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Abstract. In this paper, a hybrid method is developed for optimum design of
castellated beams by combining two meta-heuristic algorithms, namely the Colliding Bodies
Optimization (CBO) and Particle Swarm Optimization (PSO). In this hybrid algorithm
(CBO-PSO), positive features of PSO are added to the CBO. Two common types of
laterally supported castellated beams are considered to be the design problems: beams
with hexagonal openings and beams with circular openings. These beams have found
widespread usage in buildings because of great savings in materials and construction costs.
Here, the minimum cost is taken as the design objective function and the new hybrid
method is utilized for obtaining the solution of some benchmark problems. Comparison
of the results of the CBO-PSO with those of some other meta-heuristics demonstrates the
capability of the presented optimization algorithm. For most of the examples, the results
obtained by CBO-PSO have less cost than those of the other considered methods. It is also
concluded that the beams with hexagonal openings require smaller amount of steel, hence
being superior to the beams with cellular openings.
© 2016 Sharif University of Technology. All rights reserved.

1. Introduction

Nowadays, due to huge extension in size and dimension
of the structures, there has been a great increase in
weight and cost of construction materials used for
structures. Therefore, it is not surprising that a lot of
attention is being paid by engineers to optimal design
of the structures which lead to a signi�cant decrease in
their cost.

Since the 1940s, the production of structural
beams with higher strength and lower cost has been
an asset to engineers in their e�orts to design more
e�cient steel structures. Due to the limitations on
maximum allowable de
ections, the use of sections
with heavy weight and high capacity in the design
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problem cannot always be bene�cial. As a result,
several new methods have been created for increasing
the sti�ness of steel beams without increase in weight
of the required steel. Hence, castellated and cellular
beams have been utilized extensively in recent years [1].

In design of steel structures, beams with web-
opening are widely used to pass the under
oor services
ducts such as water pipes and air ducts. Castellated
beam is created from a standard wide-
ange beam by
cutting it longitudinally in a zigzag or semi-circular
pattern, separating and o�setting the two halves, and
welding them back together. The resulting holes in the
webs permit mechanical ducts, plumbing, and electrical
lines to pass through the beam rather than beneath the
beam. Web-openings have been used for many years in
structural steel beams in a great variety of applications
because of the necessity and economic advantage. The
important advantage of the steel beam castellation
process is that the designer can increase the depth of
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a beam to raise its strength without adding steel. The
resulting castellated beam is approximately 50% deeper
and much stronger than the original unaltered beam [2-
5].

In recent years, a great deal of progress has been
made in the design of steel beams with web-openings
and cellular beam is one of them. Cellular beam is the
modern form of the traditional castellated beam, but
with a far wider range of applications for 
oor beams,
in particular. Cellular beams are steel sections with
circular openings that are made by cutting a rolled
beam web in a half-circular pattern along its centerline
and re-welding the two halves of hot rolled steel sections
as shown in Figure 1. This opening increases the overall

Figure 1. (a) A castellated beam with hexagonal
opening. (b) A castellated beam with circular opening.

beam depth, moment of inertia, and section modulus
without increasing the overall weight of the beam [6].

The Colliding Bodies Optimization method
(CBO) is one of the recently developed meta-heuristic
algorithms that utilizes simple formulation and it re-
quires no parameter tuning. This algorithm is based on
one-dimensional collisions between two bodies, where
each agent solution is modeled as a body [7,8].

Particle Swarm Optimization (PSO) is based on
the behavior of a colony or swarm of insects (such as
ants, termites, bees, and wasps), a 
ock of birds, or a
school of �sh. This algorithm was originally proposed
by Kennedy and Eberhart in 1995. A basic variant
of the PSO algorithm works by having a population
(swarm) of candidate solutions (particles). These
particles move around in the search-space using a few
simple formulas. Each particle iteratively moves across
the search-space and is attracted to the position of
the best �tness (evaluation of the objective function)
historically achieved by the particle itself (local best)
and by the best among the neighbors of the particle
(global best) [9,10].

The main objective of this paper is to present a
hybrid CBO-based algorithm (combined with the PSO)
to �nd an optimum design of castellated beams. For
this purpose, the positive properties of the PSO will be
added to the CBO.

According to the above-mentioned content, the
present study is organized as follows: In Section 2, the
design of castellated beam is introduced. Statement
of the optimization design problem is formulated in
Section 3, based on The Steel Construction Institute
Publication Number 100 and Euro code 3. In Section 4,
the CBO algorithm and the PSO approach are brie
y
introduced. Also, the new hybrid method is presented
in this section. In Section 5, the cost of castellated
beam as the design objective function is minimized,
and �nally, Section 6 concludes the paper.

