (25), boundary conditions need to be
implemented. Simply supported boundary conditions
placed at x = 0 and x = L can be expressed as follows:�

EI +GA
�
l20 +

8
15
l21 + l22

��
d3w
dx3

�2GI
�
l20 +

2
5
l21

�
d5w
dx5

+V + (p� kp)dwdx = 0; (26)

or �w = 0,

�(EI +GA(l20 +
8
15
l21 + l22))

d2w
dx2

+ 2GI(l20 +
2
5
l21)
d4w
dx4 = M

or �
�
dw
dx

�
= 0; (27)

�2GI(l20 +
2
5
l21)
d3w
dx3 = M�c

or �
�
d2w
dx2

�
= 0: (28)

By applying Eqs. (26)-(28), the boundary conditions

(classical and possible non-classical) can be considered
as follows:

w = 0; M = 0; w00 = 0; (29)

where:

w00 =
d2w
dx2 : (30)

In the case of simply supported boundary conditions:

B:w(4) �D:w(6) +Nw00 = 0: (31)

The solution of Eq. (31) can be expressed as follows:

w(x) = C1 + C2x+ C3 sinKx+ C4 cosKx

+ C5 sinhMx+ C6 coshMx; (32)

where:

K =

 �B +
p
B2 + 4DN
2D

!1=2

;

M =

 
B +

p
B2 + 4DN
2D

!1=2

; (33)

Ci(i = 1; 2; :::; 6) are integral constants. These con-
stants can be calculated by using boundary conditions.
Substituting the boundary conditions of simply sup-
ported beams present in Eq. (29) and (30) into Eq. (32),
we obtain the following:

Ci = 0 excluding C3 sinKL = 0: (34)

The non-trivial solution to Eq. (34) can be considered
as follows:

sinKL = 0; (35a)

K=
n�
L

(n=1; 2; :::); Ncr=
�2

L2

�
B+

�2D
L2

�
:
(35b)

To solve Eq. (36), Navier's solution procedure can be
applied as follows:

w(x) =
1X
n=1

Wn sin
�n�x
L

�
: (36)

By using Navier's solution, the critical buckling loads
for the simply supported nanowire on the double-
parameter elastic foundation can be expressed as fol-
lows:

For MSGT:
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P(n) =
n2�2

L2

��
EI +GA

�
2l20 +

8
15
l21 + l22

��
+
n2�2

L2

�
2GI

�
l20+

2
5
l21

���
+kw

L2

n2�2 +kp;
(37a)

For MCST:

P(n) =
n2�2

L2 [ (EI +GA(l22)) ] + kw
L2

n2�2 + kp:
(37b)

3.2. Nonlocal Elasticity Theory (NET)
According to Eringen [89], the constitutive equation of
Nonlocal Elasticity Theory (NET) can be expressed as
follows:

[1� (e0a)2r2]�ij = Cijkl; (38)

where �ij is the nonlocal tensile tensor, Cijkl(x0) is the
local or classical tensile tensor at any x0 point, a is a
constant related to the characteristics of each material,
and e0 is the nonlocal parameter chosen within a range
for each material.

The displacement of a thin beam (Euler-
Bernoulli) can be expressed as follows:

u1(x; z) = �z dw(x)
dx

;

u2(x; z) = 0; (39)

u3(x; z) = w(x);

where u1, u2, u3 are the x, y, z components of the
displacement vector, and w represents the transverse
displacement of the beam. According to thin beam
theory, the relation between stress and displacement
can be expressed as follows:

"11 =
du
dx

= �z d2w
dx2 ;

"22 = "33 = "12 = "13 = "23 = 0; (40)

where "11 is the axial stress. In addition, the stress-
strain equation according to thin beam theory can be
expressed as follows:

�11 = �Ezd2w
dx2 ;

�22 = �33 = �12 = �13 = �23 = 0: (41)

According to Eq. (38), the nonlocal stress-strain equa-
tion can be expressed as follows:

�11 � �d
2�11

dx2 = E"11; � = (e0a)2; �22 = 0

�33 = 0 �12 = �21 = 0; �13 = �31 = 0;

�23 = �32 = 0: (42)

To obtain governing equations, the minimum total
energy principle is used. According to the minimum

total energy principle:

�
Y

= �U � �W = 0; (43)

where � denotes the total potential energy, and �U and
�W are the �rst variation of stress and total energy
from external loads, respectively. According to thin
beam theory, �U and �W can be expressed as follows:

