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Abstract. The present paper examines the problems of single-machine scheduling under
disruption with uncertain processing times. The goal is to achieve schedules that are
simultaneously stable and robust. To resolve such problems, in addition to exact solution
approaches, a general predictive two-stage heuristic algorithm is proposed. In the �rst
stage of the algorithm, the optimal robust schedule is generated only by taking into account
uncertain job processing times and forgoing breakdown disruptions. In the second stage,
adequate additional times are embedded in job processing times to enhance stability.
Extensive computational experiments are carried out to test the performances of the
proposed methods. The achieved results show the superiority of the proposed general
predictive heuristic approach over the common methods in the literature.
© 2020 Sharif University of Technology. All rights reserved.

1. Introduction

Scheduling problems are exposed to uncertainties re-
sulting from unexpected disruptions such as machine
breakdowns, processing time variations, uncertain due
dates, and other stochastic events, which in turn will
a�ect the availability of machines (e.g., [1{12]). This
type of availability limitation increases the complexity
of any scheduling problem, even in a single-machine
environment, and can prevent the schedule from its
planned performance.

Among di�erent approaches used to handle uncer-
tainties in machine availability, reactive and predictive
scheduling methods have attracted the most attention
due to their potential applicability (e.g., [1{4]). As
the name suggests, in reactive scheduling, the system
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attempts to �nd the highest level of performance
following disruptions. In other words, in reactive
methods, the initial schedule is revised to suit the
new changes. To ensure better performance, the
di�erences between the initial schedule and the reactive
schedule are minimized as part of applying the whole
rescheduling process. In predictive methods, however,
possible disruptions are considered while generating
initial schedules. In such cases, policy systems, backup
plans, or extra resources are set in advance to respond
to future disruptions. In doing so, the �nal goal
remains the same regardless of any possible disruption.

While de�ning goals in uncertain environments
and common objectives such as makespan, 
ow time,
total tardiness, etc., two other measures should be con-
sidered: robustness (quality robustness) and stability
(solution robustness) of the schedules. Despite di�erent
de�nitions of robustness in the literature, the main
idea is to \�nd a solution to the optimization problem
that is not necessarily optimal but remains feasible and
still has good performance when the parameters of the
problem change" [5]. On the other hand, the vari-
ability caused by unforeseen disruptions is addressed
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by stability, i.e., when a realized schedule does not
deviate from the initial one despite the disruptions,
this schedule is stable [2]. To gauge the robustness
of a schedule in uncertain environments, usually, the
expected value of the objective is considered, e.g.,
the expected total (realized) 
ow time [2,4] and the
expected total (realized) tardiness [2,6].8>>>>>>>>>>>>><>>>>>>>>>>>>>:
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where Crj is the realized (expected) completion time of
job j, Cj is the (expected) initial completion time of job
j, and d represents the common due date of jobs. The
most frequent way to measure stability (the deviation
between initial and realized schedules) is to compare
job completion times [2]. Based on this comparison,
three stability measures are commonly used in the
related papers: the sum of the squared di�erences, the
sum of variances of the realized completion times, and
the sum of absolute di�erences [2].8>>>>>>>>>>><>>>>>>>>>>>:
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In general, practitioners concern themselves with

the performance of the realized schedule rather than
the planned or estimated performance of the initial
schedule. Hence, optimizing the former may be more
appropriate than the latter, and robustness is a prac-
tical performance measure. A schedule serves as a
master plan for other shop 
oor activities in addition
to production tasks such as determining delivery dates,
release times, and planning requirements for secondary
resources such as tools, �xtures, etc. Any devia-
tion from the production schedule can disrupt these
secondary activities and increase system nervousness.
Thus, stability (solution robustness) has become more
and more important nowadays, especially for just-in-
time production systems.

Based on the literature, stability and robustness
were considered separately to cope with the stochastic

disruptions in the scheduling problems (e.g., [2,6{9]).
However, considering bi-objective robustness and sta-
bility optimization problem enhances the 
exibility of
the schedule against changes in addition to preserving
the feasibility of the schedule. A linearized combination
of individual objective functions is a common approach
to forming multiple-objective problems [1]. Therefore,
in this paper, by using the linear combination of robust-
ness and stability measures, the �rst three scheduling
problems with disruptions are de�ned:

Z1 = �:RM3 + (1� �):SM1; (1)

Z2 = �:RM3 + (1� �):SM2; (2)

Z3 = �:RM2 + (1� �):SM3; (3)

where 0 < � < 1. The objective functions of the �rst,
second, and third problems are represented by Z1, Z2,
and Z3, respectively.

