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Abstract. Z-Source Inverter (ZSI) is a new topology of power converter, especially
a DC-AC converter, at a very interesting power level. For instance, it only uses a
single-stage power converter with a buck-boost characteristic. This work introduced a
combination of a solar system and a ZSI based dynamic voltage restorer to reduce the
voltage swell and harmonics under sudden addition of a balanced three-phase nonlinear
load. This paper focused on Perturb and Observe (P&O) algorithm to automatically
determine the operating voltage of PV systems that would produce maximum power output.
The proposed ZSI based dynamic voltage restorer was designed and modeled by using
MATLAB/SIMULINK. The outcomes were compared with those of conventional dynamic
voltage restorers equipped with voltage and current source inverters.
© 2020 Sharif University of Technology. All rights reserved.

1. Introduction

Presently, in addition to quality problems, electric
power systems face voltage waveforms including swells
and sags as major constraints [1,2]. The performance
of power systems can be enhanced by incorporating
some controllable custom power devices such as dy-
namic voltage restorers equipped with voltage source,
current source, and Z-Source Inverters (ZSI) [3{5].
The disadvantages of conventional dynamic voltage
restorer with voltage and current source inverters were
enumerated in [6{8]. ZSI can be used to enhance the
boost operation for the inverter AC output voltage and
therefore, inverters can operate in the shoot-through
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mode [9]. Unlike conventional inverters such as voltage
and current sources, the short-circuit mode is not
destructive and has been truly used in the ZSI [5]. Solar
energy is one of the most reliable sources of renewable
energy power generation [10]. Energy from sunlight is
converted through the power conversion process so that
the generated power can be transferred to an existing
electrical network. The circuit of conventional PV
power converters requires two-stage converters: �rst,
it steps up the solar voltage and then, changes direct
current input back into alternator current before it
can be fed into the existing electrical grid [11,12].
However, a ZSI uses a single-stage power converter
with buck-boost characteristic [13]. Since ZSI is a new
inverter type, it has received much academic spotlight.
However, these techniques could not function well if
the Perturb and Observe (P&O) algorithm has not
been modi�ed in advance to obtain greater voltage and
current from the solar system and maintain the voltage
at the DC-link of the inverter input [14{16]. This
work introduces a combination of a solar system and
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a dynamic voltage restorer with ZSI for ameliorating
distorted voltage and current waveforms in the process
of switching a three-phase balanced nonlinear load.
In this paper, the Maximum Power Point Tracking
(MPPT) method such as P&O is applied to acquiring
optimum power from the solar system. The proposed
dynamic voltage restorer equipped with ZSI is vali-
dated in MATLAB/SIMULINK software and obtained
outcomes are compared with the classical dynamic volt-
age restorer with voltage and current source inverters.

2. Dynamic voltage restorer with ZSI

Figure 1 shows the proposed Dynamic Voltage Restorer
with a ZSI. The proposed system consists of a three-
phase ZSI, interfacing inductance (Lf ), a unit vector
control technique, a DC source, and a solar photo-
voltaic system. A solar system is used to give DC
supply to the DVR-based ZSI. The DVR with Z-source
converts this DC supply to AC and ameliorates the
voltage-related issues including voltage swells/sags in a
distribution system under sudden switching of balanced
three-phase nonlinear load.

3. Working principle of ZSI [6,8]

The working principle of ZSI can be explained in three
di�erent states such as active, zero, and shoot-through
states, as highlighted in Figure 2(a)-(c). A detailed
explanation of various working states of ZSI was given
in [6{8]. The active state is additionally known as a

non-shoot-through state, as given in Figure 2(c). In
the shoot-through state, ZSI is working in one of the
forty-one distinctive modes as shown in Figures 2(b)
and 3 and Insulated-Gate Bipolar Transistor (IGBT)
switches are short-circuited.