�U =
LZ

0

Z
A

(�11�"11) dAdx

=
LZ

0

Z
A

�
�11

�
�z d2�w

dx2

��
dAdx; (44)

�W =
LZ

0

�
P
dw
dx
�
dw
dx

+ qw(x)
�
dx: (45)

Substituting Eqs. (44) and (45) into Eq. (43), we
obtain:

LZ
0

�
�M d2�w

dx2

�
dx�

LZ
0

�
P
dw
dx
�
dw
dx

+q�w(x)
�
dx=0;

(46)

where P is the axial load.
By partially integrating Eq. (46), the buckling

equation and boundary conditions can be obtained as
follows:

�w :
dw
dx

�
P
dw
dx

�
� q =

d2M
dx2 ; (47)

dM
dx
� P dw

dx
= 0; M = 0: (48)

The nonlocal moment can be written by using Eq. (42)
as follows:

M � �d2M
dx2 = �EI d2w

dx2 : (49)

By substituting Eq. (47) in Eq. (49), the nonlocal
moment can be obtained as follows:

M = �
�
d
dx

�
P
dw
dx

�
� q
�
� EI d2w

dx2 : (50)

Using the fourth-order derivative of nonlocal moment
into Eq. (47), we obtain:

�w :
d2

dx2

�
�EI d2w

dx2

�
+ �

d2

dx2

�
d
dx

�
P
dw
dx

�
� q
�

+ q � d
dx

�
P
dw
dx

�
= 0:

(51)

The nonlocal boundary conditions are as follows:
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d
dx

�
�
�
d
dx

�
P
dw
dx

�
� q
�
� EI d2w

dx2

�
� P dw

dx
= 0:

(52)

�
�
d
dx

�
P
dw
dx

�
� q
�
� EI d2w

dx2 = 0:

The relation between load and elastic foundations can
be established as follows:

p(x) = kww � kp d
2w
dx2 : (53)

Substituting Eq. (53) into Eq. (51) gives:��EI + P�� kp��d4w
dx4 + (kw�� P + kp)

d2w
dx2

� kww = 0: (54)

In the case of simply supported nanobeams, the fun-
damental boundary conditions can be expressed as
follows:

� [w]L0 = 0; �
�
dw
dx

�L
0

= 0: (55)

Natural boundary conditions are also expressed as
follows:�

(�EI + P�� kp�)
d2w
dx2 + �kww

�L
0
; and

�
(�EI + P�� kp�)

d3w
dx3 + (kw�� P )

dw
dx

�L
0
: (56)

The nonlocal buckling equation is given in Eq. (54). To
simplify the equation, the expressions expressed below
can be used:

A = �EI + P�� kp�;
B = kw�� P + kp;

C = kw: (57)

A simpli�ed version of Eq. (54) is obtained after
implementing Eq. (57):

Aw{v +Bw{{ � Cw = 0: (58)

To solve Eq. (58), it can be assumed that w = erx.
Then, Eq. (58) can be expressed as follows:

Ar4erx +Br2erx � Cerx = 0: (59)

Roots of Eq. (59) are as follows:

r1;2 = �i
s
B �pB2 + 4AC

2A
;

r3;4 = �
24spB2 + 4AC

2A
� B

2A

35 ; (60)

 =

s
B �pB2 + 4AC

2A
;

� =

sp
B2 + 4AC

2A
� B

2A
: (61)

By substituting roots into Eq. (58) and solving it, we
obtain:

w=C1 sin x+C2 cos x+C3 cosh �x+C4 sinh �x:
(62)

As stated before, C1, C2, C3, and C4 are those con-
stants that can be found by using boundary conditions.
The �rst derivative of Eq. (62) can be stated as follows:

w0 =  C1 cos x�  C2 sin x+ �C3 sinh �x

+�C4 cosh �x: (63)

The second derivative of Eq. (62) can be expressed
by Eq. (64) as shown in Box I. Similarly, the third
derivative of Eq. (62) can be expressed as follows:

V =� ((�kwe0a2 + P )( 2C2 cos x��2C3 cosh �x

+ 2C1 sin x��2C4 sinh �x)� C1 cos x

+�C4 cosh �x+ C2sin x+�C3 sinh �x)=

(EI � Pe0a2 + e0a2kp): (65)

