Modeling particle deposition in the respiratory system during successive respiratory cycles

Document Type : Article


Department of Mechanical Engineering, Sharif University of Technology, Tehran, P.O. Box 11155-9567, Iran.


In this study, using a 5-lobe symmetric model, total, lobar and generational particle deposition in the lungs during successive cycles is investigated. It has been found that for the particle size between 0.05 and 2 μm and the tidal volumes greater than 1000 ml, considering the effect of successive cycles predicted more deposition fraction per cycle compared to a single cycle up to about 16 percent. The mentioned range of tidal volume is related to light or heavy physical activities. So, it can be understood that people exposed to particulate matter within the mentioned size range, when acting physically, are at more health risk compared not only to the resting state, but also to the same state calculations based on a single cycle. Finally, total and generational remaining mass fraction suspended in the respiratory tract after the completion of each cycle is calculated. This remaining mass fraction turned out to be negligible except for particles between 0.05 and 2 μm.


Main Subjects

1. Yeh, H.-C. and Schum, G. Models of human lung  airways and their application to inhaled particle deposition",  Bulletin of Mathematical Biology, 42, pp.  461{480 (1980).  2. Koblinger, L. and Hofmann, W. Monte Carlo modeling  of aerosol deposition in human lungs. Part I:  Simulation of particle transport in a stochastic lung  structure", Journal of Aerosol Science, 21, pp. 661{  674 (1990).  3. Hofmann, W. and Koblinger, L. Monte Carlo modeling  of aerosol deposition in human lungs. Part  III: Comparison with experimental data", Journal of  Aerosol Science, 23, pp. 51{63 (1992).  4. Koblinger, L. Analysis of human lung morphometric  data for stochastic aerosol deposition calculations",  Physics in Medicine and Biology, 30, p. 541 (1985).  5. Koblinger, L. and Hofmann, W. Aerosol deposition  calculations with a stochastic lung model", Acta Physica  Hungarica, 59, pp. 31{34 (1986).  6. Koblinger, L. and Hofmann, W. Monte Carlo model  for aerosol deposition in human lungs", Annals of  Occupational Hygiene, 32, pp. 65{70 (1988).  7. Dastanpour, R., Monjezi, M., Saidi, M.S., and Pishevar,  A. Applying a realistic novel ventilation model  based on spatial expansion of acini in a stochastic  lung", Scientia Iranica, Transactions B, Mechanical  Engineering, 21, p. 358 (2014).  8. Monjezi, M., Dastanpour, R., Saidi, M.S., and Pishevar,  A. Prediction of particle deposition in the  respiratory track using 3D-1D modeling", Scientia  Iranica, 19, pp. 1479{1486 (2012).  9. Georgakakou, S., Gourgoulianis, K., Daniil, Z., and  Bontozoglou, V. Prediction of particle deposition  in the lungs based on simple modeling of alveolar  mixing", Respiratory Physiology & Neurobiology, 225,  pp. 8{18 (2016).  10. Asgharian, B. and Price, O.T. Deposition of ultra-  _ne (nano) particles in the human lung", Inhalation  Toxicology, 19, pp. 1045{1054 (2007).  11. Raabe, O., Yeh, H.-C., Schum, G., and Phalen,  R.F., Tracheobronchial Geometry: Human, Dog, Rat,  Hamster (1976).  12. Salma, I., Furi, P., N_emeth, Z., Bal_ash_azy, I., Hofmann,  W., and Farkas, _A. Lung burden and deposition  distribution of inhaled atmospheric urban  ultra_ne particles as the _rst step in their health risk  assessment", Atmospheric Environment, 104, pp. 39{  49 (2015).  13. Weibel, E.R., Sapoval, B., and Filoche, M. Design of  peripheral airways for e_cient gas exchange", Respiratory  Physiology & Neurobiology, 148, pp. 3{21 (2005).  