Let the impedance network elements have similar
values (L1 = L2 = L and C1 = C1 = C). Therefore,
the Z-network inductor and capacitor voltage can be
obtained using Eq. (1) [6,8]:

vl1 = vl2 = vl
vc1 = vc2 = vc

�
(1)

where vc is the capacitor voltage and vl is the inductor
voltage of the ZSI. In the Shoot-Through (ST) state,
t0 is the time period and the relation between vc and
vl is obtained through Eq. (2) [6,8]:

vl = vc
vdio = 2vc
vin = 0 (ST state)

9=; (2)

where vin and vdio are the dc-link input voltage of the
inverter and diode voltage. In active and zero states,
the relation between vc and vl is obtained using Eq. (3)
and t1 is the time interval:

vl 6= vc
vdio = vpv = vl + vc
vl = vpv � vc = vc � vin
vin = vc � vl = 2vc � vpv

9>>=>>; (3)

where vpv is the output voltage of PV system. The

Figure 1. Combination of dynamic voltage restorers with Z-source inverters.
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Figure 2. Z-Source Inverter (ZSI): (a) Con�guration, (b) shoot-through state, and (c) active and zero states.

mean voltage of the Z-network inductor (vl;mean) at
time t is expressed in Eq. (4) [6,8]:

vl;mean = vc � t0 + (vpv � vc) � t1 = 0;

vc = vpv
�

t1
t1 � t0

�
: (4)

The mean input dc-link of the inverter is obtained
through Eq. (5) (vin):

vin = t0 � 0 + t1 (2vc � vpv) using Eq. (4);

vin =
�

t1
t1 � t0

�
vpv = vc: (5)

The input dc-link voltage of the inverter in active and
zero states is expressed through Eq. (6):

vîn = (vc � vl) = vc � (vpv � vc) ;
vîn = (2vc � vpv) : (6)

By comparing Eqs. (4) and (6), Eq. (7) is obtained:

vîn =
�

t
t1 � t0

�
vpv;

vîn = bvpv; (7)

where `b' denotes the boost factor and is also obtained
through Eq. (8):

b =
�

t
t1 � t0

�
=

1
1� � 2t0

t

� � 1; t = t0 + t1: (8)

The converter output voltage can be calculated using
Eq. (9) [6,8]:

v̂ac =
mv̂in

2
=
�
mbvpv

2

�
; (9)

where m is the modulation index whose value should
be less than or equal to one. The Z-network capacitor
voltage can be obtained through Eqs. (10) and (11)
[6,8]. From Eq. (4), we obtain the following:

vc =
�

t1
t1 � t0

�
vpv;

vc =
�
t1
t

��
t

t1 � t0
�
vpv;

vc =

0@ 1� �t0/t�
1� �2t0/t

�1A vpv; (10)

vc =
b+ 1

2b
� b � vpv =

�
b+ 1

2

�
vpv: (11)

4. Impedance source inverter design

4.1. Z-network inductor design
In active and zero modes, a mean current passing
through the inductor is reduced, as expressed in
Eq. (12) [6,8]:

il;mean =
�
pin
vpv

�
: (12)

For designing ZSI parameters such as inductor and
capacitor, the 30% current ripples are taken.

The maximum current owing through the induc-
tor [6,8] is:

il;max = i�l;mean
+30% of i�l;mean

:
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Figure 3. Modulation of the Z-Source Inverter (ZSI).

The minimum current owing through the inductor
[6,8] is given below:

il;min = i�l;mean
�30% of i�l;mean

:

In ST state, vl = vc = v, vl = vc = v =
� b+1

2

�
vpv, use

the value of vc from Eq. (11).

The value of inductor is determined through
Eq. (13):

L =
�
v � t0
�i

�
; (13)

where �i = (il;max � il;min).
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4.2. Z-source capacitor design
The capacitor value is obtained through Eq. (14) [6,8]:

C =

0@ �
il;avg � t0

�vc

1A ; �vc = v � 3%: (14)

In the ST state, the value of inductor and capacitor
can be calculated by Eqs. (11) and (14) [6,8].

L =
�
v � t0
�i

�
=
�

167:75 � 9:83
2:57

�
= 0:6 mH;

C =

0@ �
il;mean � t0

�vc

1A =
�

4:28 � 9:83
844:20

�
= 0:05 �f:

4.3. Voltage gain
The voltage gain can be expressed in Eq. (15) [8]:

G = m � b = (m
.p

3m� 1);

G =
h
1/2 �D(1�D)/2D �D(1�D)� 1

i
: (15)

4.4. Switching losses [8]
The switching loss of each IGBT in active and ST states
PS�nst and PS�st is calculated through Eqs. (16) and
(17).

