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Abstract. Transportation Discrete Network Design Problem (TDNDP) aims at choosing
a subset of proposed projects to minimize the users' total travel time with respect to a
budget constraint. Because TDNDP is a hard combinatorial problem, recent research has
widely addressed heuristic approaches and ignored the exact solution. This paper explores
how application of parallel computation can a�ect the performance of an exact algorithm
in TDNDP. First, we show that the Branch-and-Bound (B&B) algorithm, proposed
by LeBlanc, is well adapted to a parallel design with synchronized Master-Slave (MS)
paradigm. Then, we develop a parallel B&B algorithm and implement it with two search
strategies of Depth-First-Search (DFS) and Best-First-Search (BFS). Detailed results over
up to 16 processing cores are reported and discussed in an illustrative example of the
Chicago Sketch network. The results suggest an almost linear speedup for both strategies,
which slightly drops as more processing cores are added. When using 16 processing cores,
the speedup values of 11.80 and 12.20 are achieved for DFS and BFS strategies, respectively.
Furthermore, the BFS strategy reveals a very fast parallel performance by �nding the
optimal solution via the minimum computational e�ort.
© 2016 Sharif University of Technology. All rights reserved.

1. Introduction

Transportation Discrete Network Design Problem (TD-
NDP) emerges in transportation planning as an urban
infrastructural decision-making problem. It targets the
construction of new projects, i.e. roads, in an urban
roads network so as to minimize the total travel time
of network users, while holding the budget constraint.
Considering a binary decision variable for each project
(whether the project is decided to be constructed or
not), TDNDP will be a combinatorial problem with
a binary search space, which exponentially enlarges
as the number of projects increases. This is why the
main body of related research has neglected the exact
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solutions of the problem and addressed the problem
through heuristic approaches.

The common idea in all heuristic approaches is
to achieve a rather high-quality feasible solution in a
reasonable amount of time [1]. The main drawback
in the application of heuristic algorithms is that they
do not provide insight into the quality of the achieved
solution. This is because the exact solution to the
problem, as a benchmark, is not available in large
instances. Achieving the exact solution, however, is a
computing intensive problem, which may require more
than 1-year CPU-time, even in moderate TDNDPs [1].
As a result, it is important to explore how the appli-
cation of parallel computation can contribute to speed
up extraction of an exact solution.

Using parallel computing, this article reinvesti-
gates the exact solution of TDNDP as a well-known
transportation problem. To do so, the conventional
Branch-and-Bound (B&B) algorithm, introduced in
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the early study of LeBlanc [2], will be considered with
two standard search strategies of Depth-First-Search
(DFS) and Best-Fist-Search (BFS). The algorithm
is parallelized using a Master-Salve (MS) paradigm.
Application of the algorithm to the Chicago Sketch
transportation network with 12 proposed projects sup-
ports that adding more processing cores (up to 16
cores in this study) promises a notable reduction in
computation time of the results.

The rest of this paper is organized as follows.
Section 2 overviews the background research. Section 3
formally describes TDNDP in a bi-level mathematical
programming formulation. Some prerequisite concepts
about B&B algorithms and their parallelization will
be introduced in Section 4. The application of a
synchronized MS parallel design to the B&B algorithm
in TDNDP is discussed in Section 5, where the parallel
algorithm is presented and some implementation notes
are added. The case study is introduced in Section 6
and computation results are reported and further
discussed. The paper is concluded and remarks for
future work are added in Sections 7 and 8.

2. Related research

As a combinatorial problem, TDNDP falls in the
category of NP-hard complexity class of network design
problems [3]. Combinatorial explosion of such a prob-
lem leads to an intractable running-time, which is the
main barrier for the application of exact algorithms.
As a result, exact solution methods in TDNDP date
back only to a few early studies which were not further
developed due to their computationally demanding
nature [4].

In NP-hard problems like TDNDP, there are var-
ious approaches, which can assist in �nding a solution
in a reasonable running-time. One approach is the
application of heuristics, which is, to trade o� the
quality of the found solution against the corresponding
running-time. In TDNDP, this has been the dominant
approach for which intense literature is available [1,5].
However, application of parallel computation is an-
other approach which harnesses multiple computation
resources to alleviate the computational burden of the
problem [6]. A short overview of both approaches is
given here.