2. Design of castellated beams

Beams must be su�ciently strong to carry the applied
bending moments and shear forces. The performance
of any beam is dependent upon the physical dimensions
as well as the cross-section geometry and shape. Due
to the presence of holes in the web, the structural
behavior of castellated steel beam is di�erent from
that of the solid web beams. At present, there is not
a prescribed design method due to the complexity of
the behavior of castellated beams and their associated
modes of failure [2]. The strength of a beam with
various web openings is determined by considering the
interaction of the 
exure and shear at the openings.
There are many failure modes to be considered in
the design of a beam with web opening consisting
of lateral-torsional buckling, Vierendeel mechanism,
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exural mechanism, rupture of welded joints, and web
post buckling. Lateral-torsional buckling may occur
in an unrestrained beam. A beam is considered to
be unrestrained when its compression 
ange is free
to displace laterally and rotate. In this paper, it is
assumed that the compression 
ange of the castellated
beam is restrained by the 
oor system. Therefore,
the overall buckling strength of the castellated beam is
omitted from the design considerations. These modes
are closely associated with beam geometry, shape
parameters, type of loading, and provision of lateral
supports. In the design of castellated beams, these
criteria should be considered [11-17].

2.1. Overall beam 
exural capacity
This mode of failure can occur when a section is
subjected to pure bending. In the span subjected
to pure bending moment, the tee-sections above and
below the holes yield in a manner similar to that
of a plain webbed beam. Therefore, under applied
load combinations, the castellated beam should have
su�cient 
exural capacity to be able to resist the
external loading [12,13]:

MU �MP = ALTPYHU ; (1)

where ALT is the area of lower tee, PY is the design
strength of steel, and HU is the distance between
centers of gravities of upper and lower tees.

2.2. Beam shear capacity
In the design of castellated beams, it is necessary to
control two modes of shear failure. The �rst one is the
vertical shear capacity and the upper and lower tees
should undergo it. The sum of the shear capacities of
the upper and lower tees is checked using the following
equations [2,13]:

PV Y = 0:6PY (0:9AWUL) for circular opening,

PV Y =
p

3
3
PY (AWUL) for hexagonal openning, (2)

where AWUL is the total area of the webs of tees.
The second one is the horizontal shear capacity. It

is developed in the web post due to the change in axial
forces in the tee-section as shown in Figure 2. Web
post with too short mid-depth welded joints may fail
prematurely when horizontal shear exceeds the yield
strength. The horizontal shear capacity is checked
using the following equations [2,13]:

PV H = 0:6PY (0:9AWP ) for circular opening

PV H =
p

3
3
PY (AWP ) for hexagonal openning; (3)

where AWP is the minimum area of web post.

Figure 2. Horizontal shear in the web post of castellated
beams: (a) Hexagonal opening; and (b) circular opening.

2.3. Flexural and buckling strength of web post
As mentioned above, it is assumed that the compres-
sion 
ange of the castellated beam is restrained by the

oor system. Thus, the overall buckling of the castel-
lated beam is omitted from the design considerations.
The web post buckling capacity in castellated beam is
given by [2,13]:

MMAX

ME
=
�
C1:�� C2:�2 � C3

�
; (4)

where � = S
2d for hexagonal openings, and � = S

D0
for circular openings, also MMAX is the maximum
allowable web post moment and ME is the web post
capacity at critical section A-A shown in Figure 2. C1,
C2, and C3 are constants obtained by the following
expressions:

C1 = 5:097 + 0:1464(�)� 0:00174(�)2; (5)

C2 = 1:441 + 0:0625(�)� 0:000683(�)2; (6)

C3 = 3:645 + 0:0853(�)� 0:00108(�)2; (7)

where � = 2d
tw for hexagonal openings, and � = D0

tw for
circular openings, S is the spacing between the centers
of holes, d is the cutting depth of hexagonal opening,
D0 is the holes diameter, and tw is the web thickness.
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Figure 3. Olander's curved beam approach.

2.4. Vierendeel bending of upper and lower
tees

Vierendeel mechanism is the most common failure for
perforated steel beams that results in the formation of
four plastic hinges above and below the web opening.
It is always critical in steel beams with web openings,
where global shear force is transferred across the
opening length, and the Vierendeel moment is resisted
by the local moment resistances of the tee-sections
above and below the web openings.

