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Abstract. Resource-Constrained Project Scheduling Problem with Multiple Routes
(RCPSP-MR) for exible project activities is a generalization of the RCPSP in which,
for the implementation of each exible activity in the main structure of the project, several
exclusive sub-networks are considered. Each sub-network is regarded as a route for exible
activity. The routes considered for each exible activity are varied in terms of: 1) the
number of activities requiring to be executed; 2) the precedence relationships between
activates; 3) allocation of di�erent renewable and nonrenewable resources to each activity;
and 4) e�ectiveness in duration and cost of project completion. In this study, �rst, a new
mathematical formulation for RCPSP-MR was developed. Then, two solving approaches
based on Particle Swarm Optimization (PSO) and Genetic Algorithm (GA) were adopted
to minimize the costs of project completion. To evaluate the e�ectiveness of the proposed
approaches, 50 problems (in very small, small, medium, and large-size test problems) were
designed and solved. Finally, comparisons were made between the results. Computational
results showed that the proposed GA would generate high-quality solutions in a timely
fashion.
© 2020 Sharif University of Technology. All rights reserved.

1. Introduction

Project Scheduling Problem (PSP) determines run
times for a speci�c set of �xed activities with regard
to the precedent relationships via the allocation of
di�erent resources in order to achieve predetermined
goals [1{4]. The role of the PSP and baseline scheduling
in project management is crucial [5{8] and for this
reason, Vanhoucke [9] presented nine time and eight
cost forecasting methods for both project duration and
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cost. Project scheduling has attracted considerable
attention because of its critical role in resource manage-
ment when Resource-Constrained Project Scheduling
Problem (RCPSP) is turned into a standard problem.
RCPSP from the classical viewpoint is de�ned as
scheduling a set of �xed activities with precedence
constraints implemented under limited availability of
resources to minimize the makespan [10,11]. RCPSP is
a basic scheduling problem which comprises activities,
scarce resources to execute activities, and precedence
relations between activities. The goal is to �nd an
optimal schedule satisfying the resource and prece-
dence constraints. These scheduling problems have
many applications, ranging from production planning
to project management [12]. Accordingly, RCPSP
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determines a proper sequence of activities in which two
main constraints are involved: (1) resource constraints
and (2) precedence relationships. These constraints
are satis�ed at fashion time and measurement criteria,
such as time, cost, and quality, are optimized [1]. The
classi�cation in RCPSP is summarized as follows [13]:

1. Resource:
a. Renewable resources;
b. Non-renewable resources;
c. Doubly constrained resources (e.g., money and

energy).
2. Characteristics of activity:

a. Preemption;
b. Execution mode;
c. Type of resource consumption during processing

of an activity;
d. Other characteristics.

3. Objective function:
a. Time-based;
b. Economic;
c. Resource-based;
d. Multi-objective;
e. Other objectives.

4. Availability level of information:
a. Deterministic;
b. Non-deterministic.

Due to NP-hardness of RCPSP and in order for its
better adaptation to the reality, some researchers have
considered various extensions and di�erent methods for
solving the problem. In part, they have worked on
exact methods using mixed-integer programming, con-
straint programming, and satis�ability modulo theories
[14{22]. Bibiks et al. [23] presented a Discrete Cuckoo
Search (DCS) algorithm for RCPSP and improved the
DCS algorithm in their study [24]. Fathallahi and
Naja� [25] discussed a fuzzy RCPSP with the aim
of maximizing Net Present Value (NPV) of project
cash ows. They proposed a mathematical formulation
and a hybrid Genetic Algorithm (GA) to solve the
problem in hand. Gonzalez-Pardo et al. [26] modeled
the RCPSP by constraint satisfaction problems-graph
and solved it by ant colony optimization. Chand
et al. [1] dealt with a genetic programming based
hyper-heuristic to produce e�cient priority rules for
the RCPSP. Kadri and Boctor [27] addressed the
RCPSP with transfer times to make them known and
deterministic. To solve the problem, they proposed a
GA. Coelho and Vanhoucke [28] developed a branch-
and-bound procedure to solve the RCPSP.

Multi-mode Resource-Constrained Project
Scheduling Problem (MRCPSP) is an extensions

of the RCPSP for which, because of its more
complexity, di�erent common methods have been
presented in the literature [29{32]. Fernandes
Muritiba et al. [33] developed a Path-Relinking (PR)
algorithm for MRCPSP to minimize makespan of the
project. Van Den Eeckhout et al. [34] integrated
multi-mode RCPSP and resource scheduling in order
to introduce some exibilities into the scheduling
process to determine the optimal personnel budget
that minimized the overall cost.

It is possible to use manpower with di�erent skills
in the implementation of projects, which can be con-
sidered for the RCPSP as another generalization and
it is called Multi-Skill Resource-Constrained Project
Scheduling Problem (MSRCPSP) [35{38]. Javanmard
et al. [39] integrated MSRCPSP with the resource
investment problem to obtain concurrent optimal pol-
icy of project scheduling and recruitment of skills.
Wang and Zheng [40] proposed a multi-objective fruit
y optimization for the MSRCPSP with the criteria
of minimizing the makespan and total cost, simulta-
neously. Myszkowski et al. [41] designed a hybrid
di�erential evolution and greedy algorithms for the
MSRCPSP.

Since the choice of technology and the implement-
ing route of di�erent parts of a project can be an
important factor that will lead to success or failure
of the project in reality, in this paper, the RCPSP
is generalized and project exibility is considered for
the choice of di�erent technologies. Regarding di�erent
types of technology, di�erent routes are considered for
each section. Each route has independent activity set,
precedence relationships, cost, and separated time for
each activity. Therefore, in addition to sequencing of
activities by limited operational resources, choosing the
optimal route for the implementation of di�erent parts
of the project is important, which leads to a more
complicated problem. In this paper, such problems
are summarized as RCPSP-MR. The major di�erence
between RCPSP-MR and MRCPSP is that in the MR-
CPSP, the project activity network (i.e., the number of
activities and precedence relationships) is �xed, dura-
tion of each activity is varied with regard to the number
of resource allocations, and all project activities are
essential. On the other hand, in RCPSP-MR, the
selection of a route may lead to basic changes in the
project so that each part of the project activity network
is replaced with a di�erent activity sub-network. This
leads to some changes in the project in terms of: 1)
the number of activities, 2) precedence relationships
between activities, 3) allocation of resources to the
activities, 4) duration of each activity, and 5) cost
of each activity, which increase the complexity of the
problem.