In the �rst and second problems, two bi-objective
problems of �nding an optimal robust and stable
schedule for a single machine under job processing time
uncertainty and machine breakdowns disruption are
optimized analytically based on some theorems. The
third problem is de�ned with total tardiness as the pri-
mary objective of single-machine scheduling with un-
certain job processing times and random breakdowns.
The problem of minimizing total tardiness is known
to be NP-hard, even if certain job processing times
are considered and no machine breakdowns occur [6].
Briskorn et al. [5] proposed a pseudo-polynomial time
algorithm based on dynamic programming to solve this
problem. Liu et al. [1] applied Genetic Algorithm
(GA) to produce a robust and stable schedule to
minimize the total weighted tardiness as the main
objective of a single-machine problem with random
machine breakdowns. This study proposed predictive-
reactive heuristic methods to solve the third problem
and demonstrated the e�ectiveness of the proposed
methods in comparison to the Righting Shift (RS)
method, which is the preferred policy in the face of
machine disruption [10].

With a glimpse at the previous attempts in this
realm of research, we can state contributions of this
paper:

� Uncertain processing times and machine break-
downs are regarded as system disruptions;

� Stability and robustness are considered simultane-
ously in three stochastic single-machine scheduling
problems;

� Two particular cases with simultaneous stability
and robustness measures are analytically optimized
based on some theorems;

� Predictive robust and stable approaches are pro-
posed to cope with disruptions.
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The remainder of the paper is organized as fol-
lows. Section 2 reviews the related literature. In
Section 3, the bi-objective single-machine scheduling
problems are de�ned. In Section 4, the exact and
heuristic solution methods are described. Next, the
algorithms are tested using benchmark instances and
the results are reported in Section 5. Finally, the paper
is concluded in Section 6.

2. Literature review

Under uncertainty, job-related properties are consid-
ered to be random or the machine is subject to
random breakdowns, or both. Adiri et al. [11] con-
sidered the problem of minimizing the total 
ow time
in a single-machine environment subject to random
machine breakdowns. In their study, only one ma-
chine breakdown occurs. They showed that if the
distribution function of the time to breakdown was
concave, then the 
ow time could be stochastically
minimized by the Shortest Processing Time (SPT)
�rst rule. In the case of multiple breakdowns, it was
proven that the SPT rule minimized the total 
ow
time when the times to breakdown were exponentially
distributed [11]. Ganji and Moslehi [12] focused on
single-machine scheduling with a 
exible unavailability
constraint (with the unknown starting time of the
unavailability period) to minimize maximum earliness.

Wu et al. [13] studied the single-machine
rescheduling problem with machine disruption fail-
ures. They rescheduled the jobs so that the minimum
makespan could be obtained with a high degree of
schedule stability. They considered two criteria for
stability: deviation of the revised schedule in terms
of job starting times (similar to SM3) and deviation of
the revised schedule from the original schedule in terms
of the sequence of the jobs. They also used pairwise
swapping methods and a GA to obtain non-dominated
solution sets.

Mehta and Uzsoy [7] worked on generating a
stable schedule in a single-machine system with ma-
chine disruption failures. They used maximum late-
ness as a performance measure and generated stable
initial schedules by inserting idle times in schedules
to optimize system performance. O'Donovan et al. [6]
worked on generating stable schedules with machine
breakdowns. They used total tardiness as the perfor-
mance measure; the stability was measured based on
the deviations of the absolute completion time from
the initial schedule. Liu et al. [1] proposed a robust
and stable schedule based on GA to minimize the total
weighted tardiness of a single machine with random
machine breakdowns.

In the classic scheduling literature, job processing
times are assumed known and constant which may not
be true in all conditions such as deteriorating jobs [14],

cases with learning e�ect [15{17], and uncertainty in
the job processing time duration [18]. Yang and Yu [9]
proposed a robust approach based on some heuristics in
cases of job processing time uncertainties to minimize
the sum of the completion times. They showed that
the robust version of the sum of the completion times
was an NP-complete problem, even for very restricted
cases. Goren and Sabuncuoglu [2] studied a single-
machine problem where the performance measure was
the total 
ow time and the source of uncertainty was
the processing time variability and random machine
breakdowns. They proposed a branch-and-bound al-
gorithm and two O (n log n) surrogate relaxation
heuristics that utilized this procedure to generate
robust schedules and compared their solutions to the
Shortest Expected Processing Time (SEPT) solution.
They found that SEPT performed poorly in terms of
robustness. Moreover, a novel algorithm is proposed to
minimize the makespan under one machine breakdown
at most to schedule the uniform processors [19].