PS�nst = 1/2�TSW (ESW�onn + ESW�off )

�
0B@ �Z

0

Sinxdx� 1
2

5�
6 ��Z

�
6��

jSinxj dx
1CA ; (16)

PS�st = 1/2TSW (ESW�ons + ESW�offs) : (17)

ESW�on and ESW�off are the switch-on and switch-o�
energy losses of the IGBT at peak current, respectively.
ESW�ons and ESW�offs are the switch-on and switch-
o� energy losses corresponding to the mean turn on
current of the shoot-through states, which is 2

3IL.

4.5. Voltage stress across the devices [8]
According to Eq. (7), the voltage stress, SS , can be
expressed in Eq. (18):

SS = vin = bvpv: (18)

5. Modulation algorithm with timing diagram
of the ZSI

Figure 3 outlines the structure of the eighty-three
IGBT switching modes of the proposed ZSI including
forty active modes, two zero modes, and forty-one ST
modes. In active and zero modes, two IGBT switches
with one, two, three, �ve, or six modes complement
each other, similar to the commonly used traditional
inverters and the proposed ZSI. However, forty-one
ST modes with one (E1 to E6), two (E7 to E21), three
(E22 to E31), four (E32 to E37), �ve (E38 to E40), or
six legs (E41) are short circuited which are speci�c to
ZSI. The switching states for the DVR with ZSI are
shown in Table 1.

6. Unit Vector Template (UVT) control
technique [17]

In UVT technique, �rst, three-phase supply voltages
are measured and multiplied by g = 1

Vmag , as shown
in Figure 4, where Vmag is the input voltage obtained
through Eq. (19) [17].

Figure 4. Schematic diagram of a control algorithm.
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Table 1. Switching states of the proposed DVR with Z-Source Inverter (ZSI) (!SWY is the complement of SWY, where
Y = 1, 3, 5, 7, 9, or 11).

State f100000g (�nite) SW1 SW12 SW3 SW10 SW5 SW8 SW7 SW6 SW9 SW4 SW11 SW2
State f110000g (�nite) 1 0 0 1 0 1 0 1 0 1 0 1
State f101000g (�nite) 1 0 1 0 0 1 0 1 0 1 0 1
State f100100g (�nite) 1 0 0 1 1 0 0 1 0 1 0 1
State f100010g (�nite) 1 0 0 1 0 1 0 1 1 0 0 1
State f100001g (�nite) 1 0 0 1 0 1 0 1 0 1 1 0
State f010000g �nite 0 1 1 0 0 1 0 1 0 1 0 1
State f011000g �nite 0 1 1 0 1 0 0 1 0 1 0 1
State f010100g �nite 0 1 1 0 0 1 1 0 0 1 0 1
State f010010g �nite 0 1 1 0 0 1 0 1 1 0 0 1
State f010001g �nite 0 1 1 0 0 1 0 1 0 1 1 0
State f001000g �nite 0 1 0 1 1 0 0 1 0 1 0 1
State f001100g �nite 0 1 0 1 1 0 1 0 0 1 0 1
State f001010g �nite 0 1 0 1 1 0 0 1 1 0 0 1
State f001001g �nite 0 1 0 1 1 0 0 1 0 1 1 0
State f000100g �nite 0 1 0 1 0 1 1 0 0 1 0 1
State f000110g �nite 0 1 0 1 0 1 1 0 1 0 0 1
State f000101g �nite 0 1 0 1 0 1 1 0 0 1 1 0
State f000010g �nite 0 1 0 1 0 1 0 1 1 0 0 1
State f000011g �nite 0 1 0 1 0 1 0 1 1 0 1 0
State f111000g �nite 1 0 1 0 1 0 0 1 0 1 0 1
State f110100g �nite 1 0 1 0 0 1 1 0 0 1 0 1
State f110010g �nite 1 0 1 0 0 1 0 1 1 0 0 1
State f110001g �nite 1 0 1 0 0 1 0 1 0 1 1 0
State f011100g �nite 0 1 1 0 1 0 1 0 0 1 0 1
State f011010g �nite 0 1 1 0 1 0 0 1 1 0 0 1
State f011001g �nite 0 1 1 0 1 0 0 1 0 1 1 0
State f001110g �nite 0 1 0 1 1 0 1 0 1 0 0 1
State f001101g �nite 0 1 0 1 1 0 1 0 0 1 1 0
State f000111g �nite 0 1 0 1 0 1 1 0 1 0 1 0
State f100011g �nite 1 0 0 1 0 1 0 1 1 0 1 0
State f111100g �nite 1 0 1 0 1 0 1 0 0 1 0 1
State f111010g �nite 1 0 1 0 1 0 0 1 1 0 0 1
State f111001g �nite 1 0 1 0 1 0 0 1 0 1 1 0
State f011110g �nite 0 1 1 0 1 0 1 0 1 0 0 1
State f011101g �nite 0 1 1 0 1 0 1 1 0 1 1 0
State f001111g �nite 0 1 0 1 1 0 1 0 1 0 1 0
State f100111g �nite 1 0 0 1 0 1 1 0 1 0 1 0
State f111110g �nite 1 0 1 0 1 0 1 0 1 0 0 1
State f011111g �nite 0 1 1 0 1 0 1 0 1 0 1 0
Null f000000g (0 V) 0 1 0 1 0 1 0 1 0 1 0 1
Nul lf111111g (0 V) 1 0 1 0 1 0 1 0 1 0 1 0