Boundary conditions of a simply supported beam can
be expressed as follows:

w(0) = M(0) = w(l) = M(l) = 0: (66)

By substituting Eq. (66) into Eqs. (64) and (65), the
following equations can be obtained:

w(0) = C2 + C3 = 0; (67)

M(0) =�  2 � e0a2kw
EI � P � e0a2 + e0a2 � kpC2 + �2

� e0a2kw
EI � P � e0a2 + e0a2 � kpC3 = 0; (68)
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M = � 2C1 sin x�  2C2 cos x+ �2C3 cosh �x+ �2C4 sinh �x

�e0a2kw(C2 cos x+ C3 cosh �x+ C1 sin x+ C4 sinh �x)
EI � Pe0a2 + e0a2kp

: (64)

Box I

w(l) = C1 sin l + C2 cos l + C3 cosh �l

+C4 sinh �l = 0; (69)

M(l) = �C1

�
 2 sin l+

e0a2kw sin l
EI�P � e0a2+e0a2 � kp

�
�C2

�
 2 cos l+

e0a2kw cos l
EI�P � e0a2+e0a2 � kp

�
+C3

�
�2 cosh �l� e0a2kw cosh �l

EI�P � e0a2+e0a2 � kp
�

+C4

�
�2 sinh �l� e0a2kw sinh �l

EI�P � e0a2+e0a2 � kp
�

=0: (70)

As stated before, C1, C2, C3, and C4 are those
constants that can be determined through Eqs. (67)-
(70). To solve these four equations with four unknown
constants, Eqs. (67)-(70) can be written in the matrix
form as follows:2664 0 1 1 0

0 � 2 + e0a2C
A �2 + e0a2C

A 0
sin l cos l cosh �l sinh �l

��1 ��2 ��3 ��4

3775
8>><>>:

C1
C2
C3
C4

9>>=>>; = 0

��1 = �
�
 2 sin l � e0a2C sin l

A

�
;

��2 = �
�
 2 cos l � e0a2C cos l

A

�
;

��3 =
�
�2 cosh �l +

e0a2C cosh �l
A

�
;

��4 =
�
�2 sinh �l +

e0a2kw sinh �l
A

�
: (71)

Taking the determinant of the matrix given in Eq. (71),
we obtain:

sin l sinh �l
�
 2 + �2�2 = 0: (72)

There are three possibilities to equalize Eq. (72). These
three possibilities can be explored as follows:�

 2 + �2�2 = 0; (35)

sin l = 0; (74)

sinh �l = 0: (75)

The non-trivial solution can be found as follows:

sin l = 0;  l = n�; n = 0; 1; 2; ::: (76)

 2l2 = n2�2; (77)

B �pB2 + 4AC
2A

l2 = n2�2: (78)

By substituting the values of A, B, and C given in
Eqs. (57) to (78), the �nal form of nonlocal buckling
equation can be obtained:

P (n) =
(EI + kp�)

�n�
L

�4 + (kw�+ kp)
�n�
L

�2 + kw
�
�n�
L

�4 +
�n�
L

�2 :
(79)

3.3. Surface Elasticity Theory (SET)
Gurtin and Murdoch have proposed the surface consti-
tutive as follows [109,110]:

�11 = �0 + (2�0 + �0)u11;

�n1 = �0un;1; (80)

where Lam�e constants are denoted by �0 and �0 and
residual surface stress by �0. The displacement of a
Timoshenko beam can be expressed as follows:

u1 = z�(x; t);

u2 = w(x; t); (81)

where u1 and u2 are the components of the dis-
placement vector, respectively, and w represents the
transverse displacement of the beam. The relation
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between strain and displacement can be expressed as
follows:

"1 =
dux
dx

= �z d2w
dx2 ;

"22 = 0;

"12 =
1
2

�
dux
dx

+
duz
dx

�
=

1
2

�
dw(x;t)

dx
+ �(x;t)

�
:

(82)

To obtain surface stress �eld, Eq. (81) needs to be
substituted into Eq. (80):

�11 = �0 � z(2�0 + �0)
d2w(x)
dx2 ;

�n1 = �0
dw(x)
dx

n2: (83)

By using Eq. (83), the vertical stresses of both top and
bottom surfaces of the layer can be obtained in the case
of n2 = 1:

Top layer:

�21 = �0
dw(x)
dx

;

