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Abstract. Power system network is formed to mainly generate power through all
generators to ful�l total load demand and compensate for transmission line losses. The
Economic Load Dispatch (ELD) problem is considered one of the most important problems
of cost minimization in power system operations. Various approaches have been employed
so far to solve the ELD problem. In this paper, a powerful Search Group Optimization
(SGO) technique was implemented to solve the ELD problem. SGO maintains a good
balance between its exploitation and exploration phases. This optimization technique
tends to �nd promising regions of the search space from the �rst iteration onwards. The
algorithm uses �ve important steps to reach an optimal solution to the ELD problem and
they include initial population, initial selection of search group, search group mutation,
family generation, and new search group selection. Using these �ve steps, the SGO tends
to make a smooth transition towards the optimized solution. The SGO was applied to �ve
test systems and the �nal results were compared to those of various other recently developed
optimization techniques. The results proved the robustness, feasibility, e�ectiveness, and
e�ciency of SGO in terms of computational time and proximity to global optimum solution.
© 2020 Sharif University of Technology. All rights reserved.

1. Introduction

The problem of Economic Load Dispatch (ELD) is the
one of the most important problems in the �eld of
power system optimization. The ELD problem is re-
quired to satisfy total load demand using all generators
while meeting all their physical and operational con-
straints. This load demand needs to be satis�ed in the
most economical manner. The ELD ensures that the
total cost of thermal generation is minimized and the
reliability of the entire system is also maintained. How-
ever, it should be ensured that the equality and inequal-
ity constraints of each and every generator are satis�ed.
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Initially, there are many optimization techniques
that were based on the classical approach and some of
them include gradient method [1], Lagrangian relax-
ation [2], Quadratic Programming (QP) [3], Hop�eld
modeling framework [4], Linear Programming (LP) [5],
and Dynamic Programming (DP) [6]. These methods
assume a linear increasing cost function and have been
used to solve the ELD problems.

The di�culty that puts these classical approaches
at a disadvantage is that they tend to converge to-
wards a local optimum in the search space and then,
they get diverted from the global optimum solution.
The main drawback of the DP approach is that it
needs very large dimensions of data, hence requiring
a huge amount of programming e�orts. Because of
the presence of non-linear equations such as ramp
rate limit, non-smooth cost functions, and discontinues
prohibited operating zones (POZs), classical techniques
are not e�cient enough to identify the global optimum
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solution. Because of the non-linear characteristic of
the ELD problem, the optimization techniques having
a classical approach tend to move towards a local
optimum, hence avoiding the global optima. Therefore,
it is very important to �nd an optimization technique
that can not only overcome all the disadvantages of
the classical techniques but also avoid the local optima
and directly move towards the global optimum solution
within the least computational time. There are many
optimization techniques like hop�eld neural network
[7] that have been implemented to solve the ELD
problem. However, the main disadvantage to arti�cial
intelligence techniques is that they take a large number
of iterations to reach the global optimum solution.
Thus, they prove to be a bit slow in their approach
to the global optimum solution. With the develop-
ment of computer technology, many new population-
based heuristic optimization techniques have been
introduced including Di�erential Evolution (DE) [8],
Hybrid Evolutionary Programming (HEP) [9], Evo-
lutionary Programming (EP) [10], Civilized Swarm
Optimization (CSO) [11], Particle Swarm Optimiza-
tion (PSO) [12], Craziness-based PSO (CRPSO) [13],
Hybrid PSO (HPSO) [14], Modi�ed PSO (MPSO)
[15], Hybrid GA (HGA) [16], Genetic Algorithm
(GA) [17], Adaptive Real Coded GA (ARCGA) [18],
Bacteria Foraging Optimization (BFO) [19], Modi�ed
Arti�cial Bee Colony (ABC) [20], Modi�ed Biogeog-
raphy based Optimization (BBO) [21], Seeker Op-
timization Algorithm (SOA) [22], Ant Colony Opti-
mization (ACO) [23], Tabu Search (TS) [24], Quasi
Oppositional BBO (QOBBO) [25], Oppositional BBO
(OBBO) [26], and Harmony Search Algorithm (HSA)
[27] for solving ELD problems. Other optimization al-
gorithms including Opposition-based Harmony Search
Algorithm (OHSA) were proposed to solve the ELD
problem in [28]. Krill Herd Algorithm (KHA) [29] was
also successfully applied to solve the ELD problems.
Teaching Learning-Based Optimization (TLBO) was
implemented in [30,31]. This optimization technique
divides search agents into teaching and learning phases
and di�erent subjects o�ered to the learners are con-
sidered design variables of the optimization problem.
Modi�cation of TLBO optimization algorithm called
quasi TLBO was proposed in [32], which successfully
solved the ELD problem. Oppositional Real Coded
Chemical Reaction Optimization (ORCCRO) [33] is
capable to solve non-linear and non-quadratic equa-
tions with smoother transition. Some new algorithms
like backtracking search optimization [34], exchange
market algorithm [35], enhanced PSO [36], evolution-
ary PSO [37], and ameliorated grey wolf optimization
[38] have been introduced recently, in which the PSO
and the grey wolf technique have been modi�ed to
solve the ELD problem. In the ameliorated grey
wolf optimization, the conventional grey wolf algorithm

has been modi�ed by changing the base equation and
focusing more on the exploration and exploitation
phases of the algorithm. In the evolutionary PSO,
the conventional PSO technique has been modi�ed by
using an evolutionary term, which helps evolve the
�tness of each search in the subsequent iteration. Sine
cosine algorithm [39] has been used to solve the ELD
problem. This algorithm uses trigonometric functions
to �nd the optimal results. In this technique, there
are two equations that help search agents reach the
optimized answer. However, many of the algorithms
stated above face some di�culties in avoiding the local
optima and thus, there is a need for �nding a strong
optimization technique.