Rahmani [18] proposed a proactive-reactive two-
stage method to hedge against the processing time un-
certainty and the unexpected machine breakdowns in
the two-machine 
ow shop scheduling problem. Multi-
factor measure was proposed to apply a good reaction
after disruption, and robust optimization was applied
to produce a robust schedule in the �rst stage. Kacema
and Paschos [20] examined a single-machine weighted
completion time problem at a �xed non-availability
interval. Zhiqiang et al. [4] considered robustness
(measured by RM1) and stability (measured by SM3)
simultaneously with machine breakdowns as the only
source of uncertainty, and GA was applied to solve the
dual-criteria optimization problem. To the best of our
knowledge, no other papers, except [18], have simulta-
neously considered robustness and stability measures,
with uncertain processing times and random machine
breakdowns. This paper proposes e�ective heuristics to
solve the same problem, as previously discussed in [18].

3. Problem de�nition

There are di�erent factors involved in system dis-
ruptions such as the addition of a new job, date
uncertainty, breakdown occurrence, uncertainty in job
processing times, etc., which are commonly known as
scheduling uncertainties. The current paper simultane-
ously considers the uncertain job processing times and
machine breakdowns as system uncertainties. Table 1
summarizes the indices used in the model.

Moreover, the following assumptions are consid-
ered:

� Job J is available at the beginning of the scheduling;

� The machine has availability limitations: random
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Table 1. Indices used in the model.

D Downtimes: the time required for the machine to return to its operational mood (following the general

distribution; D � G(t))

U Uptimes: The time between two consecutive machine breakdowns (following exponential distribution with rate �)

j Job index, j = 1; 2; :::; n

dj Due date of job j

r (tr) The expected value of repair times after each breakdown

E(pj) The expected processing time of job j

�j The job processing times following an exponential distribution with rate �j in the �rst three problems

Cj The (expected) initial completion time of job j

CRSj The (expected) completion times of job j assuming righting shift policy

CPj The (expected) proposed predictive method's completion time of job j

CLPj The (expected) linearized predictive completion time of job j

Crj The realized (expected) completion times of job j

breakdown may occur during the processing time of
job j;

� The time between two consecutive breakdowns fol-
lows an exponential distribution. Moreover, �xed
repair time is allocated after each failure;

� The rest of the disrupted jobs will be performed once
the machine is repaired;

� The objective function is the simultaneous min-
imization of the de�ned robustness and stability
measures.

When the real value of uncertain parameters is
not known in advance, surrogate measures are com-
monly used to obtain robust and stable schedules [3].
This study arbitrarily considers a combination of ro-
bustness and stability measures to de�ne the objective
functions of the prede�ned problems. The objective
functions of the �rst, second, and third problems are
denoted by Z1, Z2, and Z3, respectively. The next
section analytically shows the optimality of SEPT for
the �rst and second problems. For other combinations
of RMs and SMs such as Z = �:RM1 + (1��):SM1
and Z = �:RM1 + (1 � �):SM2, the optimality of
SEPT is shown easily.

To solve the third problem, general two-stage
heuristics are proposed. These approaches can be
adjusted to solve other combinations of RMs and SMs
such as Z = �:RM2 + (1 � �):SM1, Z = �:RM2 +
(1��):SM2, and Z = �RM3+(1��):SM3. The �rst
stage produces a predictive schedule to optimize the
robustness measure while assuming the job processing
times as the only source of uncertainty. In the second
stage, this predictive job sequence is kept while job pro-
cessing time modi�cation is performed to hedge against
the machine breakdown disruption. The e�ectiveness

of the proposed method is demonstrated by comparing
the results with the RS rescheduling method, which is
the preferred policy in the case of machine breakdown
disruption [10].

4. Solution methods

In this section, based on proved theorems, robust
and stable schedules for the �rst and second problems
are optimally obtained. For the third problem, two-
stage predictive methods are proposed. In the �rst
stage, robustness is optimized regardless of the e�ect of
machine breakdowns. In the second stage, additional
times are embedded in job processing times to hedge
against machine breakdowns.