Bottom layer:

�21 = ��0 dw(x)
dx

: (84)

By using Eqs. (84) and (81), the vertical stress can be
obtained as follows:

�22 =
2z
H
�0
d2w(x)
dx2 � �0

d2w
dt2

: (85)

The non-zero bulk stresses can be expressed by using
Eq. (85) as follows:

�11 = E(z
d�
dx

) +
2vz
H

(�0
d2w
dx2 � �0

d2w
dt2

; (86)

�12 = GK(
dw(x)
dx

+ �); (87)

�22 =
2z
H

(�0
d2w(x)
dx2 � �0

d2w
dt2

): (88)

In Eq. (87), K represents the shear correction coef-
�cient, which is neglected for Euler-Bernoulli beams.
The stress �eld of the beam can be found by Eqs. (86)-
(88) and (83). Consequently, the governing equation

including surface e�ect for a Timoshenko beam can be
expressed as follows:

GKA
�
d2w(x)
dx2 +

d�
dx

�
+ �0s�

d2w
dx2 � q(x)

= (�A+ �0s�)
d2w
dt2

; (89)

(EI + (2�0 + �0)I�)d
2�
dx2 +

2vI�0
H

d3w
dx3

�GKA
�
dw(x)
dx

+ �
�

= (�A+ �0s�)
d2w
dt2

; (90)

where I� represents the perimeter moment of inertia,
and s� is calculated by the following equation:

s� =
Z
s

n2
2ds: (91)

To calculate these values for ZnO nanowire with circu-
lar cross-section, the following are used:

H = 2�0D; (92)

s� =
�D
2
; (93)

I� =
�D3

8
: (94)

To obtain the governing equation for a Euler-Bernoulli
beam, the rotational inertia needs to be ignored in
Eq. (90) as follows:

GKA
�
dw(x)
dx

+ �
�

= (EI + (2�0 + �0)I�)d
2�
dx2 ;

+
2vI�0
H

d3w
dx3 � 2vI�0

H
d3w
dxdt

:
(95)

By taking the �rst derivative of Eq. (95) and using
Eq. (89), we obtain:�

EI + (2�0 + �0)I� � 2vI�0
H

�
d4w
dx4 � �0s� d

2w
dx2

+ q(x) = �(�A+ �0s�)
d2w
dx2 � 2vI�0

H
d4w
dx2dt2

;
(96)

By simplifying Eq. (96), we obtain:�
EI + (2�0 + �0)I� � 2vI�0

H

�
d4w
dx4 + P � �0s� d

2w
dx2

+ q(x) = 0; (97)

where:
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q(x) = H
d2w
dx2 � kww + kp

d2w
dx2 : (98)

The general solution of Eq. (97) can be obtained
through the following equation:

w(x) = C1 cos�x+ C2 sin�x+ C3x+ C4 + wq(x);
(99)

where:

� =

s
P � �0s�

EI + (2�0 + �0)I� � 2vI�0
H

: (100)

In addition, C1, C2, C3, and C4 need to be calculated
by using boundary conditions. By substituting the
boundary conditions given in Eq. (66), we obtain:

C1 + C4 = 0;

��2C1 = 0;

C1 cos�L+ C2 sin�L+ C3L+ C4 = 0;

�C1�2 cos�L� C2�2 sin�L = 0: (101)

By solving the above equations, the buckling formula-
tion of Euler-Bernoulli beam including surface e�ect
on the double-parameter elastic foundation can be
obtained as follows:

P (n) =
EI
�n�
L

�4 + (H + kp)
�n�
L

�2kw�n�
L

�2 ; (102)

where EI is the 
exural rigidity and can be calculated
as follows:

EI = EI + EI�: (103)

3.4. Finite element model
The sti�ness matrix obtained by bending e�ect can be
expressed as follows:

K =
t2Z
t1

LZ
0

EI�
00T�00udxdt;

Kwy =
t2Z
t1

LZ
0

kw�
T�dxdt;

Kwyo =
t2Z
t1

LZ
0

(e0a)2kw�
0T�0dxdt;

Kpy =
t2Z
t1

LZ
0

kp�
0T�0dxdt;

Kpyo =
t2Z
t1

LZ
0

(e0a)2kp�
00T�00dxdt; (104)

Kgy =
t2Z
t1

LZ
0

P�
0T�0dxdt;