There have been a variety of approaches, devel-
oped in TDNDP literature, to heuristically trade o�
the precision of the solution against the computation
time [1]. Some early studies manipulated the problem
formulation and obtained approximated solutions for
the problem [4], while others introduced decomposi-
tion techniques to overcome the problem size [7,8].
Meta-heuristics, as novel heuristics, have also been
extensively used and investigated in recent literature.
Various meta-heuristic algorithms have been developed

and compared in TDNDP in categories of genetic, ant
colony optimization, simulated annealing, and particle
swarm optimization. The interested reader may �nd
more on this topic in a recent review paper [4] and the
references therein.

Heuristics and meta-heuristics are promising ap-
proaches to evade the exponential complexity of TD-
NDPs. Although these approaches can reach an
appropriate solution in many instances, they do not
provide insight into the goodness of their solution. As
a result, exact solution methods always remain worth
not only to �nd the best solution of the problem, but
also even to test and validate heuristic approaches.

In recent decades, the advent of parallel comput-
ing facilities encouraged the exact solution of many NP-
hard problems. Promising results have been reported
in the literature for many of such problems [9]. Par-
allel algorithms, especially parallel Branch-and-Bound
(B&B) algorithms, as a result, were organized in early
1980's. These algorithms were further developed dur-
ing the last two decades and in various combinatorial
problems [6]. The results were impressive in �nding the
exact solution to some problems which had been con-
sidered unsolvable for decades. Asymmetric traveling
salesman problems with thousands of cities [10], as well
as instances of the quadratic assignment problem with
hundreds of variables [11], are among the problems for
which the exact solutions were found by devising par-
allel branch-and-bound algorithms. Interested reader
can �nd more information in [6,9].

In transportation planning discipline, in spite of
the demanding computational nature of many prob-
lems, parallel computing has not received much at-
tention so far. Parallelization of the transportation
network design problem, in either public transit or
urban transportation network design problem, has
been the topic of limited research. In case of public
transit network design, no work, to the best of our
knowledge, has been dedicated to addressing a par-
allel exact solution. The existing contributions are
limited to the application of parallel meta-heuristics
to the problem. Agrawal and Mathew [12] sug-
gested a parallel genetic algorithm for the problem
of transit routes network design, while minimizing
the total system costs. They suggested an inher-
ent parallelization scheme for the genetic algorithm,
in which the �tness function was evaluated, concur-
rently, for the solutions. Performance measures were
reported for two parallel models of global message
passing interface and global parallel virtual machine.
It was observed that the global parallel virtual ma-
chine model would outperform the other one. Yan
et al. [13] proposed a model based on paralleliza-
tion of the ant colony algorithm for maximizing
the number of direct travelers per unit length in a
bus network design problem. Parallel performance
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measures, however, have not been reported in their
study.

In a recent paper, Cooper et al. [14] implemented
a parallel multi-objective model based on the genetic
algorithm for minimizing both users' average travel
time and the operator's cost. They suggested appli-
cation of an islands approach with a random migration
policy to improve the performance of their parallel algo-
rithm. In their approach, the population of the genetic
algorithm is split into islands (sub-populations), among
which randomly selected solutions are exchanged. For
a transit network with 127 bus stops, when using 24,
48, and 96 processing cores, they report speedup values
of 17.8, 30.1, and 37.0, respectively.

Parallel solutions for urban transportation net-
work design problem have also been the topic of
research in Zarrinmehr [15] and Zarrinmehr and
Shafahi [16]. An exact B&B algorithm was undertaken
in both of these studies. Zarrinmehr [15] reported
the parallel performance of a synchronized MS parallel
B&B algorithm in a case study of the Chicago Sketch
transportation network. While addressing users' route
choice behavior through system-optimal ows, he re-
ported that by using 16 processing cores, the parallel
B&B algorithms can achieve speedup values of 10.85
and 9.86 in cases of BFS and DFS search strategies,
respectively. Zarrinmehr and Shafahi [16] investigated
how the performance of a parallel B&B algorithm
with DFS strategy in TDNDP could be accelerated.
They suggested assigning greedy solutions to the idle
processors at the start of the B&B algorithm. However,
authors reported the performance of their algorithm in
terms of the total number of parallel iterations rather
than the real running-times. Their results suggest
a potential super-linear speedup in four illustrative
examples of the Sioux-Falls transportation network.