Initially, the classical and derivative techniques
were used to solve the problem of ELD; however,
given that the problem gets more complex in nature,
the classical techniques fail to give optimal results.
Thus, soft computing techniques should be used to
solve the problem of ELD. A powerful Search Group
Optimization (SGO) technique was proposed in [40]
and it was characterized by a more e�cient exploration
and exploitation ability and a shorter computational
time than other optimization techniques. The SGO
follows �ve steps to reach an optimal solution: initial
population, initial selection of search group, search
group mutation, family generation, and new search
group selection. In this paper, the SGO is applied to
�ve di�erent types of test systems and the results ob-
tained are compared to other optimization techniques.
The main advantage of using the SGO technique is
that with every iteration, the size of the search space
keeps on decreasing. This reduction in the search space
helps shorten the time required for reaching an optimal
solution and it facilitates quick transition from the
exploration to exploitation phase. Once the area of the
optimal value is well de�ned, the exploitation process
helps �nd the �nal solution to any problem.

Section 2 gives the problem formulation. Section 3
introduces a brief explanation of the SGO and the
results. Section 4 gives the simulations. Finally,
conclusion is drawn in Section 5.

2. Problem formulation

The problems of ELD are expressed as convex or
non-convex problems with some linear and nonlinear
constraints for di�erent applications.

The objective function of ELD with quadratic cost
function based on Eq. (1) is as follows [41]:

FCost = min
NX
a=1

�
�a + �aPa + 
aP 2

a
�
: (1)

For realistic and practical application of ELD problem,
the smooth quadratic cost function was modi�ed by
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adding sinusoidal terms of ripples input-output curve
with valve point e�ects. The valve point e�ect-based
cost function of ELD is given below [41]:

FCost = min
NX
a=1

�
�a + �aPa + 
aP 2

a + j�a

� sin
�
"a
�
Pmin
a � Pa�	 j�; (2)

where �a, �a, 
a, �a, and "a are the constant values of
fuel cost function. N is the total number of thermal
generators. The power generated by each generator is
Pa. Lower and higher limits of power generation are
characterized by Pmin

a and Pmax
a . Power generation by

each unit is followed by generating capacity constraint:

Pmin
a � Pa � Pmax

a : (3)

This is the inequality constraint of ELD problems. The
equality constraint or real power balance constraint of
ELD is based on Eq. (4):

NX
a=1

Pa � PD � PLoss = 0; (4)

where PD is the total system active power demand and
total transmission loss PLoss is calculated by using the
B-matrix loss coe�cients expressed as [41]:

PLoss =
NX
a=1

NX
b=1

PaBabPb +
NX
a=1

B0aPa +B00: (5)

Ramp rate limit is another constraint considered in
ELD problems to increase the life of generators. The
active power of a particular generator needs to be gen-
erated within the given operating limits. Due to abrupt
changes in power generation at any interval, heavy load
is imposed on the generators which can be harmful;
thus, changes in power generation should be limited to
upper and lower values, which are considered as rate
limits of upper ramp and down ramp. Therefore, based
on the ramp rate limit, power generation by any unit
should follow the equations below:

Pa � Pa0 � URa (as generation rises); (6)

Pa0 � Pa � DRa (as generation declines); (7)

and:

max
�
Pmin
a ; Pa0 �DRa� � min (Pmax

a ; Pa0 + URa) ;
(8)

where Pa0 is the power generation of the previous ath
interval; URa and DRa are the up- and down-ramp
limits.

Di�erent faults in the machines, boilers, feed
pumps, steam valve operation, and vibration in the
bearing, etc., the constraints like POZ are considered in
ELD problems. To protect the generator, it should not
generate power in the prohibited zone. Mathematically,
POZ can be expressed as follows:

Pmin
a � Pa � P la;1

Pua;j�1 � Pa � P la;j
Pua;n � Pa � Pmax

a

)
; j = 1 to n; (9)

where Pua;j and P la;j are the upper and lower limits of
the jth POZ of the ath unit. Total number of POZ of
the ath unit is n.