The overall Vierendeel bending resistance de-
pends on the local bending resistance of the web-

ange sections. This mode of failure is associated with
high shear forces acting on the beam. The Vierendeel
bending stresses in the circular opening is obtained
by using the Olander's approach in Figure 3. The
interaction between Vierendeel bending moment and
axial force for the critical section in the tee should be
checked as follows [13]:

P0

PU
+

M
MP

� 1:0; (8)

where P0 and M are the force and the bending moment
on the section, respectively; PU is equal to the area of
critical section �PY ; MP is calculated as the plastic
modulus of critical section in plastic section or elastic
section modulus of critical section for other sections.

The plastic moment capacity of the tee-sections
in castellated beams with hexagonal opening are calcu-
lated independently. The total of the plastic moments
is equal to the sum of the Vierendeel resistances of
the above and below tee-sections [2]. The interaction
between Vierendeel moment and shear forces should be
checked by the following expression:

VOMAX:e� 4MTP � 0; (9)

where VOMAX and MTP are the maximum shear force
and the moment capacity of tee-section, respectively.

2.5. De
ection of castellated beam
Serviceability checks are of high importance in design,
especially for beams with web opening where the de-

ection due to shear forces is signi�cant. The de
ection

of a castellated beam under applied load combinations
should not exceed span/360. In castellated beams
with circular opening, the de
ection at each point is
calculated by the following expression:

YTOT = YMT + YWP + YAT + YST + YSWP ; (10)

where YMT , YWP , YAT , YST , and YSWP are de
ection
due to bending moment in tee, de
ection due to
bending moment in web post of beam, de
ection due
to axial force in tee, de
ection due to shear in tee, and
de
ection due to shear in web post, respectively. These
equations are provided in [13].

For a castellated beam with hexagonal opening
and length L subjected to transverse loading, the total
de
ection is composed by two terms: the �rst term
corresponds to pure moment action, fb, and the second
one corresponds to shear action, fs. Thus, the total
de
ection can be calculated by the following expression:

f = fb + fs = c1L3 + c2L; (11)

c1 and c2 are determined by means of a curve �tting
technique [15].

3. Formulation of the optimization problem

The main initiative for producing and using castellated
beam is to suppress the cost of material by apply-
ing more e�cient cross sectional shapes made from
standard pro�les in combination with aesthetic and
architectural design considerations.

In a castellated beam, there are many factors that
require special considerations when estimating the cost
of beam, such as man-hours of fabrication, weight, price
of web cutting, and welding process. At this study, it
is assumed that the costs associated with man-hours of
fabrication for hexagonal and circular opening are iden-
tical. Thus, the objective function includes three parts:
the beam weight, price of the cutting, and price of the
welding. The objective function can be expressed as:

Fcost = �Ainitial(L0):P1 + Lcut:P2 + Lweld:P3; (12)

where P1, P2, and P3 are the price of the weight
of the beam per unit weight, length of cutting and
welding for per unit length, respectively, L0 is the
initial length of the beam before castellation process,
� is the density of steel, Ainitial is the area of the
selected universal beam section, Lcut and Lweld are
the cutting length and welding length, respectively.
The length of cutting is di�erent for hexagonal and
circular web-openings. The dimension of the cutting
length is described by the following equations:

For circular opening:

Lcut = �D0:NH + 2e(NH + 1) +
�D0

2
+ e: (13)
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For hexagonal opening:

Lcut = 2NH
�
e+

d
sin(�)

�
+ 2e+

d
sin(�)

; (14)

where NH is the total number of holes, e is the length
of horizontal cutting of web, D0 is the diameter of holes,
d is the cutting depth, and � is the cutting angle.

Also, the welding length for both circular and
hexagonal openings is determined by Eq. (15):

Lweld = e(NH + 1): (15)

As an example, in Figure 1(a), the number of holes is
equal to 3. Therefore, the total length of cutting can
be expressed by the following equation:

Lcut = 8e+ 7
�

d
sin(�)

�
: (16)

Similarly, for cellular beams, the same equations can be
obtained. Lcut is shown for both circular and hexagonal
openings in Figure 1.

3.1. Design of castellated beam with circular
opening

Design process of a cellular beam consists of three
phases: selection of a rolled beam, selection of a
diameter, and spacing between the centers of holes or
total number of holes in the beam as shown in Fig-
ure 1, [13,14]. Hence, the sequence number of the rolled
beam section in the standard steel sections tables, the
circular holes diameter, and the total number of holes
are taken as design variables in the optimum design
problem. The optimum design problem formulated by
considering the constraints explained in the previous
sections can be expressed as follows.