The real performances of parallel algorithms for
rather large transportation networks in TDNDP, to
our knowledge, have not been addressed so far in the
literature. This paper explores how parallelization
can contribute to speed up the solution of a TDNDP.
Figure 1 shows how the research roadmap in this study
is narrowed down to �nd an exact solution for this
problem. As shown in this �gure, the paper will
address an exact solution for the problem. To achieve
that, the paper targets a parallel B&B algorithm based
on the algorithm proposed by LeBlanc [2]. Further,

the corresponding paradigm in this paper will be a
synchronous MS parallelization, in which one processor
will hold the main information, generate new tasks, and
distribute them across working processors at prede�ned
intervals.

3. Formal description of TDNDP

TDNDP is often known as a problem with a bi-level
programming formulation. At the upper level, it seeks
an optimum subset of a set of proposed projects (i.e.,
roads) in order to minimize the users' total travel time
in the network, while at the lower level, it solves a
Tra�c Assignment Problem (TAP) [1]. To formally
describe the problem, we use the following notations:

V The set of network vertices;
A Set of network links;
N(V;A) Current network, which is assumed to

be connected;
Ay Set of proposed projects (links) to be

added to the current network;
P Set of Origin-Destinations (ODs),

P � A�A;
drs The travel demand from r to s,

(r; s) 2 P ;
ya Binary decision variable corresponding

to project a, a 2 Ay, taking values 1
or 0, indicating whether to construct a
project or not;

y Binary vector of decision variables;
Krs The non-empty set of di�erent paths

form r to s, (r; s) 2 P ;
A(y) Set of network links after decision y

has been made, A(y) = A [ fa 2 Ay :
ya = 1g;

Krs(y) The non-empty set of di�erent paths
form r to s after decision y has been
made, (r; s) 2 P ;

fk Amount of ow in path k from r to s,
k 2 Krs(y);

�ak Binary variable taking values 1 or 0
indicating whether link \a" belongs to
path k or not, a 2 A(y), k 2 Krs(y);

Figure 1. The scope of this study.
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xa Amount of ow in link \a", a 2 A(y);
x(y) Vector of tra�c ow on network links

after decision y has been made;
ta(xa) Volume-delay function of link a,

a 2 A(y), assumed to be convex and
di�erentiable for xa � 0;

ca The cost related to construction of
project a, a 2 Ay;

B Available budget for the construction
of given projects.

The Upper Level Problem (ULP) of TDNDP,
now, can be written as follows:

MinyT (y) =
X

a2A(y)

xata(xa); (1)

s.t. :
X
a2Ay

caya � B; (2)

ya = 0 or 1; 8a 2 Ay; (3)

x(y) : user equilibrium ow corresponding

to decision vector y: (4)

The User Equilibrium (UE) in the ULP is a situation in
which for any OD, all paths have an equal travel time
which is not greater than those of unused paths [17].
This situation is resulted by solving a TAP, which can
be formulated in the Lower-Level Problem (LLP):

[LLP(y)] Min
X

a2A(y)

Z xa

u=0
ta(u)du; (5)

s.t. :
X

k2Krs(y)

fk = drs; 8(r; s) 2 P; (6)

fk � 0; 8k 2 Krs(y); 8(r; s) 2 P; (7)

xa =
X

(r;s)2P

X
k2Krs(y)

�akfk; 8a 2 A(y): (8)

Henceforth, the above formulation for TAP will be
referred to as a UE-type TAP. In transportation lit-
erature, TAP commonly stands for a UE-type prob-
lem. However, while addressing the B&B algorithm
of LeBlanc [2], we will also need another kind of TAP
that is formulated to �nd System Optimal (SO) ows,
namely a SO-type TAP. The SO-type TAP di�ers from
the UE-type one only in its objective function. It can
be written as follows [17]:

MinyT (y) =
X

a2A(y)

xata(xa);

s.t. : (6); (7); (8): (9)

4. Parallel B&B algorithms in combinatorial
problems

Parallelization is a way to speed up B&B algorithms
in order to �nd the exact solution of combinatorial
problems. Although parallelization cannot cope with
the combinatorial nature of NP-hard problems, the
experience of the past two decades suggests that it
can help solving moderate and rather large problems
that previously seemed to be unsolvable [6,9,18]. This
section �rst briey describes the two main search
strategies of a B&B algorithm (i.e., BFS and DFS)
and, then, introduces some prerequisite concepts about
parallel B&B algorithms.