For a system with n number of generators and
having nF fuel options for each unit, the entire cost
function can be expressed as follows:

Fip (Pi) =aip + bipPi + cipP 2
i

+ jeip � sin
�
fip � �Pmin

ip � Pi�	 j; (10)

where p = 1; 2; � � � ; nF . Calculation of slack generator
is one of the important parts of ELD problem formula-
tions. If N is the total number of generators, then the
(N � 1) number of power generations should initially
be calculated randomly based on Relations (3), (6)-
(9). The remaining generator (let Nth), called slack
generator, must be calculated using Eq. (4). The value
of slack generator is given below:

PN = PD �
N�1X
a=1

Pa (without transmission losses);
(11)

PN =PD+PLoss�
N�1X
a=1

Pa (with transmission losses):
(12)

Transmission loss (PLoss) is also related to power
generations based on Eq. (5); therefore, Eq. (11) is
further modi�ed and given below:

BNNP 2
N + PN

 
2
N�1X
a=1

BNaPa +
N�1X
a==1

B0N � 1

!
+
�
PD +

N�1X
a=1

N�1X
b=1

PaBabPb

+
N�1X
a=1

B0aPa �
N�1X
a=1

Pa +B00

�
= 0: (13)

3. Search Group Optimization (SGO)

In order to �nd a solution closer to the optimized
solution, a powerful SGO is proposed that has a good
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balance between exploration and exploitation phases of
the algorithm. The basic idea of the SGO is to �nd the
promising areas of the search space in the �rst iteration
itself. The SGO �nds a solution nearest to the global
solution and then, compares it to the solution obtained
in the previous iterations. If the tolerance is within the
permissible limits, then the answer is accepted; if not,
then the iterations continue. There are �ve steps that
make up this algorithm. They are stated in detail as
follows:

3.1. Initial population
An initial population set P is generated from the search
domain.

Pij = xmin
j + (xmax

j � xmin
j ) � U j = 1; 2; � � � ; nD;

i = 1; 2; � � � ; npop; (14)

where Pij is the jth design variable belonging to the
ith individual of the population set P . U [0; 1] is a
randomly generated variable ranging from 0 to 1. xmin

j
and xmax

j are the lower and upper bounds of the jth
design variable. nD is the total number of design
variables. npop is the total size of the population. This
process initializes the total number of search agents
that will be used to screen the entire search space. Once
the total size of the population set P is decided, then
the selected search agents having higher �tness than
other search agents are selected to move towards the
optimum solution.

3.2. Initial selection of search group
In the previous stage, the population set P is created
and it has all the elements placed randomly based
on their objective function. Then, each set of the
population is sorted rank wise by comparing their
�tness functions. The elements having the highest
�tness are placed in the �rst row and the elements
having the lowest �tness are placed in the last row.
A matrix R is created, in which each row represents
a set of individuals. The jth row represents the ith
member of the search group.

3.3. Search group mutation
So as to maximize the ability to search, the search
group R is mutated in each and every iteration. In
this process, the individuals in the search group R
are replaced by new individuals generated based on
Eq. (15). The main advantage of this mutation
process is that the areas of the search space away
from the current search group R's position are properly
explored. Hence, the entire search space gets properly
explored. The new individuals are generated with the
equation:

xmutj = E[Rj ] + t"�[Rj ] for j = 1; 2; :::; nD: (15)

Here, xmutj is the jth variable of the given mutated

individual. E is the mean value and � is the standard
deviation operator. Di�erent values of the variable " at
di�erent times in Eq. (15) are selected randomly within
[�1; 1]. Variable t from Eq. (15) is used for controlling
the location of the newly generated individual in the
search space and the numerical value can be taken
within 1, 2, or 3. Rj is the jth column in the search
group matrix. After mutation operation, the elements
are changed entirely and a new matrix Rnew is created
which comprises all the mutated elements. Each set of
individuals for R and Rnew is compared based on their
�tness. The suitable set of individuals (based on their
�tness) is replaced and assigned to matrix S. Thus, a
new search group matrix S is created.

3.4. Family generation
In this process, a new family is created by the members
of the search group and this set is denoted by F . Thus,
once the entire search group is �nalized, each member
will generate a family by the equation:

xnewj = Ri;j + �" for j = 1; 2; :::; nD; (16)

where � is the control parameter for the size of
perturbation. As the iteration count increases, the size
of � keeps on decreasing. The updated parameters are
given by:

�k+1 = b�k; (17)

where b is a parameter of the SGO and can be assigned
using Eq. (18):

b = max
�

1� 4� kcurrent
kmax

; 0:25� kcurrent
kmax

�
; (18)

where kcurrent and kmax are the current and maximum
numbers of iterations, respectively. �k is the value of �
in the kth iteration. The parameter �k facilitates the
exploration phase of the algorithm. Initially, � has a
large value, which means that it allows the individuals
to move freely in the search space and explore the entire
search space. However, as the iterations progress, the
value of � decreases, thus restricting the movement
space for the individuals. Thus, the individuals stay
in the neighbourhood only. Hence, initially, the value
of � should be large enough to allow the individuals to
freely move in the search space and �nd the promising
regions of the entire search space. The main advantage
of this process is that the higher the �tness of a search
agent, the larger the number of individuals that it will
generate.

3.5. New search group selection
In this phase, when the number of iterations exceeds
a prede�ned value, then the exploration phase of the
algorithm will end. Now, the new search group will
start exploiting the present search area. This phase
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is called the local phase, given that in this phase, the
individuals do not go to the global regions to explore
the search space; however, they remain in the current
search space to �nd an optimized solution.