Shoot-through E1 (0V) 1 1 SW3 !SW3 SW5 !SW5 SW7 !SW7 SW9 !SW9 SW11 !SW11
Shoot-through E2 (0V) SW1 !SW1 1 1 S5 !S5 S7 !S7 S9 !S9 S11 !S11
Shoot-through E3 (0V) SW1 !SW1 SW3 !SW3 1 1 SW7 !SW7 SW9 !SW9 SW11 !SW11
Shoot-through E4 (0V) SW1 !SW1 SW3 !SW3 SW5 !SW5 1 1 SW9 !SW9 SW11 !SW11
Shoot-through E5 (0V) SW1 !SW1 SW3 !SW3 SW5 !SW5 SW7 !SW7 1 1 SW11 !SW11
Shoot-through E6 (0V) SW1 !SW1 SW3 !SW3 SW5 !SW5 SW7 !SW7 SW9 !SW9 1 1
Shoot-through E7 (0V) 1 1 1 1 SW5 !SW5 SW7 !SW7 SW9 !SW9 SW11 !SW11
Shoot-through E8 (0V) 1 1 SW3 !SW3 1 1 SW7 !SW7 SW9 !SW9 SW11 !SW11
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Table 1. Switching states of the proposed DVR with Z-Source Inverter (ZSI) (!SWY is the complement of SWY, where
Y = 1, 3, 5, 7, 9, or 11) (continued).