4.1. The analytical approach of the �rst two
problems

According to the classi�cation de�ned by Graham et
al. [21], a robust and stable single-machine problem
under uncertain job processing times and machine
breakdowns (when the processing time of job j follows
an exponential distribution with rate �j and the time
between two consecutive breakdowns follows the expo-
nential distribution with rate �) can be represented by:

1=pj � exp(�j); brkdwn : U � exp(�); D � G(t)=Zi:

In the stochastic version of 1==
nP
j=1

Cj , when the

job processing times follow an arbitrary distribution,
the SEPT, �rst rule (SEPT), which sorts jobs in non-
decreasing order of E(pj), gives the optimal sequence
[22]. The optimality of SEPT still holds in the case
of the generalized problem of single-machine expected
total completion times under machine breakdowns and
variability of job processing times, i.e., SEPT solves:
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1=pj � exp(�j); brkdwn : U

� exp(�); D � G(t)=E

0@ nX
j=1

Cj

1A ;

optimally; to take into account the machine unavail-
ability impacts, the processing time of job is modi�ed
via Eq. (4) [22].

E(qj) = E(pj) (1 + r/�) ; (4)

where E(qj) is the modi�ed job processing time after
breakdown. It is shown that the optimality of SEPT
also holds for RM3 (see Appendix). In addition, SEPT
solves:

1=Xj � exp(�j); brkdwn : U � exp(�); D

� G2(t)=SM1(SM2);

optimally [2] where SM1 is the sum of the squared
di�erences and SM2 is the sum of variances of the
realized completion times. Based on the above, it can
be concluded that if E [pi] > E [pj ] which implies that
var [pi] � var [pj ] 8 (i; j), then the following corollaries
are solved optimally by the SEPT rule:

Corollary 1: 1jpj � exp(�j); brkdwn : U � exp(�);
D � G(t)j�:RM3 + (1 � �):SM1 is solved optimally
according to SEPT (see Appendix for proof).

Corollary 2: 1jpj � exp(�j); brkdwn : U � exp(�);
D � G(t)j�:RM3 + (1 � �):SM2 is solved optimally
according to SEPT (see Appendix for proof).

4.2. The proposed heuristics
In this section, two-stage heuristics are proposed to
solve the following problem:

1
����pj � exp(�j); brkdwn : U � exp(�); D

� G(t)
�����:RM2 + (1� �):SM3:

In other words, a heuristics approach to the robust and
stable single-machine problem under the uncertainty
of job processing times and machine breakdowns is
proposed when the processing time of job j follows
the exponential distribution with rate �j and the time
between two consecutive breakdowns follows the expo-
nential distribution with rate �. In addition, robustness
and stability measures are the expected total (realized)
tardiness and the sum of absolute di�erences of the
realized completion times, respectively. The expected
total tardiness is taken as the primary objective of
this problem. The problem 1==

P
j
Tj is known to be

NP-hard, even if deterministic job processing times
are considered and no machine breakdowns occur [5].

Having assumed Erlang distribution for job processing
times, Bo_zejko et al. [23] proposed the Tabu search
algorithm to resolve the single-machine stable total
weighted tardiness problem.

Goren and Sabuncuoglu [2] analytically proved
the optimality of SEPT for the single-machine expected
total tardiness problem when the job processing times
follow the exponential distribution with rate �j .

Corollary 3: SEPT gives the optimal sequence for
1jpj � exp (�j) ; dj = djRM2.

To solve the third problem, heuristic methods
are proposed based on Corollary 3 and the idea of a
predictive two-stage approach called Optimized Surro-
gate Measure Heuristic (OSMH). OSMH is proposed
to minimize maximum lateness in the job shop en-
vironment with random machine breakdowns [7]. In
OSMH, a predictive schedule is generated to minimize
the primary objective assuming no breakdowns; then,
the same job sequence is kept and the idle time is
inserted into the schedule to minimize the di�erence
between the real and planned completion times (stabil-
ity) regardless of the e�ects on the primary objective.
O' Donovan et al. [6] modi�ed OSMH to minimize total
tardiness in single-machine scheduling under uncertain,
random machine breakdowns; ATC (a priority rule to
produce a feasible schedule in a single-machine total
tardiness problem) is applied to generate a predictive
initial schedule in the �rst stage. A modi�ed two-stage
GA based on the idea of OSMH inserting ideal times
was proposed to obtain a robust and stable schedule
in a single-machine problem under machine breakdown
disruption [1]. Two-stage predictive heuristics are
proposed to solve the third problem. In the �rst stage,
the initial robust schedule is generated regardless of
breakdowns. In the second stage, idle time is inserted
to enhance the stability of a schedule. Di�erent
methods are proposed to generate adequate idle times.
The details of the proposed predictive heuristics are
presented below.