4.1. B&B search strategies
There are two main strategies to traverse a B&B tree,
often known as BFS and DFS. These strategies arise
from the selection rule, with which one node is selected
and removed out of active nodes. If the selection
priority is given to a node with the least lower bound
value, the strategy of BFS emerges. Also, if the
deepest node in the B&B tree is given the priority,
the corresponding strategy would be called DFS [18].
To investigate the performance of di�erent strategies,
researchers categorized nodes of the B&B tree (partial
solutions) into three distinct sets [6,9,18]. Let f� be the
optimal objective function of a combinatorial problem;
then, categories are as follow:

� Critical nodes: Those nodes with lower bound values
smaller than f�;

� Undecidable nodes: Those nodes with lower bound
values equal to f�;

� Eliminable nodes: Those nodes with lower bound
values greater than f�.

The minimal subset of the B&B tree that must
be traversed in order to �nd the optimal solution and
prove its optimality, called the minimal tree [6,18]. The
minimal tree includes all critical nodes and maybe some
undecidable nodes. There is no guarantee that any
B&B algorithm restricts its search to the minimal tree,
because the traversed tree is created dynamically in the
course of the algorithm and it has an irregular structure
which is not known at the outset [6].

The BFS strategy focuses the search on critical
and undecidable nodes and commonly reveals a robust
performance. The main drawback of the BFS strategy
is its required memory which may grow exponentially
in the worst case. On the other hand, the DFS
strategy may evaluate lots of eliminable nodes and
become more time-consuming, but it requires much
less memory and can be e�ective in dealing with
large-size problems. Finally, using a proper strategy
always remains dependent to the problem at hand and
available resources [6,18].
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4.2. Parallelization of B&B algorithms
There are various approaches to search a B&B tree
in parallel. In a node-based approach, the related
computation at each node of the B&B tree (e.g., lower
bound calculation) is parallelized over processors. A
tree-based approach, on the other hand, is one of the
most famous approaches in which processors work on
di�erent parts of the tree, simultaneously. Tree-based
approaches may have interesting e�ects on the behavior
of the algorithm and, therefore, they have been widely
studied by researchers [18]. Through all various tree-
based approaches, this paper focuses on a special
topic, namely MS paradigm; but, beforehand, some
quantitative measures in parallel computing should be
introduced.

Assume that T (1) and T (p) are running-times of a
program when it is run on 1 and p processors, respec-
tively. Then, S(p) as the speedup of parallelization
with p processors is de�ned as follows [19]:

S(p) =
T (1)
T (p)

: (10)

Speedup is an indicator of how many times the program
would run faster due to parallelization. According to
Amdahl's law in parallel computing, it can be written
that [19]:

1 < S(p) < p: (11)

A linear speedup is a speedup that almost equals the
number of processors. Achieving a linear speedup
shows an e�ective parallelization.

In parallel B&B algorithms, Amdahl's law, how-
ever, is not always held. This behavior is often known
as an \anomaly" [20]. A super-linear speedup is a
kind of anomaly in which the speedup exceeds the
number of processors. Super-linear speedup arises due
to parallelization in B&B algorithms when an early
access of processors to a good solution brings about
deletion of further active nodes and reduction of the
search in the B&B tree [21].

Studying speedup bounds is not trivial in par-
allel B&B algorithms due to complexities and non-
deterministic behaviors. Nevertheless, researchers have
studied, theoretically, a few parallel paradigms. A
synchronized MS paradigm is one of these paradigms,
which can be briey described as follows [18]: A main
processor, namely the master, holds the important
information, e.g. the B&B tree, the incumbent, etc.
The master distributes active nodes as jobs among
other processors, namely the slaves (which is a MS
paradigm). The slaves receive the nodes, evaluate
related bounds, and return the results to the mas-
ter at prede�ned intervals (which is a synchronized
paradigm). The master then updates its information
and generates new jobs if needed.

The theoretical study of synchronized MS
paradigm was accompanied with 2 assumptions for
analysis simpli�cation:

� The master-slave data exchange is done in a zero
time;

� All slaves evaluate received nodes in a uniform
amount of time (known as grain-size uniformity).

With the above assumptions, if I(1) and I(p)
stand for the number of B&B iterations with 1 and
p processors, respectively, then the real-case speedup,
S(p), can be estimated by the theoretical speedup,
St(p), as follows [20,22,23]:

S(p) ' St(p) =
I(1)
I(p)

: (12)

Theoretical studies of anomalous behaviors in parallel
B&B algorithms with MS paradigm were organized in
the middle of 80s. These studies proved that anomalous
behaviors stem from the ambiguity in the selection of
undecidable nodes when they emerge as selection ties.
As a result, one can say that Amdahl's law (previously
presented in Inequality (11)) is theoretically held in
B&B trees with empty set of undecidable nodes.