Kgyo =
t2Z
t1

LZ
0

(e0a)2P�
00T�00dxdt;

Fy =
t2Z
t1

LZ
0

q�
T
dxdt;

Fyo =
t2Z
t1

LZ
0

(e0a)2q�
00T
dxdt:

By applying nondimensional shape functions :

K = Ke =
1Z

0

�
EI

1
L4

@2�T

@�2
@2�
@�2 L@�

�

=
1Z

0

EI
L3

8>><>>:
�001
�002
�003
�004

9>>=>>;��001 �002 �003 �004
�
d�

=
1Z

0

EI
L3

2664 �001�001 �001�002 �001�003 �001�00
�002�001 �002�002 �002�003 �002�00
�003�001 �003�002 �003�003 �003�00
�004�001 �004�002 �004�003 �004�00

3775 d�;

Ke =
EI
L3

2664 12 6L �12 6L
6L 4L2 �6L 2L2

�12 �6L 12 �6L
6L 2L2 �6L 4L2

3775 : (105)

Similarly, the e�ect of Winkler foundation can be
expressed as follows [111]:

Kw = Kwy +Kwyo =
1Z

0

�
kw�T�L@�

�
+

1Z
0

�
(e0a)2 1

L2 kw
@�T

@�
@�
@�
L@�

�
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=
1Z

0

kwL

2664 �1�1 �1�2 �1�3 �1�4
�2�1 �2�2 �2�3 �2�4
�3�1 �3�2 �3�3 �3�4
�4�1 �4�2 �4�3 �4�4

3775@�
+

1Z
0

(e0a)2kw
L

2664 �01�01 �01�02 �01�03 �01�04
�02�01 �02�02 �02�03 �02�04
�03�01 �03�02 �03�03 �03�04
�04�01 �04�02 �04�03 �04�04

3775 @�: (106)

Kw =
kw
420

2664 156L 22L2 54L �13L2

22L2 4L3 13L2 �3L3

54L 13L2 156L �22L2

�13L2 �3L3 �22L2 4L3

3775
+

(e0a)2kw
30L

2664 36 3L �36 3L
3L 4L2 �3L �L2

�36 �3L 36 �3L
3L �L2 �3L 4L2

3775 :
The matrix form of the Pasternak foundation can be
expressed as follows:

Kk =Kpy +Kpyo =
1Z

0

�
1
L2 kp

@�T

@�
@�
@�
L@�

�

+
1Z

0

"
(e0a)2kp
L4

@2�T

@�2
@2�
@�2 L@�

#

=
1Z

0

kp
L

2664 �01�01 �01�02 �01�03 �01�04
�02�01 �02�02 �02�03 �02�04
�03�01 �03�02 �03�03 �03�04
�04�01 �04�02 �04�03 �04�04

3775@�
+

1Z
0

(e0a)2kp
L3

2664 �001�001 �001�002 �001�003 �001�004
�002�001 �002�002 �002�003 �002�004
�003�001 �003�002 �003�003 �003�004
�004�001 �004�002 �004�003 �004�004

3775 @�;

Kk =
kp

30L

2664 36 3L �36 3L
3L 4L2 �3L �L2

�36 �3L 36 �3L
3L �L2 �3L 4L2

3775

+(e0a)2 kp
L3

2664 12 6L �12 6L
6L 4L2 �6L 2L2

�12 �6L 12 �6L
6L 2L2 �6L 4L2

3775 :
(107)

The matrix caused by axial load:

Kg = Kgy +Kgyo =
1Z

0

�
1
L2P

@�T

@�
@�
@�
L@�

�

+
1Z

0

"
(e0a)2P
L4

@2�T

@�2
@2�
@�2 L@�

#

=
1Z

0

P
L

2664 �01�01 �01�02 �01�03 �01�04
�02�01 �02�02 �02�03 �02�04
�03�01 �03�02 �03�03 �03�04
�04�01 �04�02 �04�03 �04�04

3775@�
+

1Z
0

(e0a)2P
L3

2664 �001�001 �001�002 �001�003 �001�004
�002�001 �002�002 �002�003 �002�004
�003�001 �003�002 �003�003 �003�004
�004�001 �004�002 �004�003 �004�004

3775 @�;

Kg =
P

30L

2664 36 3L �36 3L
3L 4L2 �3L �L2

�36 �3L 36 �3L
3L �L2 �3L 4L2

3775
+(e0a)2 P

L3

2664 12 6L �12 6L
6L 4L2 �6L 2L2

�12 �6L 12 �6L
6L 2L2 �6L 4L2

3775 :
(108)

In Figure 7, the solving method in �nite element is
plotted. Basically, �nite element analysis slices an
object into numerous pieces and, then, connects the
intersections.