4.2.1. Predictive SEPT-OSMH
The �rst stage. Robustness optimization: Generate
the initial robust schedule according to SEPT (with-
out considering machine breakdown, to minimize
robustness measure (E(

Pn
j=1 Tj))).

The second stage. Stability enhancement: consider
the machine unavailability impacts by modifying the
job processing times according to Eq. (4).

Additional times (the total expected required re-
pair times during the processing of a job) are obtained
through Eq. (5), where r is equal to the required
expected repair time. The amount of mean time
between failures is calculated from failure function
distribution. According to Eq. (6), there is no setup
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time before the �rst job. Eq. (7) gives the expected
completion time of the �rst job. The completion
time of the �rst job is acquired from the sum of the
expected processing time and the additional time. The
completion time of job j is determined through Eq. (8):

ADTj = r:E(pj)=MTBF; (5)

EC0 = 0; (6)

EC1 = E (p1) +ADT1 = E (p1) � (1 + r�); (7)

ECj = ECj�1 + E (pj) (1 + r�): (8)

4.2.2. Linear programming based heuristics
While additional time insertion enhances the solution
robustness, it degrades the quality robustness. To
control the expected degradation of quality robustness,
linear programming-based methods are provided.

Predictive SEPT-LPOSMH
In this method, the amount of the additional time
is constrained by the di�erence between the initial
and �nal stages of the primary objective to control
degradation in the realized schedule. The procedure
of the LP-based heuristic is presented below:

Step 1. Robustness optimization: Generate the
initial robust schedule according to SEPT (to min-
imize the robustness measure E(

Pn
j=1 Tj) regardless

of machine breakdown).

Step 2. Calculate the additional time of all jobs
using the following LP model where E(Cj), E

�
CLPj

�
,

and E
�
CPj
�

denote the completion time of the jth
job in the sequence obtained by SEPT, LP model,
and predictive SEPT-OSMH, respectively. The ob-
jective function (Relation 9) calculates total expected
tardiness. Constraints (10) and (11) guarantee the
upper bound of the precedence relationships. Con-
straint (12) controls the degradation in the comple-
tion time of the realized schedule. Herein, 0 � � � 1
is de�ned as the control parameter. Degradation in
the expected total tardiness of the LP-based model is
controlled by Constraint (13).

min

(
E

"
nP
j=1

max(0; CLPj � d)

#)
;

s.t. :
(9)

E
�
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� � E (pj) ; (10)

E
�
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��E �CLPj�1
��E (pj�1) ; j=1; 2; :::; n; (11)

E
�
CLPj

� � E �CPj � ; j = 1; 2; :::; n; (12)

E
�
max(0; CLPj �d)

��E 24 nX
j=1

max(0; Cj�d)

35+:::

:::+ �

(
E

"
nX
j=1

max(0; CPj � d)

#

�E
"

nX
j=1

max(0; Cj � d)

#)
; j = 1; 2; :::; n: (13)

In the next section, except for the case of low
machine breakdown rate and duration, the robustness
and stability of the schedule generated by the LP-based
method improved signi�cantly over those generated by
the predictive SEPT-OSMH method.

5. Computational results

To examine the performance of the proposed predictive
schedules for the third problem, a series of computa-
tional experiments using randomly generated test prob-
lems are conducted. The test instances were generated
in [7]. These algorithms are coded in MATLAB R2013b
and executed by an Intel Core PC with 3.0 GHz CPU
and 8.0 GB RAM.

5.1. The comparison between SEPT-OSMH
and SEPT-LPOSMH

The number of jobs is categorized as:

n = 10; 30; 50; 70; 90:

The processing times follow di�erent exponential dis-
tributions, with uniformly-distributed, random rates of
�j . Therefore, we have a total of 5 problems with
di�erent parameter combinations. For each combina-
tion, 100 instances are generated, thus increasing the
number of tests to the total of 500 (see Table 2).

Inspired by Mehta [8], a common due date is
considered, which is equal to �ve times the maximum
expected processing time of jobs.

The time between two consecutive machine break-
downs is exponentially distributed with mean �E [pj ] =
��j , where E (pj) is the expected job processing time,
and � = 10; 5; 2. The machine breakdown durations or
repair times are generated from a uniform distribution
(r 2 [�1E [pj ] ; �2E [pj ]] = [�1�j ; �2�j ]).

Therefore, the unit considered for the job process-
ing times (minute, hour, day, etc.) is the same unit
considered for the common due date, the time between
two consecutive machine breakdowns, and the machine
breakdown durations.

