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Abstract. A powerful and new theoretical approach is used to obtain an expression
for the e�ect of creep on reinforced concrete shear deformable beams. First, a method is
proposed for Euler-Bernoulli beam to analyze the long-term behavior of concrete beams
based on linear strain theory. Second, a formulation has been developed to analyze the
strain distribution in shear deformable concrete beams. Finally, three numerical examples
are included in order to compare well-known codes with the proposed method. The
comparison of the proposed method, FEM, codes, and experimental works demonstrates
that the proposed analytical procedure can e�ectively simulate creep behavior of reinforced
concrete beams.
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1. Introduction

In view of the mechanical behavior of beams, three
various beam theories, namely Euler-Bernoulli beam
theory, Timoshenko beam theory, and higher-order
beam theory, are considered [1]. Figure 1 shows the
cross-section displacement in di�erent beam theories.
In the case of simple and classic Euler-Bernoulli beam
theory, it is assumed that the plane sections of the
cross-section remain plane and normal to the mid-plane
after deformation. In Euler-Bernoulli beam theory,
since transverse shear and transverse normal strains are
not taken into account, this theory is widely applied
to analyze shallow concrete beams. In the case of
deep concrete beams due to the signi�cance of shear
e�ects, a more accurate concept such as Timoshenko
beam theory is normally used. In Timoshenko beam
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theory with a highly accurate beam modeling, the
beam cross-section remains plane; however, a shear
correction factor is de�ned in order to include the e�ect
of shear deformation and compensate the error due
to constant shear stress assumption. The limitations
of shear coe�cient-based theory recognize the need
for a more accurate higher-order beam theory with
transverse inextensibility. Various studies based on
higher-order beam theories have been presented in the
literature. Some models based on variation of shear
strain and shear stress along the height of the beam
are proposed [2-6].

In order to include the warping of the cross-
sections through a �nite element framework, the
higher-order shear-deformable models were developed
in other research works [7-13]. In these models, the
third-order theory produces a slight increase in accu-
racy. However, for the sake of generalization, to rein-
force the concrete section, a more e�ective and feasible
method is required. Undoubtedly, in previous studies,
e�ects of aging and time-dependent parameters, such
as the e�ect of creep on behavior of high-order shear
deformable concrete deep beams, were not taken into
account. This need has initiated a mathematical e�ort
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Figure 1. Deformation of cross-section in various beam
theories.

in order to model RC beams in which both creep and
strain nonlinearity are considered. In addition, many
authors have proposed e�ective models in practical
codes such as ACI-209, �b model code 2010, and model
B3 for calculating the long-term behavior of concrete
structures [14-18]. In all models, displacement �eld
of the element is calculated by using Euler-Bernoulli
beam theory, and non-proportional strain distribution
along the section height is not taken into account,
particularly in the case of concrete beams. In contrast
to RC shallow beams, de
ection of deep concrete
beams is profoundly in
uenced by strain nonlinearity
in sections. Thus, the need to solve this problem by
a new method based on a mathematical approach has
been established.

To the best of this author's knowledge, the higher-
order beam model considering time e�ects such as
creep has not yet been addressed. In this paper, a
new approach is applied to a shear deformable high-
order beam, including additional de
ection due to
creep. The objective of this study is to develop a
powerful analytical model for the prediction of long-
time de
ection of shear sensitive elements such as RC
deep beams due to creep under sustained loading.

Experimental results are used to verify the proposed
analytical approach.

2. Model formulation

Due to creep and shrinkage of concrete, strain signi�-
cantly increases in this section, and curvature increases
with time. The magnitude of strain in time "(t) is the
sum of free shrinkage strain "sh(�k), unrestrained creep
strain caused by the initial concrete strain, "cr;k =
�(�k; �0)�c;0=Ec;0, and creep and elastic strain caused
by gradual changes in force [19].