5. Methodology

This section discusses how a synchronized MS paral-
lelization paradigm is adapted for parallelization of the
B&B algorithm in TDNDP and presents a owchart
and corresponding implementation notes for the par-
allel algorithm. But we require, beforehand, a quick
overview of LeBlanc's sequential B&B algorithm, to
which will be referred in next subsections.

5.1. The sequential algorithm
As previously mentioned, this paper addresses
LeBlanc's B&B algorithm as the basic sequential al-
gorithm to be parallelized. To exactly solve TDNDP,
LeBlanc organized a B&B algorithm for TDNDP, in
which the given projects were decided whether to be
constructed or not at subsequent levels of a binary tree.
Assuming n to be the number of given projects, the
B&B tree, introduced by LeBlanc, is a rooted binary
tree with n levels in which, at the root, all projects are
initially undecided. The decision whether to construct
project i or not (i = 1; 2; :::; n) is made at level i of the
tree. Figure 2 shows the structure of the tree, in which
each node is coded by a string of n binary variables.
Symbols 1, 0, or - at the ith place respectively indicate
that the project i is decided whether to be constructed,
not to be constructed, or yet undecided (as what is the
case for partial solutions at levels 1 to n� 1).

LeBlanc's B&B algorithm iteratively decomposes
partial solutions and when a budget-wise feasible and
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Figure 2. The structure of the B&B tree in TDNDP in
LeBlanc's algorithm.

complete solution emerges, solves a UE-type TAP to
evaluate it [2]. To achieve a lower bound on partial
solutions, LeBlanc also relaxed Constraints (2) and
(4), added Constraints (6), (7), and (8) to the ULP;
and proved that the objective function of the emerging
problem would work as a lower bound. This lower
bound can be calculated by solving a SO-type TAP
in which all undecided projects are assumed to be
constructed [2]. Figure 3 provides a owchart for
LeBlanc's B&B algorithm. In this �gure, the term node
stands for a B&B tree node and the terms right and left

children are de�ned in the same way as that shown in
Figure 2.

5.2. Application of a synchronized MS
parallelization paradigm on the problem

A synchronized MS paradigm of parallelization well
adapts LeBlanc's B&B algorithm in TDNDP. Figure 4
shows this paradigm in a diagram. According to the
diagram, the master processor holds the main infor-
mation of the B&B algorithm. Each parallel iteration
starts with generating new nodes to be evaluated.
The slave processors that have already maintained the
network information receive the newly generated nodes
in the form of binary string codes. Each slave processor
decodes the received binary string, performs a tra�c
assignment on the corresponding network, and sends its
evaluation back to the master. The parallel iteration
�nishes as the master receives the evaluation data and
updates the incumbent and active nodes.

Choosing an appropriate parallelization paradigm
for a problem is highly a�ected by both communication
and idling overheads in the parallel program [19]. Two
main reasons, in this paper, support the application of
a synchronized MS paradigm:

� Communication overhead due to a centralized
paradigm is negligible;

Figure 3. Flowchart for LeBlanc's B&B algorithm.
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Figure 4. Diagram of parallelization.

� Idling overhead due to a synchronized paradigm is
not much.

5.2.1. Communication overhead
In parallel computing, the communication between
processors usually results in communication overhead.
This is the case particularly for MS paradigms when
the access to the master may become a bottleneck [18].
Communication overhead is totally dependent on the
task grain size of processors and the amount of data
exchanged between them [19]. The parallel B&B
algorithm in this paper has a coarse-grain structure,
because processors will solve a TAP at each parallel
iteration, which is a rather time-consuming proce-
dure.

Furthermore, data exchange between processors
will be restricted to only sending and receiving the
binary strings and related evaluations at each iteration.
To achieve this, all the required information (network,
demand matrix, and projects) will initially be loaded
over slave processors. Afterwards, each slave processor
receives a binary string as a solution to be evaluated,
adjusts the underlying network with the received infor-
mation, solves a TAP over that, and sends its evaluated
value back to the master.