Find an integer design vector fXg = fx1; x2; x3gT
where x1 is the sequence number of the rolled steel
pro�le in the standard sections list, x2 is the sequence
number for the hole diameter which contains various
diameter values, and x3 is the total number of holes
for the cellular beam [13]. Hence, the design problem
can be expressed as:

Minimize Eq. (12):

Subjected to:

g1 = 1:08�D0 � S � 0; (17)

g2 = S � 1:60�D0 � 0; (18)

g3 = 1:25�D0 �Hs � 0; (19)

g4 = Hs � 1:75�D0 � 0; (20)

g5 = MU �MP � 0; (21)

g6 = VMAXSUP � PV � 0; (22)

g7 = VOMAX � PV Y � 0; (23)

g8 = VHMAX � PV H � 0; (24)

g9 = VA-AMAX �MWMAX � 0; (25)

g10 = VTEE � 0:50� PV Y � 0; (26)

g11 =
P0

PU
+

M
MP
� 1:0 � 0; (27)

g12 = YMAX � L=360 � 0; (28)

where tW is the web thickness; Hs and L are the
overall depth and the span of the cellular beam; S
is the distance between centers of holes; MU is the
maximum moment under the applied loading; MP
is the plastic moment capacity of the cellular beam;
VMAXSUP is the maximum shear at support; VOMAX
is the maximum shear at the opening; VHMAX is the
maximum horizontal shear; MA-AMAX is the maximum
moment at A-A section shown in Figure 2. MWMAX
is the maximum allowable web post moment; VTEE
represents the vertical shear on the tee at � = 0 of
web opening; P0 and M are the internal forces on the
web section as shown in Figure 3; and YMAX denotes
the maximum de
ection of the cellular beam [13,17].

3.2. Design of castellated beam with hexagonal
opening

In design of castellated beams with hexagonal open-
ings, the design vector includes four design variables:
selection of a rolled beam, selection of a cutting depth,
spacing between the centers of holes or total number of
holes in the beam, and cutting the angle as shown in
Figure 2. Hence, the optimum design problem can be
expressed as follows.

Find an integer design vector fXg = fx1; x2; x3;
x4gT , where x1 is the sequence number of the rolled
steel pro�le in the standard sections list, x2 is the
sequence number for the cutting depth which contains
various values, x3 is the total number of holes for the
castellated beam, and x4 is the cutting angle. So, the
design problem turns out to be as follows:

Minimize Eq. (12).
Subjected to:

g1 = d� 3
8
: (Hs � 2tf ) � 0; (29)

g2 = (Hs � 2tf )� 10� (dT � tf ) � 0; (30)

g3 =
2
3
:d: cot�� e � 0; (31)

g4 = e� 2d: cot� � 0; (32)

g5 = 2d: cot�+ e� 2d � 0; (33)
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g6 = 45� � � � 0; (34)

g7 = �� 64� � 0; (35)

g8 = MU �MP � 0; (36)

g9 = VMAXSUP � PV � 0; (37)

g10 = VOMAX � PV Y � 0; (38)

g11 = VHMAX � PV H � 0; (39)

g12 = MA-AMAX �MWMAX � 0; (40)

g13 = VTEE � 0:50� PV Y � 0; (41)

g14 = VOMAX:e� 4MTP � 0; (42)

g15 = YMAX � L=360 � 0; (43)

where tf is the 
ange thickness, dT is the depth of
the tee-section, MP is the plastic moment capacity
of the castellated beam, MA-AMAX is the maximum
moment at A-A section, shown in Figure 2, MWMAX
is the maximum allowable web post moment, VTEE
represents the vertical shear on the tee, MTP is the
moment capacity of tee-section, and YMAX denotes
the maximum de
ection of the castellated beam with
hexagonal opening [2].

4. A hybrid colliding bodies optimization and
particle swarm optimization

In this section, the hybrid CBO and PSO methods is
presented. In order to create the hybrid approach,
the CBO is used as the main algorithm and the
positive features of the PSO are added to it. The
hybrid algorithm utilizes the location of the global and
local best points to improve the searching process. A
summary of these methods is described in the following
subsections.