There are a few features unique to SGO that
make this algorithm di�erent from other optimization
techniques: (1) the higher the �tness of the group, the
larger the number of individuals that it will generate;
(2) the implementation of the standard deviation and
the mean value in the mutation process; (3) the pres-
ence of the global and local phases that allow smooth
transition from the exploration to the exploitation
phase.

Algorithm for SGO
� Initially, the total number of search agents is as-

signed. Each of the elements of the search agents
should maintain their upper and lower limits. These
search agents have the duty to screen the entire
search space and �nd the optimum solution. The
total number of search agents is decided depending
on the number of variables present in the objective
function of the problem. This initialization was
presented in Eq. (14);

� The initial population set is created by assigning the
values of search agents. This set is denoted by P ;

� In the subsequent step, the objective function of
each and every individual is calculated;

� A new search group R is created which comprises all
those search agents characterized by a higher �tness
function. The search agents with a high �tness
function are only allowed to stay in the search group
R, which is having only half the population of the
set P ;

� Now, to maximize the search ability of the search
agents, each and every element in the search group
R is mutated. In this process, the location of a
search agent is given in binary integer number. Any
binary number represents a combination between 0
and 1. The number of ones and zeros of the location
of each search agents is complimented. Thus, the
new search agent produced is present on the entire
opposite side of the search space. These search
agents are created using Eq. (15). This allows the
algorithm to select only those search agents with
high �tness only;

� If the mutated search agent has higher �tness than
the original search agent, then the original search
agent is replaced;

� Now, the new set that comprises the mutated and
original search agents is created. This new set will
be used for screening the search space. This set is
denoted by F and is created using Eq. (16);

� Change in the value of � (input equation number)
facilitates a smooth transition from the exploration
to exploitation phase. When the value of � is large,
then the exploration of the search space takes place;
however, given that the iterations will pass, the
value of � decreases and then, the exploitation phase
begins. The updating of � is done using Eq. (17);

� When a prede�ned value of iterations is exceeded,
the algorithm reaches its �nal value;

� Now, the search agents are completely in the ex-
ploitation phase and will not go to any other search
space to explore the possibility of an optimum
solution.

The 
owchart of SGO algorithm is given in Figure 1.

3.6. Consecutive steps of SGO algorithm
integrated into the ELD problem

In this subsection, the steps to solve the ELD problem
by the implementation of SGO are explained. The
detailed sequential steps for solving the ELD problem
are explained below:

i. Initialization of various parameters takes place in
the �rst step. Various variables including the lower
bound, upper bound, total power demand PD, etc.
are initialized. The total number of generators and
total number of search agents are denoted by m
and Popsize, respectively; The search agent matrix
is represented as follows:

X = Xi = [X1; X2; X3; � � � ; XPopsize];

where i = 1; 2; 3; : : : ;Popsize. For ELD problem,
the search agent matrix is assigned as active power
generation and is represented as follows:

[Xij ] =[Xi1; Xi2; Xi3; � � � ; Xim] = [Pi1;

Pi2; Pi3; � � � ; Pim] = [Pij ];

where m = number of generators.
ii. Each of the elements of the search agent should

follow Relations (3), and (6)-(9). If various e�ects
including ramp rate limit and the POZ are consid-
ered, then the equation should be satis�ed based
on Eqs. (6), (7), (8), and (9), respectively.

iii. For ELD problem, the objective function considers
the fuel cost of power generation and can use
(1) when quadratic fuel cost function is applied
and also use (2) when valve point loading e�ect
is considered. This objective function serves as
the base of the algorithm. This function needs
to minimize the cost of the power generation in
the system. The objective function of fuel cost
is calculated based on the power generation (Pij)
from step i.
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Figure 1. Flowchart of Search Group Optimization
(SGO) algorithm.

iv. The main working mechanisms of the algorithm
begin here. A new search group R is formed which
comprises all those search agents with a higher
�tness function. The search agents with a high
�tness function are only allowed to stay in the
search group R, which is having only half the
population of the set P .

v. Now, to maximize the search ability of the search
agents, each and every element in the search group
R is mutated. In this process, the location of a
search agent is given in the binary integer number.
Any binary number represents a combination be-
tween 0 and 1. The number of ones and zeros of
the location of each search agents is complimented.

Thus, the new search agent produced is present on
the entire opposite side of the search space. This
allows the algorithm to select only those search
agents that are characterized by high �tness only.
If the mutated search agent has higher �tness than
the original search agent, then the original search
agent is replaced.

vi. Change in the value of � (input equation number)
facilitates a smooth transition from the exploration
to exploitation phase. When the value of � is
large, then the exploration of the search space
takes place; however, as the iterations pass, the
value of � decreases and then, the exploitation
phase will begin.

4. Results and simulations

To prove the e�ectiveness and e�ciency of the SGO,
�ve sets of cases with varying degrees of complexity
were considered and the �nal results were compared to
those of di�erent other existing optimization methods.
The program was written using MATLAB-2017A pro-
gramming tool and executed by a 1.7 GHz Intel core i7
personal computer with 8-GB RAM.