14. Ochs, M., Nyengaard, J.R., Jung, A., Knudsen, L.,  Voigt, M., Wahlers, T., Richter, J., and Gundersen,  H.J.G. The number of alveoli in the human lung",  American Journal of Respiratory and Critical Care  Medicine, 169, pp. 120{124 (2004).  15. Inthavong, K., Choi, L.-T., Tu, J., Ding, S., and Thien,  F. Micron particle deposition in a tracheobronchial  airway model under di_erent breathing conditions",  Medical Engineering & Physics, 32, pp. 1198{1212  (2010).  16. Tian, G., Longest, P.W., Su, G., Walenga, R.L., and  Hindle, M. Development of a stochastic individual  path (SIP) model for predicting the tracheobronchial  deposition of pharmaceutical aerosols: e_ects of transient  inhalation and sampling the airways", Journal of  Aerosol Science, 42, pp. 781{799 (2011).  17. Henry, F. and Tsuda, A. Radial transport along  the human acinar tree", Journal of Biomechanical  Engineering, 132, p. 101001 (2010).  18. Shang, Y., Inthavong, K., and Tu, J. Detailed microparticle  deposition patterns in the human nasal cavity  inuenced by the breathing zone", Computers & Fluids,  114, pp. 141{150 (2015).  19. Shi, H., Kleinstreuer, C., and Zhang, Z. Dilute  suspension ow with nanoparticle deposition in a  representative nasal airway model", Physics of Fluids  (1994-present), 20, p. 013301 (2008).  H. Nemati et al./Scientia Iranica, Transactions B: Mechanical Engineering 27 (2020) 215{228 227  20. N. C. o. R. Protection, Measurements. (National Council  on Radiation Protection and Measurements) (1997).  21. Golshahi, L., Noga, M., Vehring, R., and Finlay, W.  An in vitro study on the deposition of micrometersized  particles in the extrathoracic airways of adults  during tidal oral breathing", Annals of Biomedical  Engineering, 41, pp. 979{989 (2013).  22. Hinds, W.C. Uniform particle motion", In Aerosol  Technology: Properties, Behavior, and Measurement  of Airborne Particles, 2nd Edn., pp. 48{51, Wiley-  Interscience Pub., New York, USA (1982).  23. Xi, J. and Longest, P.W. E_ects of oral airway  geometry characteristics on the di_usional deposition  of inhaled nanoparticles", Journal of Biomechanical  Engineering, 130, p. 011008 (2008).  24. Yu, C., Diu, C., and Soong, T. Statistical analysis of  aerosol deposition in nose and mouth", The American  Industrial Hygiene Association Journal, 42, pp. 726{  733 (1981).  25. Salma, I., Bal_ash_azy, I., Hofmann, W., and Z_aray, G.  E_ect of physical exertion on the deposition of urban  aerosols in the human respiratory system", Journal of  Aerosol Science, 33, pp. 983{997 (2002).  26. Salma, I., Bal_ash_azy, I., Winkler-Heil, R., Hofmann,  W., and Z_aray, G. E_ect of particle mass size distribution  on the deposition of aerosols in the human  respiratory system", Journal of Aerosol Science, 33,  pp. 119{132 (2002).  27. Zhang, Z., Kleinstreuer, C., and Kim, C.S. Airow  and nanoparticle deposition in a 16-generation tracheobronchial  airway model", Annals of Biomedical  Engineering, 36, pp. 2095{2110 (2008).  28. Goo, J. and Kim, C.S. Theoretical analysis of particle  deposition in human lungs considering stochastic  variations of airway morphology", Journal of Aerosol  Science, 34, pp. 585{602 (2003).  29. Cohen, B.S., Sussman, R.G., and Lippmann, M. Ultra  _ne particle deposition in a human tracheobronchial  cast", Aerosol Science and Technology, 12, pp. 1082{  1091 (1990).  30. Asgharian, B., Hofmann, W., and Bergmann, R.  Particle deposition in a multiple-path model of the  human lung", Aerosol Science & Technology, 34, pp.  332{339 (2001).  31. Choi, J.-I. and Kim, C.S. Mathematical analysis of  particle deposition in human lungs: an improved single  path transport model", Inhalation Toxicology, 19, pp.  925{939 (2007).