4.1. Particle swarm optimization algorithm
Particle swarm optimization, �rst developed by
Kennedy and Eberhart [9], is a population-based meta-
heuristic method. The development of this algorithm
follows from observations of social behaviors of animals,
such as bird 
ocking and �sh schooling. The theory of
PSO describes a solution process in which each particle

ies through the multidimensional search space while
the velocity and position of the particle are constantly
updated according to the best previous performance
of the particle or of the particle's neighbors, as well
as the best performance of the particles in the entire
population [18].

The velocity vector is used to update the current
position of each particle in the swarm. Likewise, the

velocity vector is updated utilizing a memory in which
the best position of each particle and the best position
among all particles are stored.

The position of the ith particle at iteration k + 1
is calculated using the following equation:

xik+1 = xik + vik+1; (44)

where, xik+1 is the new position, xik is the position
at the kth iteration, and vik+1 is the updated velocity
vector of the ith particle. The velocity vector of each
particle is determined by:

vik+1 = !:vik + c1:r1:
�
P ik �Xi

k
�

+ c2:r2:
�
P gk �Xi

k
�
;

(45)

where, vik is the velocity vector at iteration k; r1 and
r2 are two random numbers between 0 and 1; P ik
represents the best ever position of particle i, local
best; P gk is the best position among all particles in the
swarm up to iteration k; c1 and c2 are two acceleration
constants; and ! is the inertia weight.

4.2. Colliding bodies optimization algorithm
The Colliding bodies optimization algorithm is one
of the recently developed meta-heuristic search algo-
rithms [7]. It is a population-based search approach,
where each agent is considered as a Colliding Body
(CB) with mass m. The idea of the CBO algorithm is
based on observation of a collision between two objects
in one dimension, in which one object collides with
another object and they move toward minimum energy
level [8].

In the CBO algorithm, each solution candidate,
Xi, is considered to be a Colliding Body (CB). The
massed objects are composed of two main equal groups,
i.e. stationary and moving objects, where the moving
objects move to follow stationary objects and a collision
occurs between pairs of objects. This is done for
two purposes: (i) to improve the positions of moving
objects; (ii) to push stationary objects towards better
positions. After the collision, the new positions of
the colliding bodies are updated based on their new
velocities.

The pseudo-code for the CBO algorithm can be
summarized as follows:

Step 1. Initialization. The initial positions of CBs
are determined randomly in the search space:

x0
i = xmin + rand: (xmax � xmin) i = 1; 2; :::; n;

(46)

where x0
i determines the initial value vector of the

ith CB; xmin and xmax are the minimum and the
maximum allowable value vectors of variables, respec-
tively; rand is a random number in the interval [0,1],
and n is the number of CBs.
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Figure 4. (a) The sorted CBs in an increasing order. (b)
The pairs of objects for the collision.

Step 2. Determination of the body mass for each
CB. The magnitude of the body mass for each CB is
de�ned as:

mk =
1

fit(k)Pn
i=1

1
fit(i)

; k = 1; 2; :::; n; (47)

where fit(i) represents the objective function value of
the agent i, and n is the population size. Obviously,
a CB with good values exerts a larger mass than
the bad ones. Also, for maximizing the objective
function, the term 1

fit(i) is replaced by fit(i).

Step 3. Arrangement of the CBs. The arrangement
of the CBs objective function values is performed in
ascending order (Figure 4(a)). The sorted CBs are
equally divided into two groups:
� The lower half of CBs (stationary CBs): These

CBs are good agents which are stationary and the
velocity of these bodies before collision is zero.
Thus:

vi = 0 i = 1; 2; :::;
n
2
: (48)

� The upper half of CBs (moving CBs): These CBs
move toward the lower half. Then, according
to Figure 4(b), the better and worse CBs, i.e.
agents with upper �tness value in each group, will
collide with each other. The change of the body
position represents the velocity of these bodies
before collision as:

vi = xi � xi�n2 i =
n
2

+ 1; :::; n; (49)

where vi and xi are the velocity and position
vectors of the ith CB in this group, respectively;
and xi�n2 is the ith CB pair position of xi in the
previous group.