RCPSP-MR problems can be encountered in
the scheduling of projects, e.g., mechanizing vari-
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ous production lines, launching smart urban systems,
dispatching liquid reservoir fuel, launching di�erent
vehicle tracking systems, developing educational sim-
ulators, and developing electronic Siebel for shooting
training and reverse engineering of critical and im-
portant equipment. Also, RCPSP-MR is de�ned and
described in this paper as indicated in exible manu-
facturing cells according to the related literature [e.g.,
42{55].

To solve the mathematical model in this paper,
two meta-heuristic algorithms are proposed. First, in
the proposed GA, due to the importance of producing
initial solutions, each chromosome in the problem
space is divided into seven parts, among which two
are considered for the sequencing of the total project
activities (e.g., �xed and exible activities), one is
related to route and selected for the exible parts, and
four are devoted to the assigned reassurances and the
level of the implementation for activities. Solutions
are reinforced with crossover and mutation operations
frequently and, in each iteration, a speci�cation of
high quality solutions is saved. Second, considering
that the solution space presented for the problem is
discrete and the proposed Particle Swarm Optimization
(PSO) algorithm is used in a continuous space, it is
necessary to use an appropriate method to transform
the production solutions into the continuous space.
The method used in this paper is as follows: for each
number of project activities, an equal interval between
0 to1 is considered. The selection of the numbers inside
each interval in each iteration indicates the selection of
the corresponding activity. Also, in the proposed algo-
rithm, in order to produce quality solutions, mutation
is considered in the presented GA algorithm and the
initial solution is presented. According to the velocity
vector in each iteration, the obtained solutions with the
proposed algorithm move towards the optimal solution.

In Section 2, a mathematical model to solve
the RCPSP-MR problem is presented. Since software
packages for the proposed model are not able to �nd
optimal solutions for medium- and large-size problems,
in Section 3, two solution algorithms based on GA and
PSO are presented to achieve near-optimal solutions.
Then, in Section 4, 50 test problems are designed and
solved with the proposed algorithms and the results are
compared with each other. Conclusions are provided in
Section 5.

2. RCPSP with multiple routes for exible
project activities

2.1. Problem description
In this paper, a mixed-integer nonlinear programming
model is proposed to �nd an optimal solution for
the RCPSP-MR. The activity network is CPM and
Activity On Node (AON) divided into two main sec-

tions of exible and �xed activities. The exible
activities are the part of the project to which, due
to the ability of using various technologies in their
implementation, di�erent routes can be assigned. The
route selection leads to the addition of new activity sub-
networks to the main network of the project, making
it broader and more complicated in decision-making on
implementation.

A graph G(J;AJ) is considered in witch J =
f0; 1; 2; :::; N + 1g is the list of activities (0 and N + 1
are the arti�cial start and the end of the project, re-
spectively) and fAJ j 8 (i! j) 2 AJg is the represented
list of Finish-to-Start (FS) precedence relationships.

The duration of each activity is shown with d,
which is not preemptive. Two sets of resources are
considered for the problem, non-renewable NR, and
multi-skill renewable R. The resources are available
until the completion of the whole project and they
are not transferable to other projects. Levels of the
implementation for activity j by the renewable resource
r 2 R are shown by lr 2 Lr, where Lr is the total
number of execution levels. The purpose of the problem
introduced in this paper is to minimize the cost of
project completion, comprising: 1) total cost of the
availability of renewable resources until the project
completion, 2) total cost of using renewable resources
and the level of implementation for any project activity,
and 3) total cost of using non-renewable resources for
project activities. All the sets, indices, and variables
are presented as follows:

Sets and indices:
J Set of total project activities

J = f0; 1; 2; :::; N + 1g
J1 Set of total project �xed activities

J1 � J
J2 Set of total exible project activities

J2 = J � J1

�� Set of routes of each exible activity
� 2 J2

�h Set of total sub-networks for exible
activities �h = f0; 1; 2; :::; N�h + 1g

AJ Set of precedence relationships for J in
graph G = (J;AJ )

AJ1 Set of precedence relationships for J1
in graph G = (J1; AJ1)

A�k Set of precedence relationships for �h
in graph G�h = (�h; A�h)

R Set of renewable resources
NR Set of non-renewable resources
Lr Set of levels of implementation for

renewable resource r
i; j Index of activity
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�; �' Index of exible activities
h; h0 Index of route
l Index of level of implementation

Parameters:
jnr Non-renewable resource requirement

for �xed activity j
j�hnr Non-renewable resource requirement

for activity j of exible part �h
C Fixed cost of the availability of

renewable resources per unit of time
Cjrl Cost of using renewable resources and

its level of implementation for activity
j

Cjrl�h Cost of using renewable resources and
its level of implementation for activity
j of exible part �h

Cnr Fixed cost of using non-renewable
resources

djrl Duration of using renewable resources
and the level of implementation for
activity j

djrl�h Duration of using renewable resources
and the level of implementation for
activity j of exible part �h

Binary variables:
Yjrl = f0; 1g Level of implementation for activity j

by renewable resource r
Yjrl�h = f0; 1g Level of implementation for activity j

by renewable resource r of exible part
�h

W�h = f0; 1g Route selection h for exible activity �
�rji = f0; 1g Sequencing of �xed activities i and j

allocated to resource r considering the
precedence relationships

�rji�h = f0; 1g Sequencing of exible activities i
and j of exible part �h allocated to
resource r considering the precedence
relationships

 rj�hi�0h0=f0; 1g Sequencing of exible activity j of
exible part �h and exible activity
i of exible part �0h0 allocated to
resource r considering the precedence
relationships