Test Case 1: Six generator units were considered in
Test Case 1, where transmission losses were taken into
account. The total power demand was 1263 MW. The
input data were taken from [42] and the system ran up
to 400 iterations. The number of search agents used
was 50 in this case. In Test Case 1, the results of the
SGO algorithm were compared with those of TLBO
[42], CTLBO [42], and AIS [42] optimization tech-
niques. According to the graph and the table, the mini-
mum cost was �rst reached by using the SGO algorithm
and the rest of the optimization techniques took a very
short amount of time. In Table 1, the minimum fuel
cost for 6 generator units was 15377.8907 $/hr. and it
could be determined by the proposed algorithm, which
outperformed TLBO [42], CTLBO [42], and AIS [42].
The minimum, maximum, and average fuel costs ob-
tained after 50 trials are presented in Table 2. The con-
vergence characteristics of SGO are shown in Figure 2;

Test Case 2: Ten generator units were considered
in Test Case 2, in which transmission losses were
neglected. This test case considered multi-fuel cost and
valve-point loading e�ect. The total power demand
was 2700 MW. The input data were taken from [34].
The number of search agents used was 50 in this
case. In this test case, the results obtained using SGO
algorithm were compared with those of PSO-LRS [43],
APSO [43], and CBPSO-RVM [43] optimization tech-
niques to prove the e�ectiveness of SGO algorithm.
According to Table 3, the minimum cost was �rst
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Table 1. Comparison between Search Group Optimization (SGO) and other techniques for the 6-unit test system in terms
of optimum power output and fuel cost.

Unit
Power output (MW)

SGO TLBO [42] CTLBO [42] AIS [42]

P1 436.4684 446.7270 449.4980 458.2904

P2 166.8021 173.4890 173.4810 168.0518

P3 249.3160 173.4890 264.9700 262.5175

P4 125.8384 138.8320 127.4610 139.0604

P5 190.8636 165.6500 173.8420 178.3936

P6 100.8060 86.9460 86.2390 69.3416

Transmission loss (MW) 7.1800 12.4180 12.4900 13.1997

Power generated (MW) 1270.0945 1275.4180 1275.4900 1275.6550

Fuel cost ($/hr) 15377.8907 15,442.5200 15,441.6970 15,448.0000

Table 2. Minimum maximum and average cost obtained by Search Group Optimization (SGO) and various optimization
techniques for 6 generator units (50 trials).

Methods
Generation cost ($/hr) Time/

iteration (S)
No. of hits to

minimum solutionMaximum Minimum Average

SGO 15378.2541 15377.8907 15377.8907 0.45 50

TLBO [42] 15450.3685 15,442.5200 15445.8163 0.98 29

CTLBO [42] 15449.0236 15,441.6970 15445.9464 NA* 21

AIS [42] NA 623.9588 NA NA NA

�NA: Not Available.

Figure 2. Convergence characteristics of Search Group
Optimization (SGO) for 6 generator units.

reached by using the SGO algorithm and the rest of
the optimization techniques took a minimum amount
of time, compared to other. In Table 3, the minimum

fuel cost for 10 generator units was 623.9170 $/hr
and it was obtained by the proposed algorithm, which
outperformed PSO-LRS [43], APSO [43], and CBPSO-
RVM [43]. The minimum, maximum, and average fuel
costs obtained after 50 trials are presented in Table 4.
The convergence characteristics of SGO are shown in
Figure 3;

Test Case 3: In this system, 15 units of generators
were considered and transmission loss was considered.
The total load demand was 2630 MW. The minimum
fuel cost was calculated using SGO. The input data
were taken from [35] and the system ran for 500 iter-
ations. The POZ and ramp rate limit were considered
in this case. In Test Case 3, the results of the SGO
algorithm were compared with those of Exponential
Moving Average (EMA) [35] and GAAPI [35] optimiza-
tion techniques. According to Table 5 and Figure 4,
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Table 3. Comparison between Search Group Optimization (SGO) and other techniques for the 10-unit test system in
terms of optimum power output and fuel cost.

Unit

Power Output (MW)
Fuel
type

SGO
Fuel
type

PSO-LRS
[43]

Fuel
type

APSO
[43]

Fuel
type

CBPSO-RVM
[43]

P1 2 217.0407 2 219.0155 2 223.3377 2 219.2073

P2 1 211.8944 1 213.8901 1 212.1547 1 210.2203

P3 1 281.6792 1 283.7616 1 276.2203 1 278.5456

P4 3 238.2056 3 237.2687 3 239.4176 3 239.3704

P5 1 279.8321 1 286.0163 1 274.6411 1 276.412

P6 3 239.2547 3 239.3987 3 239.7953 3 240.5797

P7 1 290.2798 1 291.1767 1 285.5406 1 292.3267

P8 3 240.2228 3 241.4398 3 240.6270 3 237.7557

P9 3 425.5958 3 416.9721 3 429.3104 3 429.4008

P10 1 275.9942 1 271.0623 1 278.9553 1 276.1815

Fuel cost ($/hr) { 623.9170 { 624.2297 { 624.0145 { 623.9588

Table 4. Minimum, maximum, and average costs obtained by Search Group Optimization (SGO) and various
optimization techniques for 10 generator units (50 trials).