Step 4. Calculation of the new position of the
CBs. After the collision, the velocity of bodies
in each group is evaluated using collision laws and
the velocities before collision. The velocity of each
moving CB after the collision is:

v0i =
(mi � "mi�n2 )vi
mi +mi�n2

i =
n
2

+ 1; :::; n; (50)

where vi and v0i are the velocity of the ith moving CB
before and after the collision, respectively; mi is the
mass of the ith CB; and mi�n2 is mass of the ith CB
pair. Also, the velocity of each stationary CB after
the collision is:

v0i =
�
mi+n

2
+ "mi+n

2

�
vi+n

2

mi +mi+n
2

; i = 1; :::;
n
2
; (51)

where vi+n
2

and vi are the velocity of the ith moving
CB pair before and the ith stationary CB after the
collision, respectively; mi is mass of the ith CB;mi+n

2
is mass of the ith moving CB pair. As mentioned
previously, " is the Coe�cient Of Restitution (COR)
and for most of the real objects, its value is between
0 and 1. It is de�ned as the ratio of the separation
velocity of two agents after collision to the approach
velocity of two agents before collision. In the CBO
algorithm, this index is used to control the explo-
ration and exploitation rates. For this goal, the COR
decreases linearly from unit to zero. Thus, " is de�ned
as:

" = 1� iter
itermax

; (52)

where iter is the actual iteration number, and itermax
is the maximum number of iterations, with COR
being equal to unit and zero representing the global
and local search, respectively.

New positions of CBs are obtained using the
generated velocities after the collision in position of
stationary CBs.

The new position of each moving CB is:

xnew
i = xi�n2 + rand � v0i i =

n
2

+ 1; :::n; (53)

where xnew
i and v0i are the new position and the

velocity after the collision of the ith moving CB,
respectively; xi�n2 is the old position of the ith
stationary CB pair. Also, the new positions of
stationary CBs are obtained by:

xnew
i = xi + rand � v0i i = 1; :::;

n
2
; (54)

where xnew
i , xi, and v0i are the new position, old

position, and velocity after the collision of the ith
stationary CB, respectively. rand is a random vector
uniformly distributed in the range (-1,1) and the sign
\�" denotes an element-by-element multiplication.
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Step 5. Termination criterion control. Steps 2-
4 are repeated until a termination criterion as the
maximum number of iterations is satis�ed.

4.3. Hybrid CBO and PSO
Both of the previously introduced methods (CBO
and PSO) are population-based algorithms and �nd
optimum solutions by changing the position of the
agents. However, the movement strategies are di�erent
for the CBO and PSO. The PSO algorithm utilizes
the local best and the global best to determine the
direction of the movement, while the CBO approach
uses the collision laws and the velocities before collision
to determine the new positions. Using the local best
and the global best are the main reasons for the success
of PSO.

However, in spite of having the above-mentioned
advantages, the standard PSO is infamous for prema-
ture convergence. This algorithm has some problems
in controlling the balance between the exploration and
exploitation due to ignoring the e�ect of other agents.

Similar to the PSO method, the CBO algorithm
uses the previous velocities, when the upper half of
CBs (moving CBS) moves toward the stationary CBs.
As it is mentioned in the previous section, after the
collision, the velocity of all CBs is evaluated using the
velocity of moving CBs before the collision and the
mass of the paired CBs. This will lead to loss of the
best position of particles which is found in the previous
iteration. Therefore, in the present hybrid algorithm,
the advantages of the PSO consist of the local best and
the global best is added to the CBO algorithm. For this
purpose, the best position of the stationary particles is
saved in a memory called Stationary Bodies Memory
(SBM). Also, another memory is considered to save the
better position of each particle that has been found so
far. This memory, so-called Particles Memory (PM), is
treated as the local best in the PSO, and it is updated
by the following expression:

PM i
k+1 =

8<:PM i
k ! F (Xi

k+1) � F (Xi
k)

Xi
k+1 ! F (Xi

k+1) � F (Xi
k);

(55)

in which the �rst term identi�es that when the new
position is not better than the previous one, updating
will not be performed, while when the new position is
better than the so far stored good position, the new
solution vector is replaced. With the above de�nitions,
and considering the above-mentioned new memories,
the velocity of CBs after collision is modi�ed by the
following equations:

For moving particles:

v0i =
�
mi � "mi�n2

�
vi

mi +mi�n2
+ r1:c1: (PMi � xi)

Figure 5. Flowchart of the CBO.

+r2:c2: (SPM� xi) i =
n
2

+ 1; :::; n: (56)

For stationary particles:

v0i =
�
mi+n

2
+ "mi+n

2

�
vi+n

2

mi +mi+n
2

+ r1:c1: (PMi � xi)

+ r2:c2: (SPM� xi) i = 1; :::;
n
2
: (57)

Figure 5 shows the schematic procedure of the CBO-
PSO algorithm.