Positive variables:
Fjrl Finish time activity j allocated to

resource r at level l
Sjrl Start time activity j allocated to

resource r at level l
Fjrl�h Finish time activity j of exible part

�h allocated to resource r at level l

Sjrl�h Start time activity j of exible part �h
allocated to resource r at level l

TC Total Cost of project

2.2. Mathematical formulation
The proposed mathematical formulation for the prob-
lem is given as follows:

MinTC = C:
X
r2R

X
l2Lr

�
F(N+1)rl:Y(N+1)rl

�
+
X
j2J1

X
r2R

X
l2Lr

(Cjrl:Yjrl:djrl)

+
X
�2J2

X
h2��

X
j2�h

X
r2R

X
l2Lr

(Cjrl�h :Yjrl�h :djrl�h :W�h)

+
X

nr2NR
Cnr:

�X
�2J2

X
h2��

X
j2�h

(j�hnr:W�h)

+
X
j2J1

jnr
�
; (1)

Subject to:X
r2R

X
l2Lr

(Fjrl:Yjrl) �
�X
r2R

X
l2Lr

(Firl:Yirl)

+
X
r2R

X
l2Lr

(djrl:Yjrl)
�
; 8 (i; j) 2 AJ1 ; (2)

X
r2R

X
l2Lr

(Fjrl�h :Yjrl�h):W�h

�
�X
r2R

X
l2Lr

(Firl�h :Yirl�h)

+
X
r2R

X
l2L

(djrl�h :Yjrl�h)
�
:W�h ;

8� 2 J2; 8h 2 ��; 8 (i; j) 2 A�h ; (3)X
r2R

X
l2Lr

(Fjrl:Yjrl) �
�X
r2R

X
l2Lr

(Firl�h :Yirl�h :W�h)

+
X
r2R

X
l2Lr

(djrl:Yjrl)
�
;

8� 2 J2; 8 (�; j) 2 AJ ; 8h 2 ��; 8i 2 �h; (4)X
r2R

X
l2Lr

(Yjrl: (Fjrl � Sjrl � djrl)) = 0; 8j 2 J1;
(5)
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8>>>>>>><>>>>>>>:

 P
l2Lr

(Fjrl:Yjrl)� P
l2Lr

(Firl:Yirl)� P
l2Lr

(djrl:Yjrl)

!
:�rji+ P

l2Lr
(Firl:Yirl)� P

l2Lr
(Fjrl:Yjrl)� P

l2Lr
(dirl:Yirl)

!
:�rij > 0

�rij + �rji =
P
l2Lr

Yjrl:
P
l2Lr

Yirl; 8j 6= i 2 J1; 8r 2 R

9>>>>>>>=>>>>>>>;
; (7)

8>>>>>>><>>>>>>>:

 P
l2Lr

(Fjrl�h :Yjrl�h)� P
l2Lr

(Firl�h :Yirl�h)� P
l2Lr

(djrl�h :Yjrl�h)

!
:�rij�h+ P

l2Lr
(Firl�h :Yirl�h)� P

l2Lr
(Fjrl�h :Yjrl�h)� P

l2Lr
(dirl�h :Yirl�h)

!
:�rji�h > 0

�rji�h + �rij�h =
P
l2Lr

Yjrl�h :
P
l2Lr

Yirl�h ; 8r 2 R; 8j 6= i 2 �h; 8h 2 ��; 8� 2 J2

9>>>>>>>=>>>>>>>;
; (8)

8>>>>>>>>><>>>>>>>>>:

 P
l2Lr

(Fjrl�h :Yjrl�h)� P
l2Lr

�
Firl�0h0 :Yirl�0h0

�� P
l2Lr

(djrl�h :Yjrl�h)

!
: ri�0h0 j�h+ P

l2Lr
�
Firl�0h0 :Yirl�0h0

�� P
l2Lr

(Fjrl�h :Yjrl�h)� P
l2Lr

�
dirl�0h0 :Yirl�0h0

�!
: rlj�hi�0h0 > 0

 ri�0h0 j�h +  rlj�hi�0h0 =
P
l2Lr

Yjrl�h :
P
l2Lr

Yirl�0h0

8r 2 R; 8j 2 �h; 8i 2 �0h0 ; 8h 2 ��; 8h0 2 ��0 ; 8 (� 6= �0) 2 J2

9>>>>>>>>>=>>>>>>>>>;
: (9)

Box I

W�h :
X
r2R

X
l2Lr

(Yjrl�h : (Fjrl�h�Sjrl�h � djrl�h))=0;

8� 2 J2; 8h 2 ��; 8j 2 �h: (6)

Eqs. (7){(9) are shown in Box I.X
r2R

X
l2Lr

Yjrl = 1; 8j 2 J1; (10)

X
r2R

X
l2Lr

Yjrl�h = W�h ; 8� 2 J2; 8j 2 �h; 8h 2 ��;
(11)X

h2��
W�h = 1; 8� 2 J2: (12)

Eq. (1) is the objective function by which the total
cost of project completion is minimized. Relations (2){
(4) assure that the completion time of each activity
is greater than (or equal to) the completion time of
its predecessor activities. Eqs. (5) and (6) indicate
that each activity must be implemented without in-
terruption. Relations (7){(9) de�ne relations between
the completion times of each pair of activities by each
renewable resource. Eqs. (10) and (11) explain that a
project activity will be carried out only by an executive
level of renewable resources. Eq. (12) guarantees that
only one route out of the possible routes is selected for
each exible activity � 2 J2.

3. Proposed meta-heuristic algorithms

3.1. Genetic Algorithm (GA)
GA is a competitive algorithm among other meta-
heuristic algorithms in which the presence or absence
of genes and their order in the chromosome decide the
characteristics of a species. Di�erent traits are passed
from generation to the next through di�erent biological
processes that operate on the genetic structure [56,57].
By the process of genetic change, the �ttest population
may well adapt to the environment [58,59]. GA has
attracted the attention of researchers for use in the PSP
and its extensions [60,61].