Methods
Generation cost ($/hr.) Time/

iteration (S)
No. of hits to

minimum solutionMaximum Minimum Average

SGO 625.5478 623.9170 623.9170 0.51 50

PSO-LRS [43] 626.7210 624.2297 625.3756 0.98 27

APSO [43] 628.3947 624.0145 626.5550 NA* 21

CBPSO-RVM [43] NA 623.9588 NA NA NA

�NA: Not Available.

Figure 3. Convergence characteristics of Search Group
Optimization (SGO) for 10 generator units.

the minimum cost was �rst reached by using the SGO
algorithm and the rest of the optimization techniques
took a minimum amount of time, compared to other.
In Table 5, the minimum fuel cost for 15 generator
units was 32697.2819$/hr. and it was obtained by the

Figure 4. Convergence characteristics of Search Group
Optimization (SGO) for 15 generator units.

proposed algorithm, which outperformed EMA [35] and
GAAPI [35]. The minimum, maximum, and average
fuel costs obtained after 50 trials are presented in
Table 6. The convergence characteristics of SGO are
given in Figure 4;
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Table 5. Comparison between Search Group Optimization (SGO) and other techniques for the 15-unit test system in
terms of optimum power output and fuel cost.

Unit
Power output (MW)

SGO EMA [35] GAAPI [35]

P1 455.0000 455.0000 454.70

P2 380.0000 380.0000 380.00

P3 130.0000 130.0000 130.00

P4 130.0000 130.0000 129.53

P5 170.0000 170.0000 170.00

P6 460.0000 460.0000 460.00

P7 430.0000 430.0000 429.71

P8 71.4289 72.0415 75.35

P9 58.5965 58.6212 34.96

P10 160.0000 160.0000 160.00

P11 80.0000 80.0000 79.75

P12 80.0000 80.0000 80.00

P13 25.0000 25.0000 34.21

P14 15.0000 15.0000 21.14

P15 15.0000 15.0000 21.02

Transmission loss ($/hr) 29.9915 30.6626 30.3615

Power generation (MW) 2659.6254 2660.6626 2660.3621

Fuel cost ($/hr) 32697.2819 32704.4503 32732.9515

Table 6. Minimum, maximum, and average costs obtained by Search Group Optimization (SGO) and various
optimization techniques for 15 generator units (50 trials).

Methods
Generation cost ($/hr) Time/iteration

(s)
No. of hits to

minimum solutionMaximum Minimum Average

SGO 32698.1574 32697.2819 32697.3344 0.75 47

EMA [35] 32708.3201 32704.4503 32706.4626 0.88 24

GAAPI [35] 32739.0147 32732.95 32736.9527 NA� 17

�NA: Not Available.

Test Case 4: In this case, 38 generator units were
considered and their transmission losses were neglected.
The total power demand was 6000 MW. The input
data were taken from [44] and the system ran for 400
iterations. In Test Case 4, the results of the SGO
algorithm were compared with those of RCCRO [45],
DE/BBO [45], and AGWO [38] optimization tech-
niques. According to the graph and the table, the

minimum cost was �rst reached by using the SGO
algorithm and the rest of the optimization techniques
took a minimum amount of time, as compared to other.
In Table 7, the minimum fuel cost for 38 generator units
was 9412256.3019$/hr. and it was obtained by the
proposed algorithm, which outperformed RCCRO [45],
DE/BBO [45], and AGWO [38]. The minimum, maxi-
mum, and average fuel costs obtained after 50 trials are



3184 K. Bhattacharjee and N. Patel/Scientia Iranica, Transactions D: Computer Science & ... 27 (2020) 3175{3189

Table 7. Comparison between Search Group
Optimization (SGO) and other techniques for the 38-unit
test system in terms of optimum power output and fuel
cost.

Unit Power output (MW)

SGO RCCRO
[45]

DE/BBO
[45]

P1 426.1262 426.0061 426.6060

P2 430.7339 435.0539 426.6060

P3 421.9806 422.4470 429.6631

P4 438.6962 427.9425 429.6631

P5 425.4791 432.5756 429.6631

P6 435.1896 422.6355 429.6631

P7 440.6818 431.1825 429.6631

P8 420.8413 418.6959 429.6631

P9 114.5062 115.0654 114.0000

P10 114.4242 114.0000 114.0000

P11 118.3628 122.1920 119.7680

P12 123.5941 131.5714 127.0728

P13 110.0026 110.0000 110.0000

P14 90.0000 90.0000 90.0000

P15 82.0000 82.0059 82.0000

P16 120.0000 120.1242 120.0000

P17 161.7287 161.7578 159.5980

P18 65.0040 65.0000 65.0000

P19 65.0000 65.0000 65.0000

P20 271.9663 271.9461 272.0000

P21 271.7233 271.4465 272.0000

P22 259.4784 258.5583 260.0000

P23 127.8823 135.5357 130.6486

P24 10.0497 10.0000 10.0000

P25 116.5059 115.0635 113.3050

P26 84.7331 83.9506 88.0669

P27 35.3114 39.6814 37.5051

P28 20.0014 20.0000 20.0000

P29 20.0023 20.0000 20.0000

P30 20.0000 20.0055 20.0000

P31 20.0000 20.0003 20.0000

P32 20.0200 20.0000 20.0000

P33 25.0003 25.0002 25.0000

P34 18.000 18.0000 18.0000

P35 8.0005 8.0000 8.0000

P36 25.0000 25.0000 25.0000

P37 21.5802 23.7275 21.7820

P38 20.3922 20.8276 21.0621
Fuel cost

($/hr)
9412256.3019 9412404.2774 9417235.7863

presented in Table 8. The convergence characteristics
of SGO are shown in Figure 5;