5. Design examples

In this section, in order to compare fabrication costs
of the castellated beams with circular and hexagonal
holes, three benchmark examples from the literature
are selected. Also, these beams are used in this
section to show the e�ciency of the new optimization
algorithm. Among the steel section list of British
Standards, 64 Universal Beam (UB) sections starting
from 254 � 102 � 28 UB to 914 � 419 � 388 UB are
chosen to constitute the discrete set for steel sections
from which the design algorithm selects the sectional
designations for the castellated beams. In the design
pool of holes diameters, 421 values are arranged which
vary between 180 and 600 mm with increment of 1 mm.
Also, for cutting depth of hexagonal opening, 351
values are considered which vary between 50 and 400
mm with increment of 1 mm and cutting angle changes
from 45 to 64. Another discrete set is arranged for the



516 A. Kaveh and F. Shokohi/Scientia Iranica, Transactions A: Civil Engineering 23 (2016) 508{519

Figure 6. Simply supported beam with 4 m span.

number of holes. Likewise, in all the design problems,
the modulus of elasticity is equal to 205 kN/mm2 and
Grade 50 is selected for the steel of the beam which has
the design strength of 355 MPa [13,14]. The coe�cients
P1, P2, and P3 in the objective function are considered
0.85, 0.30, and 1.00, respectively.

5.1. Castellated beam with 4 m span
A simply supported beam with 4 m span, shown in
Figure 6, is selected as the �rst design example. The
beam is subjected to 5 kN/m dead load including
its own weight. A concentrated live load of 50 kN
also acts at mid-span of the beam and the allowable
displacement of the beam is limited to 12 mm. The
number of CBs is taken as 50 and the maximum
number of iterations is considered 200.

Castellated beams with hexagonal and circular
openings are separately designed by using the new
algorithm. The optimum results obtained by CBO-
PSO are given in Table 1. It is apparent from the same
table that the optimum cost for castellated beam with
hexagonal hole is equal to 89.78$, which is obtained
by three methods, but the CBO-PSO algorithm gives
better results than those of other approaches for cellu-
lar beams [19-20]. Also, these results indicate that the
castellated beam with hexagonal opening has low cost
as compared to the cellular beam. In this problem, the
length of the span is short; hence, shear capacity is very
important in optimum design of this beam and it is the
most e�ective factor in the design of this example.

Figure 7 shows the convergence of CBO-PSO
algorithm for design of castellated beams with di�erent
openings.

5.2. Castellated beam with 8 m span
In the second problem, the CBO-PSO algorithm is
used to design a simply supported castellated beam

Figure 7. Variation of minimum cost versus the number
of iterations for 4 m span castellated beam: (a)
Castellated beam with hexagonal opening; and (b)
castellated beam with circular opening.

with 8 m span. The beam carries a uniform dead load
0.40 kN/m, which includes its own weight. In addition,
it is subjected to two concentrated loads; dead load of
70 kN and live load of 70 kN, as shown in Figure 8.
The allowable displacement of the beam is limited to
23 mm. The number of CBs is taken as 50. The
maximum number of iterations is considered 200.

This beam is also designed by three optimization
methods and the optimum results are given in Ta-
ble 2. In design of the beam with hexagonal hole,
the corresponding costs obtained by the ECSS and

Table 1. Optimum designs of the castellated beams with 4 m span.

Method Optimum
UB section

Hole diameter
or cutting

depth (mm)

Total number
of holes

Cutting
angle

Minimum
cost ($)

Type of
the hole

CBO-PSO algorithm UB 305�102�25 125 14 57 89.78
HexagonalCBO algorithm [20] UB 305�102�25 125 14 57 89.78

ECSS algorithm [19] UB 305�102�25 125 14 57 89.78

CBO-PSO algorithm UB 305�102�25 243 14 { 91.08
CircularCBO algorithm [20] UB 305�102�25 244 14 { 91.14

ECSS algorithm [19] UB 305�102�25 248 14 { 96.32
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Table 2. Optimum designs of the castellated beams with 8 m span.

Method Optimum
UB section

Hole diameter
or cutting

depth (mm)

Total number
of holes

Cutting
angle

Minimum
cost ($)

Type of
the hole

CBO-PSO algorithm UB 610�229�101 244 14 55 718.33
HexagonalCBO algorithm [20] UB 610�229�101 243 14 59 718.93

ECSS algorithm [19] UB 610�229�101 246 14 59 719.47

CBO-PSO algorithm UB 610�229�101 487 14 { 721.55
CircularCBO algorithm [20] UB 610�229�101 487 14 { 721.55

ECSS algorithm [19] UB 610�229�101 487 14 { 721.55

Table 3. Optimum designs of the castellated beams with 9 m span.