The �rst proposed meta-heuristic algorithm for
the RCPSP-MR problem in this study is presented
based on the GA, which is abbreviated as GA-MR
hereinafter. In this algorithm, with regard to the
dimensions of the problem, a certain number of initial
solutions are generated.

Generation of the initial solution is in a way that
each solution (chromosome) consists of di�erent parts:

1. C.Main (C.Flex), which determines the permu-
tation of all �xed activities of the main project
network (or all activities related to any exible
activity) by observing all the precedence relations;

2. C.R (C.FR), which determines the resource allo-
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cated to each �xed activity (or each sub-activity
that is related to the exible activity network);

3. C.L (C.FL), which determines the level of imple-
mentation for any �xed activity (or any sub-activity
that is related to the exible activity network) by
the allocated resources to the previous part;

4. C.Route, which determines the route selected for
each exible activity.

By calculating the total cost of project completion
based on the roulette wheel, the �tness value or
generation solution value will be calculated by Eq. (13).

Pi = 1� TCi
NP
i=1

TCj
; (13)

where TCi is the objective function (total project cost)
in solution i. As shown in Eq. (13), the goodness ratio
of one solution or chromosome (Pi) is calculated based
on the goodness value of all the obtained solutions.
Higher ratios will raise the chance of chromosome
selection for the next solution production. The most
valuable solutions will be selected. Then, crossover
operation is implemented. The crossover location is
randomly chosen and the number of new solutions from
each parent is in accordance with Eq. (14):

CH = (2 + J2)� 2: (14)

In Eq. (14), CH indicates the number of new solutions
and J2 indicates the number of exible activities. For
example, consider a network with the number of eight
activities having a exible activity. For the exible
activity, two separate routes are considered. The
main project activity network and the sub-networks of
exible activity route are shown in Figure 1.

The crossover operation is performed on C:R,
C:L, C:Route, C:FR, and C:FL parts of the solution
considered in Figure 2.

Figure 1. Project activity network.

In the next step, using the four di�erent types
of mutation for the most valuable solutions of the
crossover operation, the new solutions are generated
and their values are calculated. The number of new
solutions from mutation operations follows Eq. (15):

CH = 1 + 4J2: (15)

The various types of mutation are: 1) swap mutation,
2) ip mutation, 3) reversion mutation, and 4) insertion
mutation, which are performed on C:R, C:L, C:Route,
C:FR, and C:FL parts of the solution considered in
Figure 3.

1. Swap mutation: In this mutation, two positions of
the chromosomes are randomly selected and their
corresponding values are exchanged. In this paper,
the mutation is done on C:Main and C:F lex;

2. Reversion mutation: In this mutation, two points
are randomly selected from the parent chromosome
and the numbers are written between these two
points inversely from the end to the beginning. In
this paper, the mutation is carried out on C:FR
and C:FL;

3. Insertion mutation: In the insertion mutation, two
points of the chromosome are selected and their
positions are changed. After random selection of
two points of the parent chromosome, the second
point is transferred next to the �rst point. In this
paper, the mutation is done on C:FR and C:FL;

4. Flip mutation: In this mutation, a small impact
is made on the chromosome. As a result, all
the numbers will move forward up to the impact.
Obviously, the numbers that are located at the
end of the chromosome should be transferred to its
beginning with regard to the ip rate. In this paper,
the mutation is done on C:FR and C:FL.

Finally, all the generation solutions are catego-
rized and the certain number of best solutions are
stored in a memory. The above-mentioned process
is repeated to a certain number and after acquisition
of the stop conditions, the best route selected for
each exible activity, the best permutation determined
for network activities, the best resource allocation
conditions, and the level of implementing each activity
will be provided in the form of the best solution. In
Figure 4, steps of the GA-MR algorithm are briey
presented in a owchart.

3.2. Particle Swarm Optimization (PSO)
Particle Swarm Optimization (PSO) was developed by
a social psychologist named Kennedy and an electrical
engineer named Eberhart [62]. The PSO algorithm
consists of initial solutions or particles with separate
position and velocity vectors [63]. The particles move
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Figure 2. Crossover operation on a solution.

Figure 3. Types of mutation operations.

frequently in the problem space with regard to the
velocity vector in each iteration and examine the new
possible options by calculating the �tness value as a
standard measurement. Two memories are assigned
to storing the best position of each particle in the
past (the best local solution) and the best position
among all particles (the best global solution). Finally,

by considering the stopping algorithm conditions, the
best global solution is determined as the result of the
algorithm [64,65].

The velocity and position vectors of each particle
are updated as follows [66]:

~vik=�:
�
w:~vik�1+c1:~r1:

�
~pik�~xik�+c2:~r2:

�
~pqk�~xik�� ;

(16)

~xik+1 =
�
~xik + ~vik

�
; (17)

where for particle i, ~xik is position vector, ~vik is velocity
vector, ~pik is the best position vector, and ~pqk is the best
of position vector between all particles in iteration k.
The vectors ~r1 and ~r2 are random numbers distributed
between 0 and 1. c1 and c2 are acceleration constants
for the local and global searches [67]. The parameter is
the inertial weight factor and its values are di�erent at
each step of algorithm iteration calculated by Eq. (18):

w = Wmax �
�
Wmax �Wmin

N

�
� k; (18)

where k is the current iteration index and N is the
total number of iterations in the algorithm. Wmin
and Wmax are constants [66]. The parameter � is
contraction coe�cient for velocity control obtained
through Eq. (19):

�=

 
2��C�2+
p
C2�4C

��! ; C=c1+c2; C � 4:
(19)

The owchart of the proposed improved algorithm is
depicted in Figure 5 based on the PSO, called PSO-
MR.
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Figure 4. Flowchart of the proposed GA-MR.