Based on the similarity of the triangles shown in
Figure 2, it is recommended for authors to use the
following relation to distribute strain in a concrete
section:

f(z) = �"c
c

�
z � h

2
+ c
�

= �"c
�
z
c
� h

2c
+ 1
�
; (1)

where "c is the maximum strain in the concrete section.
To describe the property of strain diagram, it is

necessary to specify parameters n and m.
Consider the e�ect of creep on strain distribution

as follows:

f 0(z) = nf(z) +m =
�n"c
c

�
z � h

2
+ c
�

+m: (2)

Further, parameter n can be formulated as follows:

n =
"0c
c0
"c
c

=
"0c � c
"c � c0 : (3)

In addition, based on the gradual development of creep
strain in the concrete section, strain in compression
zone of concrete can be de�ned as follows [20]:

"0c = "c(1 + �'); (4)

where ' is the creep coe�cient.
For a simply supported RC beam, as shown in

Figure 3, strain state in sections is calculated consider-
ing instantaneous strain and creep-induced strain.

In order to evaluate coe�cient \�" as shown
in Figure 3, some simply supported RC beams with

Figure 2. Cross-sectional strain distribution for Euler-Bernoulli element.
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Figure 3. E�ect of creep and shrinkage on the strain distribution of RC beams.

Table 1. Range of parameter � for simply supported
beams.

Beam no. Creep coe�cient �

1 2.5 0.49
2 1.7 0.43
3 3.2 0.52
4 4.1 0.55
5 3 0.5
6 2 0.46
7 1.5 0.42
8 4.5 0.56
9 5 0.62
10 3.5 0.52
11 3.8 0.54
12 2.4 0.48
13 2.3 0.48
14 4.8 0.59
15 4.9 0.6
16 1.6 0.42
17 1.9 0.45
18 1.8 0.44
19 1.55 0.4
20 1.85 0.45
21 2.15 0.47
22 2.35 0.48
23 2.85 0.5
24 4.35 0.57
25 4.85 0.59
26 3.35 0.51
27 4.25 0.55
28 3.55 0.52
29 4.65 0.56
30 2.95 0.5

Average 0.505667

a fully-cracked cross-section were analyzed by Age-
Adjusted E�ective Modulus Method (AEMM). Table 1
presents the numerical results of estimating \�".

Age-adjusted e�ective modulus is de�ned by
Bazant [21]:

Ee(t; �0) =
Ec(�0)

1 + �(t; �0)'(t; �0)
; (5)

where Ec(�0) is the concrete modulus at time �0 (age
at �rst loading), '(t; �0) and �(t; �0) are the creep and
aging coe�cients at time t for concrete loaded at �0,
respectively. The last one is expressed as follows [21]:

�(t; �0) =
EC(�0)

EC(�0)�R(t; �0)
� 1
'(t; �0)

; (6)

where R(t; �0) is the relaxation function. Relaxation is
de�ned as the stress at time t when a constant (unit)
strain is applied to the sample at time �0.

In addition, the age-adjusted creep factor can be
expressed as follows:

F e;0 =
'(t; �0)[�(t; �0)� 1]
1 + �(t; �0)'(t; �0)

: (7)

According to AEMM, axial force and moment resisted
by the concrete part of the cross-section at time �0 are:

Nc;0 = AcEc;0"r;0 +BcEc;0�0; (8)

Mc;0 = BcEc;0"r;0 + IcEc;0�0; (9)

where Ac, Bc, and Ic are the area, the �rst moment,
and the second moment of concrete parts of the cross-
section, respectively. �0 is the curvature at time �0,
and "r;0 is the strain at reference axis at time �0.

In addition, the cross-sectional rigidities RA;k,
RB;k, and Rl;k at time �k are given by:

RA;k = AcEe;k +RA;s; (10)

RB;k = BcEe;k +RB;s; (11)

RI;k = IcEe;k +RI;s; (12)

where RA;s = AsEs (reinforcement rigidity), RB;s =
ysAsEs (the �rst moment of reinforcing steel bar area
of the cross-section), RI;s = y2

sAsEs (the second
moment of reinforcing steel bar area of the cross-
section).