The steady-state availability of repairable systems
is obtained by [24]:

A = MTBF/(MTBF +MTTR) = �/(� + �);
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Table 2. Problem parameters.

Parameter Value Number of value
Number of jobs n = 10; 30; 50; 70; 90 5

Processing times �1; �2; :::�i:::�n
�j 2 Uniform [0:1; 1]
Problem combination 100

Total problems 500

Table 3. Type of machine breakdown.

Type of machine
breakdown

Bi

The mean time
between breakdowns

�E [pj]

Breakdown durations
uniform [�1E [pj] ; �2E [pj]]

Machine availability (%)
A = �/(� + �)

B1 10 (�1; �2) = (0:1; 0:5) 0.97
B2 5 (�1; �2) = (0:1; 0:5) 0.94
B3 2 (�1; �2) = (0:1; 0:5) 0.869
B4 10 (�1; �2) = (1; 2) 0.869
B5 5 (�1; �2) = (1; 2) 0.769
B6 2 (�1; �2) = (1; 2) 0.57

therefore, the machine availabilities for B1; B2; B3; B4;
B5 and B6 are 97.1%, 94.3%, 87%, 87%, 76.9%,
and 57%, respectively, calculated via the binomial
approximation (see Table 3).

Therefore, we have 500 instances that are subject
to 6 types of machine breakdowns and a total of 3000
combinations of the problem and breakdown types.

The problem type is denoted by (Bj ; n), where
Bj and n denote the breakdown type and the number
of jobs, respectively, and the sign � represents all the
possible values of the parameter.

AETSEPT and AECSEPT represent the average
expected realized schedule tardiness and the average
realized completion time for problem Q using SEPT.
Similarly, AETSEPT�OSMH and AECSEPT �OSMH rep-
resent the average expected realized schedule tardiness
and the average realized completion time for the
problem Q using SEPT-OSMH. The notation repre-
sents the average expected realized schedule tardiness
improvement for the problem Q using SEPT-OSMH
method to SEPT, and represents the average expected
completion time improvement for the problem Q using
SEPT-OSMH method to SEPT.

AETI =

P
Q
AETSEPT�P

Q
AETSEPT�OSMHP

Q
AETSEPT

; (14)

AECI =

P
Q
AECSEPT �P

Q
AECSEPT�OSMHP

Q
AECSEPT

: (15)

Table 4 presents the values of AEC, AET, AECI,
and AETI for various problem classes. The bold
positive values in Table 4 indicate that the performance
of SEPT-OSMH is better than SEPT. It should be
noted that SEPT is considered as one of the most
commonly used reaction methods for scheduling under
uncertainty. The closer the values to one, the more
impressive the performance improvement of SEPT-
OSMH to SEPT. According to Table 4, one can draw
the following conclusion.

When the types of machine breakdowns are B1,
B2, B3, and B4, the objective degradation of the
predictive scheduling generated by the SEPT-OSMH
algorithm improves signi�cantly compared to SEPT
(Figure 1).

This conclusion is logical since the small (or
moderate) length and the frequency of the machine
breakdown have not caused much disturbances to the
initial schedule. In such cases, the predictive methods
are more appropriate. Moreover, the application of
reactive scheduling methods, such as SEPT, to schedul-
ing the systems with a high degree of uncertainty is
recommended [3]. To con�rm the above, take the
following as an example: whenever the type of machine
breakdowns is B6, the objective degradation of the
schedule generated by SEPT improves signi�cantly
compared to SEPT-OSMH algorithm.

Moreover, the larger number of jobs shows a lower
objective degradation of the predictive schedule from
the SEPT-OSMH compared to SEPT (Figure 2).

In other words, when the number of jobs increases,
the e�ect of predictive scheduling is more evident.
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Table 4. AEC, AET , AECI, and AETI values for various problem classes.

SEPT SEPT�OSMH SEPT-OSMH to SEPT
AEC AET AEC AET AECI AETI

B
re

ak
do

w
n

ty
pe (B1; �) 307.2872 3932.187 87.40957315 721.74069 0.71554436 0.8164531

(B2; �) 301.3732 3864.157 114.4740443 872.553014 0.62015853 0.7741932
(B3; �) 302.6828 3946.514 181.5726484 1315.42243 0.40012227 0.6666875
(B4; �) 301.6363 3836.459 190.7093178 1296.29248 0.36775088 0.6621123
(B5; �) 293.3526 3808.482 312.2583845 1956.36057 {0.06444736 0.4863149
(B6; �) 302.7338 3859.856 713.2638034 4398.59409 {1.3560761 {0.139575

N
um

be
r

of
jo

bs (�; 90) 3239.797 58392.16 1534.58 17818.420 0.5263300 0.694850
(�; 70) 2581.589 35150.6 1700.756 15066.220 0.3412000 0.571380
(�; 50) 1781.805 16697.13 1575.251 10459.370 0.1159200 0.373580
(�; 30) 1111.572 5638.05 1858.836 7148.2950 {0.672258 {0.267870
(�; 10) 330.566 360.328 1329.015 2312.5160 {3.020424 {5.417810

� The bold values show the superiority of SEPT-OSMH over SEPT.