Shoot-through E9 (0V) 1 1 SW3 !SW3 SW5 !SW5 1 1 SW9 !SW9 SW11 !SW11

Shoot-through E10 (0V) 1 1 SW3 !SW3 SW5 !SW5 SW7 !SW7 1 1 SW11 !SW11

Shoot-through E11 (0V) 1 1 SW3 !SW3 SW5 !SW5 SW7 !SW7 SW9 !SW9 1 1

Shoot-through E12 (0V) SW1 !SW1 1 1 1 1 S7 !SW7 SW9 !SW9 SW11 !SW11

Shoot-through E13 (0V) SW1 !SW1 1 1 SW5 !SW5 1 1 SW9 !SW9 SW11 !SW11

Shoot-throughE14 (0V) SW1 !SW1 1 1 SW5 !SW5 SW7 !SW7 1 1 SW11 !SW11

Shoot-through E15 (0V) SW1 !SW1 1 1 SW5 !SW5 SW7 !SW7 SW9 !SW9 1 1

Shoot-through E16 (0V) SW1 !SW1 SW3 !S3 1 1 1 1 SW9 !SW9 SW11 !SW11

Shoot-through E17 (0V) SW1 !SW1 SW3 !S3 1 1 SW7 !SW7 1 1 SW11 !SW11

Shoot-through E18 (0V) SW1 !SW1 SW3 !S3 1 1 SW7 !SW7 SW9 !SW9 1 1

Shoot-through E19 (0V) SW1 !SW1 SW3 !S3 SW5 !SW5 1 1 1 1 SW11 !SW11

Shoot-through E20 (0V) SW1 !SW1 SW3 !S3 SW5 !SW5 1 1 SW9 !SW9 1 1

Shoot-through E21 (0V) SW1 !SW1 SW3 !S3 SW5 !SW5 SW7 !SW7 1 1 1 1

Shoot-through E22 (0V) 1 1 1 1 1 1 SW7 !SW7 SW9 !SW9 SW11 !SW11

Shoot-through E23 (0V) 1 1 1 1 SW5 !SW5 1 1 SW9 !SW9 SW11 !SW11

Shoot-through E24 (0V) 1 1 1 1 SW5 !SW5 SW7 !SW7 1 1 SW11 !SW11

Shoot-through E25 (0V) 1 1 1 1 SW5 !SW5 SW7 !SW7 SW9 !SW9 1 1

Shoot-through E26 (0V) SW1 !SW1 1 1 1 1 1 1 SW9 !SW9 SW11 !SW11

Shoot-through E27 (0V) SW1 !SW1 1 1 1 1 SW7 !SW7 1 1 SW11 !SW11

Shoot-through E28 (0V) SW1 !SW1 1 1 1 1 SW7 !SW7 SW9 !SW9 1 1

Shoot-through E29 (0V) SW1 !SW1 SW3 !SW3 1 1 1 1 1 1 SW11 !SW11

Shoot-through E30 (0V) SW1 !SW1 SW3 !SW3 1 1 1 1 SW9 !SW9 1 1

Shoot-through E31 (0V) SW1 !SW1 SW3 !SW3 SW5 !SW5 1 1 1 1 1 1

Shoot-through E32 (0V) 1 1 1 1 1 1 1 1 SW9 !SW9 SW11 !SW11

Shoot-through E33 (0V) 1 1 1 1 1 1 SW7 !SW7 1 1 SW11 !SW11

Shoot-through E34 (0V) 1 1 1 1 1 1 SW7 !SW7 SW9 !SW9 1 1

Shoot-through E35 (0V) SW1 !SW1 1 1 1 1 1 1 1 1 SW11 !SW11

Shoot-through E36 (0V) SW1 !SW1 1 1 1 1 1 1 SW9 !SW9 1 1

Shoot-through E37 (0V) SW1 !SW1 SW3 !SW3 1 1 1 1 1 1 1 1

Shoot-through E38 (0V) 1 1 1 1 1 1 1 1 1 1 SW11 !SW11

Shoot-through E39 (0V) 1 1 1 1 1 1 1 1 SW9 !SW9 1 1

Shoot-through E40 (0V) S1 !SW1 1 1 1 1 1 1 1 1 1 1

Shoot-through E41 (0V) 1 1 1 1 1 1 1 1 1 1 1 1

Vmag =
q

(2=3) (V 2
Sa + V 2

Sb + V 2
Sc): (19)

The voltage signals are given as an input into a Phase-
Locked Loop (PLL). After receiving input signals, the
PLL used to create unit vectors Ua; Ub, and Uc is
calculated using Eq. (20) [17]:

Ua = Sin (�)
Ub = Sin (� � 120)
Uc = Sin (� + 120)

9=; ; (20)

V �La; V �Lb, and V �Lc are obtained by Eq. (21) [17]:24 V �La
V �Lb
V �Lc

35 = [Vrl]

24 Ua
Ub
Uc

35 : (21)

The three-phase supply voltages are compared with
V �La; V �Lb, and V �Lc, and the reference compensator
voltage (V �Cabc) is generated. The Pulse Width Modula-
tion (PWM) generator produces switching pulses after
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comparing the reference compensator voltages and used
compensator voltages.