Method Optimum
UB section

Hole diameter
or cutting

depth (mm)

Total number
of holes

Cutting
angle

Minimum
cost ($)

Type of
the hole

CBO-PSO algorithm UB 684�254�125 230 16 56 990.33
HexagonalCBO algorithm [20] UB 684�254�125 233 15 64 993.79

ECSS algorithm [19] UB 684�254�125 277 13 56 995.97

CBO-PSO algorithm UB 684�254�125 538 14 { 998.58
CircularCBO algorithm[20] UB 684�254�125 538 14 { 997.57

ECSS algorithm [19] UB 684�254�125 539 14 { 998.94

Figure 8. A simply supported beam with 8 m span.

CBO are equal to 719.47$ and 718.93$, respectively,
while this value is equal to 718.33$ for the CBO-
PSO algorithm. As a result, the performance of the
CBO-PSO method is better than other ways in this
design example. According to the obtained results, the
designed beam with hexagonal opening in comparison
with the cellular beam has low cost, and it is a more
appropriate option in this case. Also, the maximum
value of the strength ratio is equal to 0.99 for both
hexagonal and circular beams, and it is shown that
these constraints are dominant in the design.

Figure 9 shows the convergence history for opti-
mum design of hexagonal beam, which is obtained by
three methods. As can be observed, the convergence
rate of the CBO-PSO is nearly the same as that of the
CBO and higher than ECSS.

5.3. Castellated beam with 9 m span
The beam with 9 m span is considered to be the
last example of this study in order to compare the
minimum cost of the castellated beams. The beam

Figure 9. Convergence history of the hexagonal beam
with 8 m span.

Figure 10. Simply supported beam with 9 m span.

caries a uniform load of 40 kN/m including its own
weight and two concentrated loads of 50 kN, as shown
in Figure 10. The allowable displacement of the beam
is limited to 25 mm. Similar to the two previous
examples, the number of CBs is taken as 50 and the
maximum number of iterations is considered 200.

Table 3 compares the results obtained by the
CBO-PSO with those of the other algorithms. In the
optimum design of castellated beam with hexagonal
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Figure 11. Optimum pro�les of the castellated beams
with cellular and hexagonal openings.

hole, CBO-PSO algorithm selects 684� 254� 125 UB
pro�le, 16 holes, and 230 mm for the cutting depth and
56 degree for the cutting angle. The minimum cost of
design is equal to 990.33$. Also, in the optimum design
of cellular beam, the CBO-PSO algorithm selects 684�
254 � 125 UB pro�le, 14 holes, and 538 mm for the
holes diameter. It is observed from Table 3 that the
optimal design has the minimum cost of 990.33$ for
the beam with hexagonal holes, which is obtained by
the CBO-PSO algorithm; however, the CBO method
gives better results for cellular beam. In cellular
beam, the maximum value of de
ection of the beam
is smaller than that of its upper bound. This shows
that the strength criteria are dominant in the design
of this beam and they are related to the Vierendeel
mechanism. Similar to the cellular beam, in castellated
beam with hexagonal opening, the strength constraints
are dominant in the design process. The maximum
ratio of these criteria is equal to 0.99 for the Vierendeel
mechanism.

The optimum shapes of the hexagonal and cir-
cular openings are illustrated separately as shown in
Figure 11.

6. Concluding remarks

In this paper, a new hybrid algorithm, called CBO-
PSO, has been proposed for optimum design of castel-
lated beams. This algorithm consists of hybridization
of the CBO and PSO methods and it synthesizes
their merits. For this purpose, the positive features
of the PSO algorithm are added to the CBO. Three
castellated beams are selected from literature to design
by the presented algorithm. Beams with hexagonal
and circular openings are considered as web-openings
of castellated beams. Also, the cost of the beam
is considered as the objective function. Comparing
the results obtained by CBO-PSO with those of other
optimization methods demonstrates that the proposed
approach is superior to the other methods in the ability
to �nd the optimum solution. It is observed that
the optimization results obtained by the CBO-PSO
algorithm for more design examples have low cost

in comparison to the results of the CBO and ECSS
algorithms. Also, from the results obtained in this
paper, it can be concluded that the use of the beam
with hexagonal opening can lead to the use of less steel
material and it is better than cellular beam from the
point of view of the cost.
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