The relation between strain and internal actions
on cross-sections can be de�ned by matrix F as follows:

Fk =
1

RA;kRI;k �R2
B;k

�
RI;k �RB;k�RB;k RA;k

�
: (13)
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On the other hand, matrix F relates strain to internal
forces at any desired time. To account for creep and
shrinkage during previous time periods, matrix f is
de�ned by:

fcr;k = F e;0
�
Nc;0
Mc;0

�
; (14)

fsh;k =
�
Ac
Bc

�
Ee;k"sh;k: (15)

In addition, the strain vector at concrete cross-sections
is de�ned by:

"k = Fk(re;k � fcr;k + fsh;k): (16)

Strain at any depth of concrete cross-sections can be
addressed as follows:

"k = "r;k + y�k: (17)

These results are valid for Euler-Bernoulli beam ele-
ment, and it is worth noting that mid-span de
ection
can be addressed for statically determinate beams as
in the following [19]:

�C =
l2

96
(�A + 10�C + �B); (18)

where l is the beam length, and �A, �B , and �C are the
curvatures at any time at supports A, B, and mid-span
point C, respectively.

As illustrated in Table 1, parameter � does not
deviate signi�cantly from a constant value of 0.5;
therefore, this value can be assigned to strain in Eq. (4).

Based on Eq. (2), the parameter following the
equation can be derived:

f 0(h=2) = nf(h=2) +m; (19)

where f 0(h=2)is the strain at z = h
2 for the e�ect of creep

in a concrete section. By assuming the strain equality
of steel in both cases with and without creep, strain in
steel may be described as follows:

f 0(h=2�d0) = f(h=2�d0): (20)

By substituting the relationship between f 0(h=2) and
f(h=2) into Eq. (20), a new equation can be written
in the following form:

nf(h=2�d0) +m = f(h=2�d0); (21)

m = f(h=2�d0)(1� n) = "s(1� n): (22)

Let the strain in Euler-Bernoulli beam be described by
a simple relation as follows:

"s =
d� c
c
� "c; (23)

"s =
d� c0
c0 � "0c; (24)

where "s is the strain in the longitudinal reinforcement.
From Eqs. (23) and (24), it can be concluded that:

d� c
c
� "c =

d� c0
c0 � "0c =

�
d
c0 � 1

�
� "0c; (25)�

d
c0 � 1

�
� "0c =

�
d
c
� 1
�
� "c; (26)�

d
c
� 1
�
� "c
"0c

=
d
c0 � 1; (27)

c0 =
d

(dc � 1)� "c
"0c + 1

; (28)

n =
"0c � c
"c � c0 =

"0c
"c
� c
d

��
d
c
� 1
�
� "c
"0c

+ 1
�
: (29)

Finally, for strain-induced creep distribution in section,
the following relation is proposed:

f 0(z) =
"0c
"c
� c
d

��
d
c
� 1
�
� "c
"0c

+ 1
�
� f(z)

+
d� c
c

"c �
�
1�

�
"0c
"c
� c
d

��
d
c
� 1
�

� "c
"0c

+ 1
���

: (30)

Considering "0c = "c(1+�'), substituting Eq. (18) into
(30), and selecting � = 0:5 for the �nal creep strain in
fully cracked section strain, the following relation can
be written as follows:

f 0(z) =
"c(1 + 0:5')

"c
� c
d

��
d
c
� 1
�

� "c
"c(1 + 0:5')

+ 1
�
� f(z) +

d� c
c

"c

�
�
1�

�
"c(1 + 0:5')

"c
� c
d

��
d
c
� 1
�

� "c
"c(1 + 0:5')

+ 1
���

; (31)

f 0(z) =(1 + 0:5')� c
d

��
d
c
� 1
�
� 1

(1 + 0:5')
+ 1
�

� f(z) +
d� c
c

"c �
�
1�

�
(1 + 0:5')

� c
d

��
d
c
� 1
�
� 1

(1 + 0:5')
+ 1
���

:
(32)
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When concrete stress range, �c=f 0c, is greater than
0:5f 0c, nonlinear creep can occur. In nonlinear creep,
creep is not proportional to the stress linearly. For this
range of stress, the \a�nity hypothesis" can be used
to extend Eq. (32) to the nonlinear creep case.