Test Case 5: In this case, 40 generator units were
considered with their transmission losses neglected.
The input data were taken from [46]. The total load
demand was 10500 MW. In Test Case 5, the results of
the SGO algorithm were compared with those of EMA
[46] and Quantum behaved Particle Swarm Algorithm
(QPSO) [46] optimization techniques. According to
the graph and the table, the minimum cost was �rst
reached by using the SGO algorithm and the rest of
the optimization techniques took a minimum amount
of time, compared to other. In Table 9, the minimum
fuel cost for 40 generator units was 121412.5347$=hr.
and it was obtained by the proposed algorithm, which
outperformed EMA [46] and QPSO [46]. The mini-
mum, maximum, and average fuel costs obtained after
50 trials are presented in Table 10. The convergence
characteristics of SGO are shown in Figure 6.

4.1. Tuning of parameters for the SGO
To obtain an optimized solution using SGO, it is
imperative to obtain proper values of parameters �,
", and t. Tuning of these parameters is very important
for obtaining an optimized solution. Di�erent values of

Figure 5. Convergence characteristics of Search Group
Optimization (SGO) for 38 generator units.

Figure 6. Convergence characteristics of Search Group
Optimization (SGO) for 40 generator units.
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Table 8. Minimum, maximum, and average costs obtained by Search Group Optimization (SGO) and various
optimization techniques for 38 generator units (50 trials).

Methods
Generation cost ($/hr) Time/iteration

(s)
No. of hits to

minimum solutionMaximum Minimum Average

SGO 9412259.2481 9412256.3019 9412256.7730 0.15 42

RCCRO [45] 9412411.2099 9412404.2774 9412407.6050 0.29 26

DE/BBO [45] 9417245.8795 9417235.7863 9417241.6400 0.65 21

AGWO [38] 9417231.00 9417226.00 9417229.00 NA NA

Table 9. Comparison between Search Group Optimization (SGO) and other techniques for the 40-unit test system in
terms of optimum power output and fuel cost.

Unit Power output (MW)
SGO EMA [46] QPSO [46] IODPSO-G [46]

P1 110.7998 110.7998 111.2000 110.8100
P2 110.7998 110.7998 111.7000 110.8000
P3 97.3999 97.3999 97.4000 97.4000
P4 179.7331 179.7331 179.7300 179.7300
P5 87.7998 87.7999 90.1400 92.6800
P6 139.9999 140.0000 140.0000 140.0000
P7 259.5996 259.5996 259.6000 259.6000
P8 284.5996 284.5996 284.8000 284.6000
P9 284.5996 284.5996 284.8400 284.6000
P10 130.0000 130.0000 130.0000 130.0000
P11 94.0000 94.0000 168.8000 168.8000
P12 94.0000 94.0000 168.8000 168.0000
P13 214.7597 214.7598 214.7600 214.7600
P14 394.2793 394.2793 304.5300 304.5200
P15 394.2793 394.2793 394.2800 394.2800
P16 394.2793 394.2793 394.2800 394.2800
P17 489.2793 489.2793 489.2800 489.2800
P18 489.2793 489.2793 489.2800 489.2800
P19 511.2793 511.2793 511.2800 511.2800
P20 511.2794 511.2793 511.2800 511.2800
P21 523.2793 523.2793 523.2800 523.2800
P22 523.2793 523.2793 523.2800 523.2800
P23 523.2793 523.2793 523.2900 523.2800
P24 523.2793 523.2793 523.2800 523.2800
P25 523.2793 523.2793 523.2900 523.2800
P26 523.2793 523.2793 523.2800 523.2800
P27 10.0000 10.0000 10.0100 10.0000
P28 10.0000 10.0000 10.0100 10.0000
P29 10.0000 10.0000 10.0000 10.0000
P30 87.7999 87.7999 88.4700 87.8400
P31 189.9999 190.0000 190.0000 190.0000
P32 189.9999 190.0000 190.0000 190.0000



3186 K. Bhattacharjee and N. Patel/Scientia Iranica, Transactions D: Computer Science & ... 27 (2020) 3175{3189

Table 9. Comparison between Search Group Optimization (SGO) and other techniques for the 40-unit test system in
terms of optimum power output and fuel cost (continued).