Figure 7. Demonstration of �nite element method slicing.
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To obtain the results, the following eigenvalue
problem needs to be solved:

jK � �Kgj = 0: (109)

The sti�ness matrix is:

[K] = [Ke] + [Kw] + [Kk] : (110)

If the axial load is any compression load, then:

Kg = [Kg] : (111)

4. Numerical results and discussion

The stability analysis of silicon carbide and boron
nitride nanotubes and nanowires resting on an elastic
substrate was carried out in the present study. To
model the nanostructures, Euler-Bernoulli beam theory
was employed. Since the analysis was done on a nano
scale, di�erent small-scale e�ective theories were used
to take small-scale e�ect into consideration. Nonlo-
cal elasticity theory, surface elasticity theory and its
combination with the former theory, modi�ed strain
gradient theory, and modi�ed couple stress theories
were used and compared to investigate their in
uence
on the buckling results. In addition, �nite element
analysis was applied to nanostructures both by the con-
tinuum model and computer software products. In �g-
ures, nonlocal elasticity theory is represented as NET,
surface elasticity theory as SET, the combination of
nonlocal elasticity theory and surface elasticity theory
as NSET, modi�ed strain gradient theory as MSGT,
and modi�ed couple stress theory as MCST. To obtain
dimensionless analysis results, Winkler and Pasternak
foundation parameters are used in the dimensionless
form as Kw = kwL4

EI and Kp = kpL2

EI , respectively.
In Figure 8, the mode shape of nanostructures is

plotted by ANSYS computer software. Parameters of

Figure 8. Buckling analysis mode shapes (ANSYS).

size-e�ective theories were selected as follows: Es =
35:3, � = 4 nm, l0 = l1 = l2 = 0:5 [46]. The e�ect of
Winkler parameter was investigated for all size-e�ective
theories, as shown in Figure 9. The dimensionless
buckling loads were calculated with a change in the
Winkler foundation parameter. For the calculation
shown in Figure 9, the e�ect of Pasternak foundation
was neglected by setting the value of the Pasternak
foundation parameter to zero.

As observed clearly from Figure 9, the e�ect of
Winkler foundation gets dramatically lower on higher
modes. It can also be observed that the nonlocal
elasticity theory lowers buckling load due to the fragile
nanostructure, while modi�ed couple stress theory,
modi�ed strain gradient theory, and surface elasticity
theory produce higher results by strengthening the
nanostructure. Between size-e�ective theories, mod-
i�ed strain gradient theory always yields the highest
results, while the nonlocal elasticity theory yields the
lowest results for all modes.

The dimensionless buckling loads were calculated
with a change in Pasternak foundation parameter in
Figure 10. The e�ect of Winkler foundation was ne-
glected by setting the value of the Winkler foundation
parameter to zero. Similar to previous results, the
e�ect of the foundation gets lower, yet not as low as
that of Winkler foundation.

In Table 1, critical buckling loads of nanostruc-
tures are calculated and compared. To validate the
results, the comparison of the results with those of
Naidu and Rao [112] is made, and they appear to be in
good harmony. In Table 1, N represents the element
number used for �nite element analysis. Finite element
method results are both given for various nonlocal
elasticity parameters and classic analysis. Similar to
Figures 9 and 10, the lowest results are obtained for the
highest nonlocal parameter (e0a = 10 nm). Choosing a
higher value of the size-e�ective parameter for MCST
and MSGT ends with a higher buckling load value.