In this theory, a�nity coe�cient � can be de�ned
as follows [22,23]:

� = 1 + 2
�
�c
f 0c

�4

: (33)

The creep function in the case of nonlinear creep can
be expressed as follows:

For 0:5 < �c
f 0c < 0:7:

f 0(z) =(1 +

 
0:5 +

�
�c
f 0c

�4
!
')

� c
d

"�
d
c
� 1
�
� 1

(1 + (0:5 + (�cf 0c )4)')
+ 1

#
� f(z) +

d� c
c

"c �
�
1�

��
1 +

�
0:5

+
�
�c
f 0c

�4�
'
�
� c
d

��
d
c
� 1
�

� 1
(1 + (0:5 + (�cf 0c )4)')

+ 1
���

:
(34)

3. High-order shear deformable concrete beam

In the case of shear deformable beam theory, low-order
beams theory, such as Timoshenko and Euler-Bernoulli
elements, is modi�ed in order to consider warping in
cross-section. For an RC shear deformable beam, strain
in x direction can be proposed as follows:

"(z) = az3 + bz2 + ez + f: (35)

It is worth mentioning that, unlike the Reddy beam
theory, neutral axis is not located on mid height of the
section. This is due to the fact that, in fully cracked
concrete section, a time-varying position of the neutral
axis may occur. This is the main reason for considering
a two-order equation for strain-displacement relation in
Reddy beam theory. From a theoretical point of view,
solving a third-order equation (see Eq. (35)) is more
di�cult rather than solving a two-order one.

For calculating parameters a; b; c, and f , some
equations and boundary conditions must be met.

First, it is clear that the second derivative of
strain in z = c� h

2 is equal to zero. It means that:

"
00
xx

�
z = c� h

2

�
= 0: (36)

Second, in z = c� h
2 , strain in section is zero. This can

be given by:

"xx
�
z = c� h

2

�
= 0: (37)

According to Figure 3, the third boundary condition
can be de�ned as follows:

"xx
�
z = �h

2

�
= "c: (38)

The �rst and second derivatives of the strain equation
are thus obtained as follows:
"0xx = 3az2 + 2bz + e; (39)

"
00
xx = 6az + 2b; (40)

"
00
xx

�
z = c� h

2

�
= 6a

�
c� h

2

�
+ 2b = 0;

b = �3a
�
c� h

2

�
; (41)

"xx
�
z = c� h

2

�
= az3 + bz2 + ez + f = 0;

"xx
�
z = c� h

2

�
= a

�
c� h

2

�3

+ b
�
c� h

2

�2

+ e
�
c� h

2

�
+ f = 0;

"xx
�
z = c� h

2

�
= a

�
c3 � 3c2

h
2

+ 3c
h2

4
� h3

8

�
+ b

�
c2 � 2c

h
2

+
h2

4

�
+ e

�
c� h

2

�
+ f = 0;

(42)

"xx
�
z = �h

2

�
= "c;

"xx
�
z=�h

2

�
=a
�
�h

2

�3

+b
�
�h

2

�2

+e
�
�h

2

�
+f

= "c � ah
3

8
� bh2

4
� eh

2
+ f = "c: (43)

In addition, a; b; e; f , and "c are evaluated by Eqs. (41)-
(43) along with two equilibrium equations related to
axial force and bending moment in the concrete section.

Equilibrium equations can be represented as fol-
lows:X

Fx = 0;

w

�h2 +cZ
�h2

�cdz +Asfy = 0; (44)
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X
Mxx = 0;

w

�h2 +cZ
�h2

�c
�
z +

h
2
� c
�
dz = Asfy(d� c): (45)

According to the concrete model proposed by Anis et
al. [24], the following equation can be obtained:

f
f0

= 2:1
�
"
"0

�
� 1:33

�
"
"0

�2

+ 0:2
�
"
"0

�3

; (46)

where f is the compression stress in concrete, and f0
is the maximum stress at " = "0.

For axial force:

w

�h2 +cZ
�h2

 
2:1
�
"
"0

�
� 1:33

�
"
"0

�2

+ 0:2
�
"
"0

�3
!
f 0cdz

+Asfy = 0; (47)

"0 =
2f 0c
Ec

; (48)

w
� �h2 +cZ
�h2

�
(1:05Ec(az3 + bz2 + ez + f)

� 0:3325E2
c

(az3 + bz2 + ez + f)2

f 0c

+0:025E3
c

(az3+bz2+ez+f)3

f 0c2
�
dz+Asfy

�
=0: (49)

The equilibrium of bending moment in the concrete
section is given by:

w
� �h2 +cZ
�h2

�
(1:05Ec(az3 + bz2 + ez + f)