Figure 1. The superiority of the predictive scheduling generated by SEPT-OSMH over SEPT for di�erent breakdown
types.

Figure 2. The superiority of the predictive schedule from SEPT-OSMH over SEPT for di�erent number of jobs.

To compare the e�ectiveness of SEPT-OSMH and
SEPT-LPOSMH, Eqs. (16) and (17) are de�ned. AETI
represents the average expected tardiness (robustness)
improvement and AEADCI indicates the average ex-
pected absolute di�erences completion time (stability)
improvement for the problem Q using the proposed
SEPT-LPOSMH heuristic to SEPT-OSMH.

AETI =P
Q2�

AETSEPT�OSMH� P
Q2�

AETSEPT�LPOSMHP
Q2�

AETSEPT�OSMH
; (16)

AEADCI =P
Q2�

AECSEPT�OOSMH � P
Q2�

AECSEPT�LPOSMHP
Q2�

AECSEPT�OSMH
:

(17)

From the overview of Table 5, it can be concluded
that the LP-based method is more e�ective than SEPT-
OSMH, especially for small � and that 0.1 is the most
appropriate value for �.

Moreover, the scheduling generated by SEPT-
OSMH is more robust than SEPT-LPOSMH only
when the machine breakdown frequency and duration
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Table 5. Stability and robustness improvement of SEPT-LPOSMH compared to SEPT-OSMH.

� = 0:1 � = 0:3 � = 0:5 � = 0:8

RI SI RI SI RI SI RI SI

B
re

ak
do

w
n

ty
pe

(B1; �) {0.01265 0.030731 {0.01361 0.023905 {0.01458 0.017072 {0.01602 0.006829

(B2; �) 0.037467 0.05895 0.034579 0.045856 0.031745 0.032767 0.027537 0.013131

(B3; �) 0.114581 0.135014 0.109082 0.105005 0.103582 0.075005 0.09533 0.029974

(B4; �) 0.109673 0.134817 0.103811 0.104857 0.097954 0.074897 0.08917 0.029965

(B5; �) 0.208608 0.233731 0.198132 0.181775 0.18893 0.13883 0.183684 0.124121

(B6; �) 0.321501 0.427242 0.305 0.365048 0.300391 0.356749 0.299395 0.356044

N
um

be
r

of
jo

bs

(�; 90) 0.047857 0.128115 0.042456 0.107778 0.039962 0.094805 0.036212 0.075344

(�; 70) 0.119489 0.12933 0.114916 0.106012 0.112246 0.092962 0.108247 0.073383

(�; 50) 0.113464 0.136294 0.107725 0.105998 0.104808 0.089465 0.101248 0.068569

(�; 30) 0.097027 0.145483 0.092233 0.113147 0.088913 0.089165 0.086183 0.065784

(�; 10) 0.073393 0.154913 0.067018 0.120489 0.061262 0.088757 0.057001 0.063003

RI: Robustness Improvement (AETI); SI: Stability Improvement (AEADCI).

Figure 3. Stability improvement for di�erent breakdown types.

are small (B1). In other cases, i.e., when the type
of machine breakdowns is B2, B3, B4, B5, and
B6, the robustness and stability of the schedules
generated by LP-based algorithm improve signi�cantly
over those generated by SEPT-OSMH, because as the
frequency and duration of machine breakdown increase,
scheduling disturbance increases; therefore, the LP-
based algorithm generating a more stable (controlled)
schedule shows much better performance than SEPT-
OSMH.

If a schedule with maximum stability improve-
ment is desired, then 0.1 is the advisable value of �

(see Figure 3). For � = 0:1, the robustness and stability
improvement of SEPT-LPOSMH is higher than SEPT-
OSMH when there are 70 jobs.

If a schedule with maximum robustness improve-
ment is desired, the advisable value of � is 0.8 (see
Figure 4).