7. Perturb and Observe (P&O) algorithm
[18{20]

The P&O technique is commonly known for hunting
down the MPPT because it is straightforward and
requires only an estimation of the voltage (vpv) and
current (ipv) of the PV system [21]. P&O works
by perturbing (increasing or decreasing) the measured
photovoltaic voltage (vpv) and comparing the instan-
taneous powers before and after perturbation [18{21].
The P&O algorithm is given in Figure 5.

8. Results and discussion

The proposed dynamic voltage restorer-based ZSI
system in Figure 1 is modulated using MAT-
LAB/SIMULINK under sudden switching of a bal-
anced three-phase nonlinear load. Figure 6(a)-(c)
shows di�erent characteristics of the solar cell under
sun irradiations. As the irradiation increases, the open-
circuit voltage and the short-circuit current increase,
as shown in Figure 6(a) and (b). Consequently,
the P&O algorithm is used to obtain the highest

amount of power from solar cells, as highlighted in
Figure 7. The simulation speci�cations are shown in
Table 2.

8.1. Swell alleviation by dynamic voltage
restorer with voltage source inverter

A 31% three-phase balanced voltage swell occurs on the
supply side because of sudden switching of nonlinear
load, as shown in Figure 8(a) and (b). At t = 0:05 to
0.15, a voltage source inverter-based DVR is connected
to a distribution system and a compensated voltage
is injected to compensate the three-phase balanced
voltage swell, as shown in Figure 8(c). Figure 8(d)
highlights the sinusoidal load voltage after minimizing
the voltage swell e�ect. Figure 8(e) outlines the nature
of the capacitor voltage of the dynamic voltage restorer
equipped with source inverter.

8.2. Swell alleviation by dynamic voltage
restorer with current source inverter

Figure 9(a) and (b) show the voltage swell with a
magnitude of 31% under sudden switching of three-
phase balanced nonlinear load. It begins at t = 0:05
s and terminates at t = 0:15 s. Figure 9(c) depicts
the ability of dynamic voltage restorer with a current
source inverter to ameliorate the three-phase balanced

Figure 5. Perturb and observe algorithm.
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Figure 6. Characteristics of solar photovoltaic under di�erent values of irradiation: (a) V-I characteristics, (b) P-I
characteristics, and (c) P-V characteristics.

Figure 7. Perturb & Observe (P&O) algorithm.

voltage swell by injecting the compensated voltage.
Figure 9(d) highlights the sinusoidal load voltage after
minimizing the voltage swell e�ect. Figure 9(e) shows
the behavior of inductor current of the dynamic voltage
restorer with a current source inverter under voltage
swell.

8.3. Swell alleviation by dynamic voltage
restorer with a ZSI

Figure 10(a) and (b) show the voltage swell with a
magnitude of 31% under sudden switching of three-

phase balanced nonlinear load in a distribution net-
work. It begins at t = 50 milliseconds and terminates
at t = 150 milliseconds. Figure 10(c) depicts the ability
of the dynamic voltage restorer with a ZSI to alleviate
voltage swell by injecting the compensated voltage.
Figure 10(d) highlights the sinusoidal load voltage after
minimizing the voltage swell e�ect. Figure 10(e){(f)
outlines the nature of capacitor voltage and inductor
current of the proposed dynamic voltage restorer based
on ZSI.

9. Comparison of dynamic voltage restorers
with voltage, current, and ZSI

Figure 11 outlines the comparison in compensated
voltages of conventional dynamic voltage restorers with
voltage, current, and proposed ZSI. Regardless of
what inverters have been used, voltage swell with a
magnitude of 31% (98 V) at t = 0:5 s for a duration
of 0.35 s is observed. Therefore, the dynamic voltage
restorers with inverters are associated with the system
and they generate voltages of 132 V, 66.65 V, and 95
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Table 2. DVR with Z-Source Inverter (ZSI) Speci�cations.