� 0:3325E2
c

(az3 + bz2 + ez + f)2

f 0c

+ 0:025E3
c

(az3 + bz2 + ez + f)3

f 0c2
�
(z +

h
2
� c)dz

+Asfy(d� c)
�

= 0: (50)

Solving �ve parameters a; b; e; f , and "c in Eq. (51)
leads to obtaining strain distribution along cross-
section height as follows:

b = �3a
�
c� h

2

�
;

a
�
c3 � 3c2

h
2

+ 3c
h2

4
� h3

8

�
+ b

�
c2 � 2c

h
2

+
h2

4

�
+e
�
c� h

2

�
+ f = 0;

�ah3

8
� bh2

4
� eh

2
+ f = "c;

w
� �h2 +cZ
�h2

�
1:05Ec(az3 + bz2 + ez + f)

�0:3325E2
c

(az3 + bz2 + ez + f)2

f 0c

+0:025E3
c

(az3+bz2+ez+f)3

f 0c2
�
dz+Asfy

�
=0;

w
� �h2 +cZ
�h2

�
1:05Ec(az3 + bz2 + ez + f)

�0:3325E2
c

(az3 + bz2 + ez + f)2

f 0c

+0:025E3
c

(az3+bz2+ez + f)3

f 0c2
��

z+
h
2
� c
�
dz

+Asfy(d� c)
�

= 0: (51)

Detailed integration of Eqs. (49) and (50) may be found
in Appendix A.

Figure 4 shows a summary of the proposed
method.

4. Creep formulation

To develop the proposed theory for shear-deformable
beam, the e�ect of creep on strain distribution is
considered (see Figure 5). It is assumed that the
strain in sections for creep e�ect is considered by linear
transformation.

"1(z) = a0z3 + b0z2 + e0z + f 0: (52)

By integrating the cross-section areas, the equilibrium
force and moment are given as follows:
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Figure 4. A summary of the proposed method.

Figure 5. Strain distribution in shear-deformable RC beam.

w
c0Z
�h2

 
2:1
�
"
"0

�
�1:33

�
"
"0

�2

+0:2
�
"
"0

�3
!
f 0cdz

+Asfy = 0; (53)

w
� c0Z
�h2

�
(1:05Ec(a0z3 + b0z2 + e0z + f 0)

� 0:3325E2
c

(a0z3 + b0z2 + e0z + f 0)2

f 0c

+ 0:025E3
c

(a0z3 + b0z2 + e0z + f 0)3

f 0c2
�
dz +Asfy

�
= 0; (54)

w
� c0Z
�h2

�
(1:05Ec(a0z3 + b0z2 + e0z + f 0)

� 0:3325E2
c

(a0z3 + b0z2 + e0z + f 0)2

f 0c

+ 0:025E3
c

(a0z3 + b0z2 + e0z + f 0)3

f 0c2
�

�
z +

h
2
� c
�
dz +Asfy(d� c0)

�
= 0: (55)

Appropriate boundary conditions are as follows:

"1

�
z = �h

2

�
= "

�
z = �h

2

�
(1 + 0:5')

"1

�
z =

h
2
� d0

�
= "

�
z =

h
2
� d0

�
;

"
00
1 (z = c0) = 0;

w
� c0Z
�h2

�
1:05Ec(a0z3 + b0z2 + e0z + f 0)

�0:3325E2
c

(a0z3 + b0z2 + e0z + f 0)2

f 0c

+0:025E3
c

(a0z3+b0z2+e0z+f 0)3

f 0c2
�
dz+Asfy

�
=0;
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w
� c0Z
�h2

�
1:05Ec(a0z3 + b0z2 + e0z + f 0)

�0:3325E2
c

(a0z3 + b0z2 + e0z + f 0)2

f 0c

+0:025E3
c

(a0z3 + b0z2 + e0z + f 0)3

f 0c2
�

�
z +

h
2
� c
�
dz +Asfy(d� c0)

�
= 0: (56)

The coupled system of Eq. (56) is more complicated
than the equations of Euler-Bernoulli beam theory and
must be solved by an analytical method.