There is a logical contradiction between stability
and robustness since to enhance the schedule robust-
ness, sequence manipulation may be necessary, which
leads to stability degradation [18]. Figure 5 con�rms
this con
ict. In this �gure, ST-IMP-70 means that
the stability improvement when the number of jobs is
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Figure 4. Robustness improvement for di�erent breakdown types.

Figure 5. The robustness and stability con
ict.

70, and RB-IMP-70 means the robustness improvement
when the number of jobs is 70.

According to Figure 5, If a robust and stable
schedule is required, the appropriate amount of �
depends on the number of jobs. For example, when the
number of jobs is 70, 0.1 becomes the advisable value
of �, and when the number of jobs is 50, 0.3 becomes
the advisable value of �, and so on.

An increase in the value of � that Eq. (13) is less
restricted. That is, in order to enhance the robustness
and stability simultaneously, the former should worsen
so that stability can be ensured.

6. Conclusions

The generation of a high robust and stable schedule
in stochastic single-machine environments has become
the focus of many studies recently; however, only a
few studies have considered robustness and stability
simultaneously. Even fewer studies consider both the
machine breakdown and the variable processing time as

the sources of uncertainty. No exact/optimum solution
to these problems has been proposed in the literature.
In this paper, bi-objective problems of robustness and
stability optimizations in stochastic, single-machine
environments were considered and solved optimally by
an analytical approach. Moreover, predictive heuristics
were proposed to solve intractable problems of �nding
a robust and stable solution with RM2 (the expected
total realized tardiness) as the robustness measure.
Based on the results of extensive computational ex-
periments applied to 3000 combinations of problems
and breakdown characteristics, in the case of a large
number of jobs and a small/medium machine break-
down duration, SEPT-OSMH performs signi�cantly
better than SEPT. Additionally, scheduling generated
by predictive SEPT-OSMH is only preferred to SEPT-
LPOSMH when the machine breakdown frequency and
duration are low. In other words, the LP-based method
enjoys higher prediction accuracy and is subject to
negligible disturbance in the scheduling generated by
this method.
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The general predictive approach in this paper
can be extended to any other complex machine
environments such as job shop or open shop systems
to achieve robust and stable schedules. Further,
researchers can apply other measures of robustness
and stability as predictive-reactive methods to study
more disrupted systems.
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Appendix

Proof of Corollary 1: The proof is shown by
contradiction. Suppose that pj is the processing time
of job j, � is the rate of machine breakdowns, r is the
average time of repair, and qj is the total remaining
time of job j on a machine. We have E [qj ] = (1 +
�r)E [pj ] [22].
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Let S be an optimal sequence, assuming that
there exists a pair of adjacent jobs i and j such that
E [pj ] > E [pi] and job j succeeds job i in S. Consider
a sequence S0 from S by swapping the positions of jobs
i and j. It is shown that S0 is better than S, i.e.:

[�:RM (S) + (1� �):SM (S)]� ��:RM (S0)

+(1� �):SM (S0)
�
> 0;

which contradicts the optimality of S;

[�:RM (S) + (1� �):SM (S)]� ��:RM (S0)

+(1� �):SM (S0)
�
> 0;

or:

�: [RM (S)�RM(S0)] + (1� �)

: [SM (S)� SM(S0)] > 0:

It su�ces to show that [SM (S)� SM(S0)] > 0 and
[RM (S)�RM(S0)] > 0.

The proof of [RM (S)�RM(S0)] > 0: The con-
tribution of jobs other than i and j in the comparison
of S0 and S is ignored, since no changes occur and a
constant called c is assumed. Supposing that the index
set of jobs that precedes job i in S is denoted by BS,
we have:

RM(S) = E

0@ X
mÎBSi

qm+qi

1A
+E

0@ X
mÎBSi

qm + qi + qj

1A
+c�

�
E
� X
mÎBSi

pm + pi
�

+E
� X
mÎBSi

pm + pi + pj
�

+ c0
�
;

RM(S0) = E

 X
m2BSi

qm + qj

!

+E

 X
m2BSi

qm+qj + qi

!
+c�

�
E
� X
mÎBSi

pm + pj
�

+E
� X
mÎBSi

pm + pj + pi
�

+ c0
�

! [RM (S)�RM(S0)] = E(qi)

�E(qj)� [E(pi)� E(pj)]

= (1+�r):E(pi)� (1 + �r):E(pj)

�[E(pi)� E(pj)] = �r:[E(pi)� E(pj)] > 0:

This contradicts the optimality of S. The proof
of [SM1 (S)� SM1(S0)] > 0 is discussed in [2].
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