Figure 5. Flowchart of proposed PSO-MR.
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3.3. Numerical example
To evaluate the performance of the presented math-
ematical model, a small-scale example is designed
and solved with the proposed model. In this ex-
ample, consider an AON network of a project with
three activities, J = f0; 1; 2; 3; 4g, where activity 1
is exible, J2 = f1g, and other activities are �xed,
J1 = f0; 2; 3; 4g. For exible activity 1, three di�erent
routes are considered, �2 = f1; 2; 3g. The network
of activities of each route is presented in Figure 6.
For the implementation of all project activities, only
a renewable resource, R = f1g, is considered with two
levels of implementation, L1 = f1; 2g, and two types
of non-renewable resources, NR = f1; 2g. The values

Figure 6. Network of activities in the numerical example.

for any activity are individually speci�ed in Table 1.
The cost of using any unit of non-renewable resources
is C1 = 10; and C2 = 8.

Other information on the problem can be seen in
Table 1.

The problem was formulated using Eqs. (1){(12)
and solved by the GAMS optimization software. The
numbers of equations and variables used to solve the
problem were 973 and 528, respectively. Route 2 for
exible activity 1 was selected and optimal solution
1654 was obtained in 248.65 s. In Figure 7, sequencing
of activities is shown.

The numerical example was then solved with the
proposed GA-MR and PSO-MR. The results obtained
are shown in Figure 7. The optimal solution 1654
was obtained by GA-MR in 7.23 s and by PSO-MR
in 11.51 s, respectively.

4. Computational results

In this paper, in order to test the performance of
the proposed mathematical model and algorithms, a
number of 50 problems in various scales (20 very small
problems, 10 small problems, 10 medium problems,
and 10 large sized problems) are designed and solved.
As shown in Table 2, all the designed problems are
marked with a certain ID from 001 to 050. The �rst
20 problems (from 001 to 020) are very small, 10
(from 021 to 030) are small, 10 (from 031 to 040)
are medium, and 10 (from 041 to 050) are large sized
problems. Also, each problem is identi�ed through a

Table 1. Total information of the �rst numerical example.

Route selection 1 for exible activity 1

Activity 1 2 3 4 5 6 7 8

r 1 1 1 1 1 1 1 1

l 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2
d 8 12 10 11 14 13 13 15 11 13 15 10 13 15 14 12
C 7 7 7 7 6 7 10 7 6 6 7 7 7 6 9 7
nr 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2
 0 0 1 2 4 2 3 5 5 0 4 3 1 5 2 1

Route selection 2 for exible activity 1

d 11 8 9 12 13 10 10 10 14 9 8 10 13 15 14 12
C 10 7 6 9 8 9 9 9 9 9 6 8 7 6 9 7
nr 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2
 1 1 0 0 1 3 2 5 1 3 3 2 1 5 2 1

Route selection 3 for exible activity 1

d 15 8 15 8 12 12 12 10 14 8 12 8 13 15 14 12
C 9 7 6 8 8 7 7 7 6 7 6 10 7 6 9 7
nr 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2
 3 3 2 5 0 3 3 2 0 3 2 5 1 5 2 1
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Figure 7. Sequencing of activities.

Table 2. General characteristics of the designed problems.

Description
Very small Small Medium Large

ID T.F.R.R.L ID T.F.R.R.L ID T.F.R.R.L ID T.F.R.R.L ID T.F.R.R.L
001 8.1.2.2.1 011 9.1.2.2.2 021 12.1.3.3.3 031 32.3.12.4.4 041 60.4.24.5.6
002 8.1.2.1.1 012 8.1.3.2.2 022 17.2.9.2.3 032 17.1.3.3.4 042 58.4.54.4.5
003 6.1.2.2.2 013 8.1.3.2.1 023 10.1.2.3.3 033 29.2.4.3.5 043 55.4.36.5.5
004 9.1.3.2.1 014 9.1.3.2.2 024 18.2.4.2.3 034 46.4.36.3.4 044 49.3.18.4.6
005 8.1.2.2.1 015 9.1.2.2.2 025 13.1.3.3.3 035 40.4.36.4.5 045 68.5.162.4.5
006 8.1.3.1.1 016 7.1.3.1.1 026 13.1.3.3.2 036 29.2.6.3.3 046 95.8.576.5.4
007 8.1.3.1.1 017 8.1.3.2.1 027 13.1.3.3.2 037 46.4.36.3.4 047 59.4.24.5.6
008 9.1.3.1.1 018 8.1.3.2.2 028 16.2.6.2.2 038 47.4.36.3.3 048 76.6.216.4.4
009 8.1.3.2.2 019 9.1.2.1.2 029 12.1.2.2.2 039 36.3.8.4.5 049 60.4.24.5.6
010 8.1.3.1.2 020 7.1.2.1.1 030 12.1.3.3.2 040 37.3.12.3.4 050 76.6.216.4.4

Speci�cations of problems
Very small Small Medium Large

T 6 to 9 10 to 17 17 to 49 55 to 95
F 1 1 to 2 1 to 4 3 to 8
R 2 to 3 2 to 9 3 to 36 18 to 576
R 1 to 2 2 to 3 3 to 4 4 to 5
L 1 to 2 2 to 3 3 to 5 4 to 6

speci�c T.F.R.R.L label. In this ID, T is the lowest
total number of activities when adding new activity
networks from a selection route for exible project ac-
tivities, F is the number of exible activities considered
for the project, �rstly, R represents the number of
applicable activity networks to the project (number of

routes), secondly, R represents the number of multi-
skill renewable resources considered for the project, and
�nally L represents the number of application levels
to perform any activities by renewable resources. In
Table 2, characteristics of the designed problems are
presented.
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Table 3. Results obtained by problem solving through the mathematical model as well as Particle Swarm Optimization
with Multiple Routes (PSO-MR) and Genetic Algorithm with Multiple Route (GA-MR).