In addition, in an elastic range, the radius of
curvature of the RC beam at its neutral axis can be
given by:

1
�

=
M
EI

; (57)

where M is the bending moment, E is the modulus
of elasticity, and I is the second moment of inertia.
The curvature component resulting from creep can be
de�ned by the following equation:

�creep(t; t0) =
Mcreep

Ec(t0)Icreep
; (58)

where Icreep is the modi�ed moment of inertia due to
a gradual change in the position of neutral axis under
creep of concrete e�ect.

Finally, total curvature due to short- and long-
term loading at any cross-section can be written as
follows:

�total(t; t0) = �creep + �0: (59)

For instance, by applying the assumption of parabolic
distribution of strain and curvature along the RC
beam, mid-span de
ection of a simply supported beam
can be given by Gilbert and Ranzi [19]:

�c =
l2

96
(�A + 10�C + �B); (60)

where �A and �B are the curvatures at supports A and
B, respectively. The curvature of mid-span of simply-
supported beam is de�ned by �C .

5. Numerical examples

The validity of the proposed model is exhibited by
some numerical examples. To validate the proposed
model, some numerical examples reported in literature
are used. The e�ect of creep on de
ection of RC

beams is analyzed by FEM, AEMM, CEB-FIP model,
Euro code, and experimental studies. First, three
shallow concrete beams tested by Gilbert [25] are
analyzed. Second, the results of experimental works
by Reybrouck et al. [26] respecting simply-supported
RC beams with di�erent reinforcements are used to
verify the proposed method. Finally, an RC deep
beam is modeled and compared by FEM and AEMM
approaches. Most test results in literatures are focused
on shallow RC beams, and deep RC beams have
received insigni�cant attention in the literature. In this
example, the e�ect of nonlinearity in strain distribution
is taken into account to identify the e�ect of shear in
the concrete sections.

5.1. Simply supported beams (test by Gilbert
[25])

In this section, the e�ect of linear creep on de
ection
of ordinary RC beams is investigated. Nonlinear creep
e�ects due to high loading level will be discussed in
Section 5.2.

ABAQUS suggests several models to simulate
nonlinear behavior of concrete. Concrete Damaged
Plasticity (CDP) model of concrete is di�erent from
others, because it is able to separately simulate com-
pressive and tensile behavior of concrete and introduce
the reduction of elastic modulus. In addition to static
loads, the model is also capable of modeling cyclic
loads. It should be noted that the behavioral model
uses Dracker-Prager failure criteria with Lubliner's
yield function [27]. To calculate the long-term de
ec-
tion of concrete beams due to creep and shrinkage,
subroutines UMAT and UEXPAN are used. It is worth
noting that ACI 209-08 is used to complete UMAT sub-
routine in ABAQUS for calculating creep coe�cient. A
complete 
owchart for the implementation of creep and
shrinkage in ABAQUS is shown in Figure 6.

The software was initially examined based on
the experimental results of the long-term de
ection of
shallow concrete beams by Gilbert [25]. According to
the validation of �nite element models of RC beams, it
can be concluded that the software is able to properly
model concrete beams including e�ects of creep and
shrinkage. In Gilbert's test, 6 conventional concrete
beams with di�erent geometries and loading conditions
were placed under long-term loading. All specimens
were simply supported beams with a span of 3.5 m
under constant load for 400 days. Applied force varied
from 11.8 kN to 27 kN. Geometrical characteristics of
tested beams are given in Table 2 and Figure 7.

The analytical results obtained from the imple-
mentation of subroutine UMAT and UEXPAN are
compared with the test results. A step-by-step anal-
ysis based on Kelvin chain theory is implemented
by ABAQUS. In fact, the stress-strain relation for
concrete as a viscoelastic material can be modeled by
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Figure 6. The outline of creep and shrinkage analysis coded in ABAQUS using UMAT and UEXPAN.

Table 2. Geometrical properties of RC shallow beams [25].