Parameters Values

Supply voltage (Vs) 380 V

Frequency (f) 50 Hz

Supply resistance (Rs) 0.05 


Supply inductance (Ls) 3.5 �H

Linear load
Active power (P )= 5 kW

Inductive reactive power (QL) = 10 kVAR

Nonlinear load Diode recti�er, Rd = 10 
, Ld = 3 �H

Injection transformer 240/120 V

DC-bus voltage (Vdc) 150 V

Solar module

VOC = 36:1 V

ISC = 6 A

Number of solar cells (C) = 36

Pmax = 151 W

VMPP = 29:6 V

IMPP = 5:1 A

Diode identity factor (n) = 1

Rs = 0:18 


Rp = 360:002 


LI = L2 = L = 0:6 mH

C1 = C2 = C = 0:05 �F

m = 0:5

Z-source inverter

t0 = 9:83 �s

Il;avg = 4:28 A

Il;max = 5:56 A

il;min = 2:99 A

�i = 2:57 A

Table 3. Comparison of supply current THDi values.

DVR with VSI DVR with CSI Proposed DVR with ZSI

Before
compensation

DVR with
VSI (%)

Enhancement
in THDi

(%)

DVR with
CSI (%)

Enhancement
in THDi

(%)

Proposed DVR
with ZSI

(%)

Enhancement
in THDi

(%)

7.97 0.65 91.8 0.75 90.58 0.5 93.72

V, respectively. The proposed dynamic voltage restorer
with ZSI is characterized by better implementation
than those with voltage and current source inverters,
as highlighted in Figure 11.

Tables 3 and 4 show the capability of voltage,
current, and proposed dynamic voltage restorers with
ZSIs to eliminate current and voltage harmonics.

Total Harmonic Distortion (THD) of supply cur-
rent without dynamic voltage restorers with voltage,

current, and ZSIs connected to the system is measured
as 7.97%; however, when they are connected to the sys-
tem, the THDi values will be 0.65%, 0.75%, and 0.6%,
as shown in Table 3. Therefore, a 93.72% decrease in
THDi has been accomplished by the proposed dynamic
voltage restorer with ZSI, compared with 91.8% and
90.58% decreases in THDi of voltage and current source
inverters.

In Table 4, load voltage THDv is 18.62% when the
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Figure 8. PV-VSI-DVR at 31% swell: (a) VS , (b) RMS VS , (c) VInj, (d) VLoad, and (e) Vdc.

Figure 9. PV-CSI-DVR at 31% swell: (a) VS , (b) VS , (c) VInj, (d) VLoad, and (e) Idc.

dynamic voltage restorers with voltage, current, and
proposed ZSIs are not connected to the system. In
contrast, when they are connected, the THDv values
will be 3.5%, 2.48%, and 1.8%, as shown in Table
4. Therefore, a 90.33% decrease in THDi has been
accomplished by the proposed dynamic voltage restorer

with ZSI, compared with 81.2% and 86.68% decreases
in THDv of voltage and current source inverters.

10. Conclusion

This work introduced a combination of a solar system
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Figure 10. Proposed PV-ZSI-DVR at 31% swell: (a) VS , (b) RMS VS , (c) VInj, (d) VLoad, (e) Vdc, and (f) Idc.

Table 4. Comparison of load voltage THDv values.

DVR with VSI DVR with CSI Proposed DVR with ZSI

Before
compensation

DVR with
VSI (%)

Enhancement
in THDv

(%)

DVR with
CSI (%)

Enhancement
in THDv

(%)

Proposed DVR
with ZSI

(%)

Enhancement
in THDv

(%)
18.62 3.5 81.2 2.48 86.68 1.8 90.33

Figure 11. Compensated voltages.

and a dynamic voltage restorer with Z-source inverter
for ameliorating voltage swell and harmonics under
sudden addition of balanced three-phase nonlinear
load. Results showed that in the swell condition, the
proposed restorer could reduce possible voltage varia-
tions by injecting an exact magnitude of compensated
voltage as compared to the conventional dynamic volt-

age restorers with voltage and current source inverters.
Furthermore, results demonstrated the ability of the
proposed restorer to eliminate current and voltage
harmonics in the process of switching three-phase
balanced nonlinear load, compared to the conventional
dynamic voltage restorers with voltage and current
source inverters. This study focused on Perturb and
Observe (P&O) algorithm to automatically �nd the
operating voltage of PV systems producing maximum
power output.
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