5.2.2. Idling overhead
Idling overhead often takes place in synchronized par-
allelization when processors must communicate at pre-
de�ned intervals and idling time may be incurred to
some processors due to synchronization [18]. Unifor-
mity of the grain-size, therefore, plays an important
role in alleviating idling overhead. In the parallel B&B
algorithm used in this paper, we assign each processor
to solve one TAP (i.e., evaluate one node) at each iter-
ation. The computational complexity of TAPs mainly
depends on the network size and con�guration, which
remains almost unchanged in the real networks by

Figure 5. Lower bound evaluation in the B&B tree.

adding or deleting a couple of projects. However, there
still remains another problem to parallelize LeBlanc's
algorithm with a uniform grain-size.

Let us de�ne a node expansion in LeBlanc's B&B
tree as creation and evaluation of feasible children of
one node. Then, the potential problem occurs when
there is a di�erence between expanding nodes of levels
1; 2; :::; n�2 and those of level n�1. For nodes of levels
1; 2; :::; n � 2, the expansion can be done by exactly
solving one TAP as shown in Figure 5. This is because
after assuming undecided projects to be constructed
(required for lower bound calculation), the right child,
which takes the new decision of construction, will have
the same lower bound as that of its father and needs
no further bound calculation. Therefore, expansion of
such nodes is computationally equivalent to solving one
TAP only for the left child.

The expansion of nodes of level n � 1, however,
may require solving two TAPs rather than one. Both
children of those nodes, if feasible, are complete so-
lutions for which a UE-type TAP must be solved for
evaluation. This problem opposes the uniformity of the
grain-size in our parallel algorithm, but can be tackled
by a simple modi�cation in the B&B tree, shown in
Figure 6.

According to the modi�cation shown in Figure 6,
for any node of level n� 1, if the right child thereof is
also feasible (Figure 6(a)), we duplicate the nodes each
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Figure 6. The B&B tree at level n� 1.

for one child (Figure 6(b)). The priority is then greedily
given to the right child with one more constructed
project. Therefore, in the modi�ed tree, expansion of
the nodes of level n � 1, as well as the nodes of levels
1; 2; :::; n � 2, will computationally equal to one TAP
solution and at the same time, the grain-size uniformity
of parallel algorithm is also preserved.

5.3. Parallelization of the sequential algorithm
The focus of this paper in parallelization of LeBlanc's
B&B algorithm is on the stage of node expansion,
namely parallel nodes expansion. The parallel B&B
algorithm can be viewed from two points: the master
processor and the slaves. Figure 7 represents owcharts
of the parallel algorithm for both master and slaves.
Most steps in this �gure are similar to those in Figure 3.
The main di�erences are at the stages of parallel nodes
expansion, slaves receiving massages and working on
them, and the termination part where a parallel feature
is applied to the algorithm.

5.4. Implementation notes
Here, we add some implementation notes about the
algorithm:

� The parallel algorithm was implemented in Java
programming language and the library MPJ was
exploited for parallelization;

Figure 7. Flowcharts for the parallel B&B algorithm.
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Table 1. De�nition of projects in the Chicago Sketch network.

Project
number

From
vertex

To
vertex

fftta
(minutes)

ca
(vehicles/hour)

ba
(units of budget)

1 29 28 3.52 12000 16
2 3 5 3.73 12000 16
3 397 403 4.65 12000 17
4 605 399 5.37 12000 18
5 362 360 7.20 12000 20
6 407 681 7.55 12000 22
7 550 564 7.73 12000 22
8 580 568 10.10 12000 22
9 766 779 10.61 12000 23
10 42 50 14.20 12000 26
11 250 217 17.64 12000 29
12 527 529 18.03 12000 33

� TAPs were solved using the convex combination
algorithm [17];

� The B&B algorithm was implemented with two
strategies of DFS and BFS. This was done in
the master processor by giving the corresponding
selection priorities when a node was selected and
removed from active nodes;

� Since the TAP brought about a coarse-grain par-
allelization, especially for real-life transportation
networks, the master would experience a notable
idling overhead. Therefore, the master was also
designated to solve a TAP in conjunction with
slaves;

� The program was �nally run on two clusters, each
with 2 CPUs of type Intel Xeon E5504 2.00 GHz.
With 4 processing cores at each CPU, the total
number of 16 processing cores were available to
parallelize the program.