Beam Rebar no. Rebar Dia. (mm) As (mm2) Cb (mm) Cs (mm) S (mm)

B1-a 2 16 400 40 40 150
B1-b 2 16 400 40 40 150
B2-a 2 16 400 25 25 180
B2-b 2 16 400 25 25 180
B3-a 3 16 600 25 25 90
B3-b 3 16 600 25 25 90

Figure 7. Geometry of the RC beams.

a rheological model such as Kelvin chain theory. The
parameters of Kelvin chain model can be determined
from the continuous spectrum concept as an age-
dependent material. To ensure algorithm stability, an
unconditional method called exponential algorithm is
used to overcome numerical instability [28]. An outline
of the creep and shrinkage analysis based on a rate-
type creep model is shown in Figure 8. Creep under
constant environmental factors and stress is expressed
by a compliance function J(t; t0) de�ned as strain "
at time t caused by a unit uniaxial stress applied at
time t0. As previously mentioned, the relationship
between stress and strain in concrete can be expressed
by Kelvin chain model. The model includes a number
of Kelvin units called �. Each Kelvin unit includes
a spring with hardness of E�(t) and a damper with

viscosity of ��(t) = E�(t)��, which are in parallel. In
fact, parameter �� is known as retardation time. In
the systematic analysis, values of E�(t) and ��(t) can
be assumed constant at each time interval, and their
proportional amounts will be adopted in the next step.

Figure 9 displays time variation of the maximum
de
ection based on the experimental and analytical
analyses.

As seen in Figure 9, the proposed �nite ele-
ment analytical model shows good accuracy concern-
ing changes in reinforcement and loading on beams.
The model does not demonstrate a notable deviation
according to changes of parameters, and it properly
matches with experimental results. Since the creep
model of ACI does not consider drying creep, analyt-
ical results are subject to 1% to 6% deviation from
laboratory results after 400 days of loading. In the
case of the proposed model, shrinkage is not considered
in the mathematical formulation, and curvature as its
formulation demonstrates intrinsic errors. By consid-
ering the signi�cant e�ect of shrinkage, the curvature
on the maximum de
ection of RC beams B1-a, B2-b,
and B3-b is estimated to be subject to 18%, 23%, and
27% deviations from experimental results, respectively.
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Figure 8. Outline of the creep and shrinkage analysis coded in UMAT and UEXPAN [28].

Figure 9. Results obtained from di�erent models and
experiments: (a) B1-a, (b) B2-b, and (c) B3-b.

However, the proposed method can capture the e�ect
of creep on RC beam by considering shrinkage and the
modi�cations to the curvature along length of beams.

5.2. Simply-supported beams (test by
Reybrouck et al. [26])

To study the e�ect of creep on long-term de
ection of
RC beams and complete the veri�cation of the pro-
posed method, simply supported reinforced concrete
beams tested by Belgian research campaign [26] were
investigated as a second example.

In Reybrouck's study [26], some simply supported
beams were loaded at di�erent loading levels. Geome-
try details of cross-section and material properties are
shown in Table 3 and Figures 10 and 11.

The maximum long-term de
ection of the simply
supported RC beam is compared in Figure 12. Three
di�erent methods are shown in order to verify the
proposed method.

In this Figure, the solid line corresponds to the
proposed method, as described earlier. It can be
observed that the maximum di�erence between the
proposed method and experimental results in 10000
days is about 18%. The di�erence between these
methods justi�es the e�ect of shrinkage, which is
not considered in the proposed method. It is worth
mentioning that, in this example, a shallow beam is

Table 3. Material properties of concrete.

Input parameters Parameters
range

Concrete strength, f 0c (MPa) 35-50
Concrete elasticity modulus, Ec (MPa) 27,800-35,500
Steel elasticity modulus, Es (MPa) 195,500
Creep coe�cient, ' 0.5-4
Aging coe�cient, � 0.7-0.9



M. Ghabdian et al./Scientia Iranica, Transactions A: Civil Engineering 26 (2019) 2187{2202 2197

Figure 10. Geometry of simply supported beams [26].

Figure 11. Geometry of simply supported beams [26].

examined and Euler-Bernoulli assumption is found to
be the most practicable. Despite good accuracy of �b
model code 2010 and Euro code 2 in the case of shallow
RC beam without shear reinforcement as shown in
Figure 12, it appears that, in the case of deep RC beams
with stirrup, a more accurate approach such as �nite
element method is essential to predict a more realistic
response of RC beams.