Description GAMS PSO-MR GA-MR Gap%

ID T.F.R.R.L Time (s) TC Time (s) TC Time (s) TC PSO-MR GA-MR

002 8.1.2.1.1 20.74 1702 11.86 1702 7.87 1702 0 0

003 6.1.2.2.2 533.3 1084 18.21 1084 17.35 1084 0 0

004 9.1.3.2.1 2409 1552 12.52 1552 15.63 1552 0 0

006 8.1.3.1.1 76.17 1411 11.48 1411 7.6 1411 0 0

007 8.1.3.1.1 63.58 1769 11.47 1769 7.46 1769 0 0

009 8.1.3.2.2 1444 1159 49.08 1159 29.28 1159 0 0

010 8.1.3.1.2 248.65 1654 11.51 1654 7.23 1654 0 0

012 8.1.3.2.2 991.71 1082 32.62 1098 17.92 1082 1.48 0

013 8.1.3.2.1 717.4 1290 11.71 1290 13.97 1290 0 0

014 9.1.3.2.2 1514 1404 87.09 1404 32.94 1404 0 0

Average 801.85 1410.7 25.755 1412.3 15.725 1410.7 0.148 0.00

As seen in Table 2, the framework for very small,
small, medium, and large sized problems is in such a
way that T for very small problems is in the range
of 6{9, for small problems in the range of 10{17, for
medium problems in the range of 17{49, and for large
problems in the range of 55{95. For example, suppose
that the problem ID is 8.1.2.1.1. In this case, there will
be a project with at least eight activities in the �nal
network. In this project, there is also a exible activity
for the performance of which two di�erent routes can
be considered and the selection of each route leads to
a new extra activity sub-network for the main network
of the project. Therefore, the number of applicable
activity networks for the project is two. The number
of available multi-skill resources for implementing the
project is equal to one and the number of quality levels
applied to each activity by renewable resources is also
considered equal to one.

4.1. Comparing optimization software with the
proposed GA-MR and PSO-MR

In order to evaluate the performance of the mathe-
matical model as well as GA-MR and PSO-MR meta-
heuristics, 10 small problems are considered and the
results obtained by solving them are compared in terms
of time and quality of the obtained solutions. As shown
in Table 3, the framework of the designed problems is
in such a way that T is in the range of 6{9. Also, F
is equal to 1, the �rst R is in the range of 2{3 and the
second R is in the range of 1{2, and �nally L is in the
range of 1{2.

In Table 3, three columns are considered for the
mathematical model and the proposed PSO-MR and
GA-MR algorithms. In one of the columns, the data

related to the best �nal solution are registered (TC
columns) and another one represents the time required
for reaching the best solution (Time (s) columns). TC
is the estimated total cost for the implementation of
the project, which is obtained from calculating the sum
of three di�erent costs. The project costs include: 1)
the �xed cost of availability of resources during the
project regardless of their uses for project activities;
2) the cost of using available renewable resources to
carry out project activities with regard to the selection
of proper levels for their applications, and 3) the cost
of using non-renewable resources for project activities.
Two other columns known as the gap (PSO-MR and
GA-MR) are also considered. The gap represents the
di�erence percentage of the PSO-MR and GA-MR
solutions from the optimal solution. For example, if
the gaps of the PSO-MR and GA-MR algorithms for
a problem are 0.17% and 0.0%, respectively, then the
solution obtained by GA-MR is equal to the optimal
solution, while PSO-MR obtains a solution 0.17% worse
than the optimal solution.

As seen in Table 3 and Figure 8, the average
solution obtained by modeling and solving in GAMS
software is equal to 1410.7 in the average time of
801.85 s. The result obtained from the mathemati-
cal model is equal to that from GA-MR and better
than that from PSO-MR with a di�erence of 0.148%.
Therefore, it can be stated that the presented mathe-
matical model and the two meta-heuristics algorithms
have good performance in terms of solution for very
small problems. As seen in Table 3, the PSO-MR
in the average time of 25.755 s obtains near-optimal
solutions and GA-MR in the average time of 15.725 s
obtains optimal solutions. Since the PSO-MR and GA-
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Figure 8. Results obtained through solving the problem by the mathematical model as well as Particle Swarm
Optimization with Multiple Routes (PSO-MR) and Genetic Algorithm with Multiple Route (GA-MR).

Table 4. Computational results (very small problems).

Very small sized problems
PSO-MR GA-MR Best solution

ID Time (s) TC Time (s) TC Time TC
001 22.62 1670 35.85 1670 GA-MR GA-MR & PSO-MR
002 11.86 1702 7.87 1702 GA-MR GA-MR & PSO-MR
003 18.21 1084 17.35 1084 GA-MR GA-MR & PSO-MR
004 12.52 1552 15.63 1552 PSO-MR GA-MR & PSO-MR
005 12.08 1629 8.05 1629 GA-MR GA-MR & PSO-MR
006 11.48 1411 7.60 1411 GA-MR GA-MR & PSO-MR
007 11.47 1769 7.46 1769 GA-MR GA-MR & PSO-MR
008 11.80 1576 8.29 1576 GA-MR GA-MR & PSO-MR
009 49.08 1159 29.28 1159 GA-MR GA-MR & PSO-MR
010 18.51 1654 7.23 1654 GA-MR GA-MR & PSO-MR
011 69.33 1589 48.82 1576 GA-MR GA-MR
012 39.62 1098 17.92 1082 GA-MR GA-MR
013 22.20 1290 13.97 1290 GA-MR GA-MR & PSO-MR
014 87.09 1404 32.94 1404 GA-MR GA-MR & PSO-MR
015 22.55 1168 31.78 1168 PSO-MR GA-MR & PSO-MR
016 10.21 1380 6.70 1380 GA-MR GA-MR & PSO-MR
017 12.17 1556 14.70 1556 PSO-MR GA-MR & PSO-MR
018 39.80 1199 23.84 1191 GA-MR GA-MR
019 24.03 1518 8.17 1518 GA-MR GA-MR & PSO-MR
020 10.48 1581 6.80 1581 GA-MR GA-MR & PSO-MR
AVE 25.85 1449.45 17.51 1447.6 GA-MR GA-MR

MR, by saving 776.095 s and 786.125 s compared to
the average time consumed by GAMS software, can
generate optimal solutions, PSO-MR and GA-MR have
relatively good performance in terms of the time spent
for modeling and solving by GAMS.