5. Concluding remarks

The e�ect of the double-parameter elastic foundation
on buckling of silicon carbide and boron nitride nan-
otubes and nanowires was investigated in the current
study. To model the nanostructures, Euler-Bernoulli
beam model and computer software products were
used. Since the beams were of nano-size to consider
small scales, three di�erent small-scale e�ect theories
were used, whose results were compared with �nite ele-
ment results. Small-scale e�ective theories used include
nonlocal elasticity theory, surface elasticity theory and
their combination, modi�ed strain gradient theory, and
modi�ed couple stress theory. The substrate was
modeled by using the two-parameter (Winkler and
Pasternak) elastic foundation model. Buckling loads
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Figure 9. Buckling analysis results with a change in Winkler foundation for the �rst �ve modes: (a) BNNT and (b)
SiCNT.
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Figure 10. Buckling analysis results with a change in Pasternak foundation for the �rst �ve modes (a) BNNT and (b)
SiCNT.
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Table 1. Dimensionless critical buckling load of nanostructures with various foundation and theory parameters.
Elastic foundation parameters (Kw, Kp)

(0, 0) (0, 0.5 �2) (0, 2.5 �2) (1, 0) (102, �2) (104, �2) (104, 2.5 �2) (106, 2.5 �2)

M
C

ST

l2 = 0.1 nm 9.87105 14.80585 34.5451 9.97237 29.8728 211.288 226.093 2024.990
l2 = 0.5 nm 9.90562 14.84043 34.5796 10.0069 29.9073 211.599 226.404 2028.448
l2 = 1 nm 10.0137 14.94849 34.6877 10.1150 30.0154 212.572 227.376 2039.254

SE
T

Es = 20 N/m 10.0032 14.9380 34.6772 10.1045 30.0049 212.444 227.249 2037.794
Es = 35.3 N/m 10.1022 15.0370 34.7762 10.2035 30.1039 213.335 228.140 2047.696
Es = 50 N/m 10.1973 15.1321 34.8714 10.2986 30.1991 214.191 228.996 2057.210

M
SG

T l = 0.1 nm 9.87532 14.81012 34.5493 9.97664 29.8770 211.371 226.176 2031.577
l = 0.5 nm 10.0124 14.94723 34.6864 10.1138 30.0142 213.680 228.485 2193.108
l = 1 nm 10.4409 15.37571 35.1149 10.5422 30.4426 220.896 235.701 2678.936

N
E

T e0a = 0.5 nm 9.85441 14.78921 34.5284 9.9557 29.8561 210.059 224.864 1892.980
e0a = 1 nm 9.80910 14.74390 34.4831 9.9104 29.8108 206.603 221.408 1648.308
e0a = 10 nm 6.10422 11.03902 30.7782 6.2055 26.1059 136.007 150.811 1053.631

F
E

M
N

=
4 e0a = 0.5 nm 9.8594 14.7942 34.5335 9.9608 29.8611 212.3340 227.1384 2289.322

e0a = 1 nm 9.8141 14.7489 34.4881 9.9154 29.8157 208.5095 223.3139 1600.00
e0a = 10 nm 6.1061 11.0410 30.7802 6.2075 26.1059 132.9205 147.7249 1089.396

N
=

9 e0a = 0.5 nm 9.8546 14.7894 34.5286 9.9559 29.8563 210.1890 224.9934 1972.864
e0a = 1 nm 9.8093 14.7441 34.4833 9.9106 29.8110 206.7157 221.5201 1639.829
e0a = 10 nm 6.1043 11.0391 30.7783 6.2056 26.1059 135.8585 150.6626 1072.55

N
=

20

e0a = 0.5 nm 9.8544 14.7892 34.5284 9.9557 29.8561 210.059 224.864 1892.980
e0a = 1 nm 9.8091 14.7439 34.4831 9.9104 29.8108 206.603 221.408 1648.308
e0a = 10 nm 6.1042 11.0390 30.7782 6.2055 26.1059 136.007 150.811 1053.631

C
la

ss
ic

Present results 9.8696 14.804 34.544 9.9709 29.871 211.275 226.079 2024.846
Naidu and Rao [112] 9.8696 14.804 34.544 9.9709 29.871 211.28 226.09 2031.9
FEM results (N = 4) 9.8747 14.8095 34.5487 9.9760 29.8763 213.6808 228.4852 2472.769

Comsol results 9.86963 14.80434 34.54426 9.97094 29.87136 211.27554 226.08113 2024.88614

were calculated for the maximum �fth mode. To val-
idate the calculations, comparative results with those
in the literature are given in the table. Comparative
results were in good harmony. To conclude, based on
the small-scale theories used in the study, the highest
buckling loads were obtained in the case of modi�ed
strain gradient theories used and the lowest in the case
of nonlocal elasticity theory. Furthermore, the e�ect of
foundation on buckling reduced with an increase in the
number of modes.
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