Unit
Power output (MW)

SGO EMA [46] QPSO [46] IODPSO-G [46]

P33 190.0000 190.0000 190.0000 190.0000

P34 164.7998 164.7998 164.9100 164.8000

P35 199.9999 200.000 165.3600 164.8100

P36 194.3976 194.3977 167.1900 164.8000

P37 109.9999 110.0000 110.0000 110.0000

P38 109.9999 110.0000 107.0100 110.0000

P39 109.9999 110.0000 110.0000 110.0000

P40 511.2794 511.2793 511.3600 511.2800

Fuel cost ($/hr) 121412.5347 121412.5355 121448.2100 121414.9300

Table 10. Minimum, maximum, and average costs obtained by Search Group Optimization (SGO) and various
optimization techniques for 40 generator units (50 trials).

Methods
Generation cost ($/hr) Time/iteration

(S)
No. of hits to

minimum solutionMaximum Minimum Average

SGO 121415.2584 121412.5347 121413.0794 0.15 40

EMA [46] 121416.2031 121412.5355 121414.6617 0.29 21

QPSO [46] 121455.9510 121448.2100 121453.6287 0.65 15

these parameters give di�erent fuel costs. For a single
value of one parameter, other parameters must vary for
all possible combinations. The tuning of parameters
is necessary in order to get an optimized value of the
parameters of the SGO algorithm. Herein, di�erent
values of � were used in order to get the values of
" and t. Of note, when the value of � is reduced,
the subsequent value of " also decreases. However,
this decrease is not linear as the value of " becomes
negative after a few trials. These trials of parameter
tuning help reach an ideal value for all the parameters.
The summarized results of the 40-generator system are
shown in Table 11.

Also, using either a large number of search agents
or too few search agents for screening the search space
does not give the optimized solution. Therefore, a
speci�c number of search agents will only help obtain
an optimized solution. For each number of search
agents, trials were run. Out of these trials, 50 search
agents achieved the optimized fuel cost. For other
search agents, no signi�cant improvement in the fuel
cost was observed. Moreover, the simulation time
duration also lengthened when the number of search
agents exceeded 50. The best output obtained by SGO
for each number of search agents in the 40-generator
system is given in Table 12.

Table 11. E�ect of various parameters on the
performance of Search Group Optimization (SCA).

� " t Fuel cost ($/hr)

2.21 0.45 1 121422.4187

1.97 0.39 2 121419.5698

1.75 0.25 2 121417.1023

1.65 0.19 1 121414.5478

1.31 0.15 3 121413.2013

1.27 0.12 3 121412.5347

1.01 0.01 2 121413.1598

0.71 �0:09 1 121415.7541

0.42 �0:19 3 121418.2031

0.10 �0:32 2 121421.0147

4.2. Comparative study
Quality of solution. Tables 1, 3, 5, and 7 illustrate
that the fuel cost obtained by the SGO is the least
among the other optimization techniques. The cost
obtained by SGO was better than that obtained by
the many other previously developed algorithms. For
example, in Test Case 4, the minimum fuel cost using
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Table 12. E�ect of number of search agents on the 40-generator system.

Number of
search
agents

No. of
hits to

best solution

Simulation
time (s)

Max.
cost ($/hr)

Min.
cost ($/hr)

Average
cost ($/hr)

20 31 47.02 121416.2031 121413.5847 121414.5797

50 44 50.47 121415.2584 121412.5347 121412.8615

100 26 55.74 121417.3647 121413.5478 121415.3799

150 17 58.14 121419.3201 121415.2658 121417.9416

200 10 63.35 121422.3795 121418.3201 121421.5676

the SGO was 121412.5347$=hr., which was lower than
the minimum cost obtained by using EMA and QPSO.
The comparison was made two times, with and without
transmission loss. Thus, it is clear that the quality of
the solution is the best when SGO is applied.

Robustness. The robustness of any optimization algo-
rithm cannot be judged by only running the algorithm
for a single time. A number of trials should be
conducted in order to prove the robustness of any opti-
mization technique. According to Tables 2 and 4, SGO
achieved the global optimal solution for all the 50 trials
in various test cases; in addition, based on Tables 6 and
8, SGO achieved a minimum fuel cost for the maximum
number of trials, as compared to other optimization
techniques. This proves that the e�ciency of the SGO
is quite high; therefore, the performance of SGO is
superior to other optimization techniques. This proves
the robustness of the algorithm.

Computational e�ciency. The e�ciency of any op-
timization technique is determined by the time the
technique takes to reach the global optimal solution.
According to Tables 2, 4, 6, and 8, the computa-
tional time taken for one single iteration is the least
for the SGO among the other previously developed
optimization techniques. Thus, it can be said that
SGO gives the global optimal results within the least
computational amount of time.

The value of � is 1.27, " is 0.12, t is 3, and
population size is 50.

5. Conclusion

In this paper, a new algorithm called Search Group
Optimization Search Group Optimization (SGO) Algo-
rithm was proposed to solve Economic Load Dispatch
(ELD) problem. To prove the e�ciency of the SGO,
four test cases were considered in which the net fuel
cost obtained by SGO was compared with that by other

optimization techniques in the tabular and graphic
forms. The results proved that SGO would be more
robust, feasible, and e�ective than other algorithms
in terms of e�ciency and computational time. The
numerical results also showed that the SGO could
prevent premature convergence and had a stable con-
vergence characteristic. Hence, given the exploration
and exploitation abilities of the SGO, the problem of
ELD was successfully solved.
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