4.2. Comparing PSO-MR with GA-MR
Given that modeling and problem solving by GAMS
optimization are only appropriate for very small prob-
lems and cannot be justi�ed for larger problems due to

the required long time, the meta-heuristic algorithms
can be used to generate near optimal solutions in short
time. Therefore, in this paper, two improved meta-
heuristic algorithms, known as PSO-MR and GA-MR,
are presented to tackle this problem. In order to
evaluate the performance of PSO-MR and GA-MR for
large-size problems, the number of 50 test problems
in di�erent scales are designed and their results are
shown in Table 4. The designed problems are also
solved separately with the presented PSO-MR and the
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results are registered in terms of quality and time spent
on obtaining the solutions. The results are compared
with those of the presented GA-MR.

For the problems with IDs from 001 to 020,
according to the results presented in Table 4 and
Figure 9, it can be observed that 85% of the solutions
obtained by the PSO-MR are equal to best solutions
achieved by problem solving through GA-MR and the
results for merely 15% of the cases are worse. The
solutions obtained by the proposed PSO-MR and GA-
MR algorithms are 1449.45 and 1447.6, respectively,
on average. Thus, it can be concluded that the two
improved algorithms can generate solutions with nearly
identical quality for very-small-scale problems.

On the other hand, as shown in Table 4 and
Figure 10, the required times for achieving solutions
by PSO-MR and GA-MR algorithms are on average
25.88 s and 17.51 s, respectively. It can be argued that
in very-small-scale problems, the GA-MR has better
performance than PSO-MR in terms of time.

For small-scale problems, by observing the results
in Table 5 and Figure 11, it can be deduced that the

solutions obtained by the PSO-MR are on average 1.4%
worse than the best solutions obtained by problem solv-
ing through the GA-MR presented in this paper, while
GA-MR saves time by 58.72%. The solutions obtained
by the proposed PSO-MR and GA-MR algorithms are
on average 2131.6 and 2102.1, respectively. Therefore,
it can be stated that the quality of generation solutions
by these two algorithms is approximately the same and
the major di�erence is in the time of achieving the
solutions.

As shown in Table 5 and Figure 12, the required
times for achieving the solutions by PSO-MR and GA-
MR algorithms are on average 389.77 s and 160.86 s,
respectively. It can be argued that in small-size
problems, the GA-MR is better than PSO-MR in terms
of time.

For the medium problems (IDs 031 to 040),
according to the results in Table 6 and Figures 13 and
14, PSO-MR obtains the average quality of 5766.4 in
2618.5 s, while GA-MR achieves 3.14% better results on
average by 965.7 s time saving. Thus, it can be stated
that the quality of solutions generated by the two

Figure 9. Results obtained through solving very small problems by Particle Swarm Optimization with Multiple Routes
(PSO-MR) and Genetic Algorithm with Multiple Route (GA-MR) in terms of TC.

Figure 10. Results obtained through solving very small problems by Particle Swarm Optimization with Multiple Routes
(PSO-MR) and Genetic Algorithm with Multiple Route (GA-MR) in terms of time.
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Table 5. Computational results (small problems).

Small sized problems
PSO-MR GA-MR Best solution

ID Time (s) TC Time (s) TC Time (s) TC
021 252.97 1827 135.17 1804 GA-MR GA-MR
022 574.31 2824 244 2775 GA-MR GA-MR
023 161.65 1429 104.84 1411 GA-MR PSO-MR
024 612.40 2728 139.79 2704 GA-MR GA-MR
025 249.30 1949 280.87 1928 PSO-MR GA-MR
026 109.27 1710 171.27 1692 PSO-MR GA-MR
027 259.76 1996 64.57 1963 GA-MR GA-MR
028 952.96 3038 301.16 2960 GA-MR GA-MR
029 359.06 2136 75.61 2162 GA-MR PSO-MR
030 366.05 1679 91.31 1622 GA-MR GA-MR
AVE 389.77 2131.6 160.86 2102.1 GA-MR GA-MR

Figure 11. Results obtained through solving small problems by Particle Swarm Optimization with Multiple Routes
(PSO-MR) and Genetic Algorithm with Multiple Route (GA-MR) in terms of TC.

Figure 12. Results obtained through solving small problems by Particle Swarm Optimization with Multiple Routes
(PSO-MR) and Genetic Algorithm with Multiple Route (GA-MR) in terms of time.

algorithms is almost the same and the main di�erence
is in the time of achieving the solutions. The PSO-
MR algorithm requires a longer time than GA-MR for
achieving solutions to the medium-size problems.

For the large-size problems (IDs 041 to 050),
based on the results in Table 7 and Figures 15 and

16, it can be stated that the solutions obtained by the
proposed PSO-MR and GA-MR are on average 10401.2
and 9899.4, respectively. Also, the time spent on
solving the problems is on average 7702.2 and 5048.9 by
the PSO-MR and GA-MR, respectively. Considering
the quality of solutions, it can be mentioned that
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Table 6. Computational results (medium problems).

Medium sized problems
PSO-MR GA-MR Best solution

ID Time (s) TC Time (s) TC Time (s) TC
031 1975 5292 1087 5127 GA-MR GA-MR
032 521.02 2416 261.45 2282 GA-MR GA-MR
033 1259 4715 963 4655 GA-MR GA-MR
034 4306 8610 2702 8304 GA-MR GA-MR
035 3448 5785 2433 5556 GA-MR GA-MR
036 1545 5399 718 5300 GA-MR GA-MR
037 3682 7017 2459 6924 GA-MR GA-MR
038 4165 6077 2614 5719 GA-MR GA-MR
039 2578 6245 1532 6014 GA-MR GA-MR
040 2706 6108 1759 5971 GA-MR GA-MR
AVE 2618.5 5766.4 1652.8 5585.2 GA-MR GA-MR

Figure 13. Results obtained through solving medium problems by Particle Swarm Optimization with Multiple Routes
(PSO-MR) and Genetic Algorithm with Multiple Route (GA-MR) in terms of TC.