6. Computational performance

6.1. Case study de�nition
The case study of this paper, over which parallel perfor-
mance and results of the algorithm are reported, is the
Chicago Sketch network. The Chicago Sketch network
is an aggregated, but yet a rather large, representation
of the Chicago region network [24]. It contains 933
vertices, 2950 links, and 93513 non-zero trip demand
values in the OD matrix. The data for demand in
the Chicago Sketch network provides very low levels
of congestion, which may not be naturally subjected to
a TDNDP. The overall demand matrix, as a result, is
initially doubled (suggested in Bar-Gera [24]) to make
the underlying network more congested and realistic
for design applications.

In order to introduce a set of projects to select

from, 12 arti�cial projects were proposed following the
pattern of network links. The volume-delay functions
for projects, as well as network links, follow the
traditional BPR format:

ta(xa) = fftta

 
1 + 0:15

�
xa
ca

�4
!
; (13)

in which:
fftta is the free-ow travel time on project a

(minutes),
ca is the practical capacity of project a

(vehicles/hour),
ta(xa) is the travel time on project a

(minutes).
Table 1 presents detailed information of the projects
based on the BPR function. In this table, ba also stands
for the budget (units of budget) required to construct
project a. The total available budget is assumed to
be 100 (units of budget), which is a mid-size budget
level. Although the capacity of 12000 (vehicles/hour)
sounds rather large for the projects, it is not yet beyond
the capacity range of the existing links of the Chicago
Sketch network. In this network, there are more
than 30 non-connector links, for which the practical
capacity is 12000 or even more vehicles/hour [24].
Addressing projects with low-capacities, however, may
require application of more accurate TAP solution
algorithms compared to the classic convex-combination
algorithm (Frank-Wolfe algorithm) used in this pa-
per [25].

6.2. Numerical results
Based on the parallel synchronized MS algorithm
previously introduced, the program was run with two
strategies of DFS and BFS. Related results for 1 to 16
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Table 2. Parallel computation results.

(a) DFS strategy
Number of
processing

Total number
of evaluated

Number of evaluated nodes of
type

Total number
of parallel

Running-time,
T (p) (minutes)

cores1, p nodes Critical Undecidable Eliminable iterations, I(p)

1 1013 767 0 246 1013 271.71
2 1013 767 0 246 508 144.83
4 1019 767 0 252 258 76.49
8 1029 767 0 262 132 42.57
16 1062 767 0 295 69 23.02

(b) BFS strategy
Number of
processing

Total number
of evaluated

Number of evaluated nodes of
type

Total number
of parallel

Running-time,
T (p) (minutes)

cores1, p nodes Critical Undecidable Eliminable iterations, I(p)

1 767 767 0 0 767 208.09
2 767 767 0 0 384 110.08
4 767 767 0 0 193 56.71
8 767 767 0 0 99 31.39
16 767 767 0 0 53 17.06

1This number includes the master processor as well, as previously mentioned in Subsection 5.4.

Table 3. Maximum number of active nodes for strategies
of DFS and BFS.

Number of
processing cores, p

The maximum number
of active nodes

DFS BFS

1 6 232
2 12 230
4 22 229
8 40 229
16 76 230

processing cores are shown in Table 2. It must be noted
that the data is not known in advance and it will be
extracted after running the programs.

The required memory for both strategies of DFS
and BFS can also be estimated by the maximum
number of active nodes during the program execution,
as represented in Table 3.

After running the program, the optimal solu-
tion, as a binary string of length 12, was found
[000100111000] with the objective function of 65045456
vehicle-minutes.

6.3. Speedup, anomalous behavior, and
memory analysis

Based on the results of Table 2, the program with the
BFS strategy reveals a notably faster performance than
that of the strategy DFS. As Table 2(a) suggests, there
are many eliminable nodes in the traversal of DFS
strategy. As a result, much more parallel iterations

Figure 8. The running-time of parallel programs.

in the DFS strategy are required to evaluate these
extra nodes. According to Table 2(b), the number
of eliminable nodes for the BFS strategy remains
zero even when the number of processors increases
to 16. This is why the strategy BFS reveals a notably
faster performance than the strategy DFS, as shown in
Figure 8, in which running-time curves are plotted for
both strategies.

As previously discussed in theoretical studies
about parallel B&B algorithms, anomalous behaviors
(that contradict with Amdahl's law) may occur when
there are selection ties over undecidable nodes in the
B&B tree [20]. In our TDNDP instance, however,
Table 2 suggests that there is no undecidable node for
both parallel strategies of BFS and DFS. As a result,
Amdahl's law theoretically holds for the synchronized
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Figure 9. Speedup curves in the Chicago Sketch case study.