5.3. Simply supported RC deep beam
To investigate the e�ect of creep of concrete on shear-
sensitive members, a simply supported deep beam is
modeled. According to the ACI Committee 318 [29],
deep beams are de�ned as members with a span-to-
depth ratio smaller than 4 (L=h < 4) and a shear
span-to-depth ratio smaller than 2 (a=d < 2). Based
on experimental and analytical studies, the assumption
of strain linearity over cross-section depth is found
to be not valid. The proposed method overcomes
this shortcoming by a third-order strain distribution in
concrete section. Figure 13 and Table 4 show material
properties and geometry conditions of the RC deep
beam.

As is shown in Figure 14, creep and shrinkage
analysis using �b model 2010 and Euro code 2 under-
estimate the de
ection of RC deep beams. It appears
that shear behavior plays a dominant role in time-
dependent de
ection of RC deep beam. For beam with
a
b = 0:5, maximum de
ection of RC deep beam using
FEM and the proposed method is about 20% greater

Figure 12. Maximum long-term de
ection of simply
supported beam.

Figure 13. Geometry and loading of a simply supported
RC deep beam.
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Table 4. Material properties of concrete.

Input parameters Parameters
range

Concrete strength, f 0c (MPa) 28
Concrete elasticity modulus, Ec (MPa) 25,000
Steel elasticity modulus, Es (MPa) 200,000
Creep coe�cient, ' 0.5-4
Aging coe�cient, � 0.65

Figure 14. Maximum long-term de
ection of RC deep
beam.

than the de
ection calculated using codes for linear
creep range. In �b model and Euro code, the e�ect
of strain nonlinearity of strain in the concrete section
is not taken into account. Unlike deep concrete beams,
as indicated in Figure 12, �b model, FEM, and Euro
code can perfectly �t the experimental data in the case
of shallow RC beams. However, in the case of deep RC
beams, the e�ectiveness of �b model and Euro code
requires further experimental observation and more
accurate theoretical analysis. Unlike �b model and
Euro code, in the proposed method, nonlinearity of
strain has been considered in the third-order equation
in order to predict the de
ection of shear sensitive
concrete beams accurately.

6. Conclusions

A new method based on strain distribution in concrete
section for creep e�ect was presented. First, a new for-
mulation of linear and nonlinear creeps in shallow RC
beam derived from the linear strain distribution theory
was presented. Then, a new theory was proposed to
characterize the e�ect of creep on shear deformable
RC beams. In the formulation presented in this work,
it is assumed that a third-order equation governs the
nonlinear strain distribution over cross-section depth.
Furthermore, the proposed method was compared with
�b model 2010 model, Euro code, and �nite element
method by using three numerical examples.

In simply supported RC beams tested by Gilbert,
the maximum di�erence between the experimental
results and the results of the proposed method was

about 27%. Unlike the previous experiment, in the
proposed method, shrinkage was not taken into account
and, thus, the proposed method and experiments were
in reasonably good agreement. In simply supported RC
beams tested by Reybrouck et al. [26], the proposed
method was examined in the case of nonlinear creep
due to high stress level. In addition, experimental
results were compared with �b and Euro code models;
subsequently, the proposed method was compared with
�b model code 2010 and Euro codes. Results showed
that the proposed model might be found useful to
investigate the e�ect of high sustained loading level
in shallow RC beams. Finally, the e�ectiveness of
the proposed method in the case of deep RC beams
was investigated. It is well known that, in commercial
design codes, the e�ect of strain nonlinearity in section
was not considered and limited to linear strain theory.
Thus, the proposed method could potentially yield
signi�cant bene�t for predicting long-term de
ection
in deep RC beams. Results presented in Section 5.3
showed that the proposed method provided a powerful
and robust tool for estimating the long-term de
ection
of sensitive shear elements. E�ect of shear strain in
sections leads to an increase in creep strain, compared
to the linear strain theory. Based on the knowledge
scope of this study, a modi�cation factor of 1.2 may be
appropriate in design codes owing to the creep e�ect
considered in the �nal de
ection of shear sensitive con-
crete beams. However, this shear coe�cient should be
further examined using complete experimental works
to cast new light on deep RC beams' behavior at high
and moderate levels of loading.
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Appendix A

Detailed integration of Eqs. (49) and (50) can be
expressed as follows:
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