Figure 14. Results obtained through solving the medium problems by Particle Swarm Optimization with Multiple Routes
(PSO-MR) and Genetic Algorithm with Multiple Route (GA-MR) in terms of time.

the GA-MR algorithm achieves the best solutions in
all the cases and the PSO-MR algorithm generates
close solutions. Thus, it can be said that in large-
size problems, the quality of solutions generated by
GA-MR is better than those by PSO-MR. Also, the
PSO-MR algorithm requires longer time for achieving

appropriate solutions to the problems than GA-MR
algorithm does.

5. Conclusions

Regarding the signi�cance of some technologies in
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Table 7. Computational results (large problems).

Large sized problems
PSO-MR GA-MR Best solution

ID Time (s) TC Time (s) TC Time (s) TC
041 5692 7847 3771 7600 GA-MR GA-MR
042 4838 10316 3253 9661 GA-MR GA-MR
043 5246 8634 3180 8194 GA-MR GA-MR
044 3280 8484 2098 7924 GA-MR GA-MR
045 7955 13310 5117 12604 GA-MR GA-MR
046 18445 16519 11611 15838 GA-MR GA-MR
047 5281 7920 3638 7459 GA-MR GA-MR
048 10292 11438 7109 11103 GA-MR GA-MR
049 5646 7928 3763 7515 GA-MR GA-MR
050 10347 11616 6949 11096 GA-MR GA-MR
AVE 7702.2 10401.2 5048.9 9899.4 GA-MR GA-MR

Figure 15. Results obtained through solving large problems by Particle Swarm Optimization with Multiple Routes
(PSO-MR) and Genetic Algorithm with Multiple Route (GA-MR) in terms of TC.

Figure 16. Results obtained through solving large problems by Particle Swarm Optimization with Multiple Routes
(PSO-MR) and Genetic Algorithm with Multiple Route (GA-MR) in terms of time.

performing several parts of a project, they have not
been properly examined in the Resource-Constrained
Project Scheduling Problem (RCPSP) in the literature.
Selecting the best technology is crucial with regard to
changes in the main network of a project in terms of the
number of activities required for the implementation,

precedence relationships, allocation of resources, and
consequently, the time and cost of project completion.
Hence, in this paper, RCPSP with multiple routes
for exible project parts, namely Resource-Constrained
Project Scheduling Problem with Multiple Routes
(RCPSP-MR), was proposed with the aim of minimiz-
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ing the cost of project completion. The cost of project
completion, in this paper, was divided into three parts:
1) the �xed cost of the availability of limited resources
during the implementation of the project; 2) the cost of
using limited resources with di�erent implementation
levels for each project activity; and 3) the cost of
using non-renewable resources for implementing any
project activity. In this paper, a new mathematical
formulation of RCPSP-MR was �rstly presented to �nd
optimal solutions to the problem. Also, in order to
solve large-size problems, two improved meta-heuristic
algorithms, namely PSO-MR and GA-MR, were pre-
sented. First, in the proposed Genetic Algorithm (GA),
due to the importance of producing initial solutions,
each chromosome in the problem space was divided
into seven parts, among which two were considered the
sequencing the total project activities (such as �xed
and exible activities); one was related to the route
and selected for exible parts; and �nally four parts
were considered for the assigned reassurances and the
level of quality for implementation activities. Solutions
were frequently reinforced by crossover and mutation
operations and in each iteration, a speci�cation of high
quality solutions was saved. Second, since the solution
space presented for the problem in this paper was
discrete and the proposed Particle Swarm Optimization
(PSO) algorithm was used in continuous space, it was
necessary to use an appropriate method to transform
the production solutions into the continuous space.
The method used in this paper was as follows: for each
number of project activities, an equal interval between
0 to 1 was considered. Selection of the numbers inside
each interval in each iteration indicated the selection
of the corresponding activity. Also, in the proposed
algorithm, in order to produce quality solutions, mu-
tation was used for the GA algorithm and the initial
solution was presented. Based on the velocity vector in
each iteration, the obtained solutions by the proposed
algorithm were moved towards the optimal solution. In
order to assess the performance of the mathematical
model and the proposed algorithms, the number of
50 test problems (in very small, small, medium, and
large sizes) were designed and solved using the math-
ematical model and the proposed algorithms. Then,
the results were compared. The computational results
showed that the proposed GA-MR generated high-
quality solutions compared to the PSO-MR in a timely
fashion. In very small problems, the results obtained
by PSO-MR, GA-MR, and the mathematical model
were approximately the same. Therefore, it can be
concluded that the proposed methods have decent
performance in terms of solution quality. In small and
medium problems, it was observed that PSO-MR and
GA-MR had relatively appropriate performance from
the same perspective. However, GA-MR could obtain
the results in less time than PSO-MR did. Finally, in

large-size problems, the quality of solutions generated
by GA-MR was better than that by PSO-MR. Also,
the PSO-MR algorithm required longer time for achiev-
ing appropriate solutions to the large-size problems
than GA-MR algorithm did. The RCPSP-MR is an
interesting method with high research potential. In
this paper, a mixed-integer nonlinear programming
model and two meta-heuristic algorithms (i.e., PSO-
MR and GA-MR) were proposed to solve the problems
in hand with the objective of minimizing the total
cost of project completion. In future researches, it
is suggested to incorporate other well-known meta-
heuristic algorithms, (e.g., SA, TS, and ACO) with
other economic objectives such as maximization of
net present value or minimization of ordering costs
during project implementation. Moreover, it can be
resource-based and deal with the resource investment
problem. In addition, the problem can be extended
to encompass real world problems. To this aim,
another recommendation can be the use of concepts
like preemptive scheduling, setup time, time lag, release
date, and deadline.
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