MS parallelization of the B&B algorithm in TDNDP
instance of this paper.

Con�ning the search to the minimal B&B tree
is other interesting information that can be extracted
from Table 2(b) for the BFS strategy. As shown in
this table, the BFS strategy traverses neither of the
eliminable nodes nor the undecidable ones. This clearly
adapts to what has been previously introduced as the
minimal tree in B&B algorithms. It is noteworthy that
even for 16 parallel processing cores, this behavior in
achieving the solution through the minimum computa-
tional e�ort is consistent.

The required memory for strategies DFS and BFS
can be compared using Table 3. The required memory
for the DFS strategy is much lower than that for the
BFS. It increases linearly at �rst, but slightly drops
for higher values of p. For the BFS strategy, this
behavior seems quite di�erent. The required memory
for this strategy is rather high, but it remains almost
unchanged by addition of more processing cores.

Speedup curves are the other information. The
real speedup, S(p), and theoretical speedup, St(p),
(introduced, respectively, in Eqs. (10) and (12)) are
calculated in Table 4. Corresponding curves for
strategies DFS and BFS are also shown in Figure 9.
This �gure indicates that real speedup values are
lower than the theoretical ones. This gap is mainly
due to a synchronized design, in which a short lag

Table 4. Speedup results for the strategies of DFS and
BFS in the Chicago Sketch case study.

Number of
processing

DFS speedup
values

BFS speedup
values

cores, p St(p) S(p) St(p) S(p)

1 1.00 1.00 1.00 1.00
2 1.99 1.88 2.00 1.89
4 3.93 3.55 3.97 3.67
8 7.67 6.38 7.75 6.63
16 14.68 11.80 14.47 12.20

in one processing core is incurred to all of them
as an idling overhead. Although the gap between
real and theoretical speedups, shown in Figure 9,
slightly increases for higher values of p, both strategies,
DFS and BFS, reveal a notable increment in their
real speedups by adding more processors up to 16
processing cores in this study. Both strategies achieve
a real speedup of almost 12 (12.20 and 11.80 for BFS
and DFS, respectively) when 16 processing cores are
used for parallelization. These are slightly more than,
but still similar to, the speedup values reported by
Zarrinmehr [15] (10.85 for BFS and 9.86 for DFS
strategies) who solved the problem with a normal
demand (not doubled as in this study) and a system-
optimal ow pattern.

7. Conclusion

This paper focused on a parallel exact solution for TD-
NDP as a computing-intensive problem in transporta-
tion literature. Based on LeBlanc's B&B algorithm,
we discussed that a synchronized MS parallelization
paradigm adapted well to the solution algorithm due to
processors' negligible communication and little idling
overhead. The parallel B&B algorithm was developed
and implemented in Java with search strategies of BFS
and DFS. In a TDNDP instance with 12 projects,
parallelization results over up to 16 processing cores
in the Chicago Sketch network supported that:

� Due to traversing through B&B tree in the minimal
computational e�ort, the parallel B&B algorithm
with BFS strategy attained a notable faster perfor-
mance than that of DFS. Consequently, the run-time
for BFS strategy when using 16 processing cores was
17.06 minutes while it was 23.02 minutes for the
strategy DFS;

� Both parallel strategies of BFS and DFS achieved
an almost linear speedup, which slightly dropped
by adding more processing cores. When using 16
processing cores, the achieved speedup values were
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12.20 and 11.80 for the BFS and DFS strategies,
respectively;

� The proposed algorithms were not subjected to an
anomalous behavior of parallel B&B algorithms;

� The required memory for the strategy DFS increased
almost linearly and proportional to the number of
processing cores. The BFS strategy, on the other
hand, required much more memory. However, this
memory remained almost consistent as the number
of cores changed.

8. Future work

To further extend the results of this paper, it is
interesting to run the parallel B&B algorithms on mas-
sive parallelization facilities. In that case, application
of other parallelization paradigms (e.g., asynchronous
paradigms) may further reduce the idling and commu-
nication overheads and result in a more scalable parallel
design. Sensitivity analysis over budget, demand level,
network, and size of the projects is also a potential di-
rection for future research. It would also be interesting
to apply novel e�cient TAP features, which can allow
for enhancing the run-time as well as addressing low-
capacity projects in the problem.
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