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Abstract. This study investigates the combined heat mass transport features in steady
Magneto-Hydro-Dynamic (MHD) viscoelastic uid ow through stretching walls of channel.
The channel walls were considered porous. The analysis of heat transport was carried out
with the help of Cattaneo-Christov heat di�usion formula and generalized Fick's theory was
developed for the study of mass transport. The system of partial di�erential expressions was
changed into an ordinary di�erential set by introducing suitable variables. The homotopic
scheme was employed for solving the resultant equations and then, validity of the results
was veri�ed by various graphs. Moreover, an extensive analysis was performed on the
inuence of involved constraints on liquid velocity, concentration, and temperature pro�les.
It was observed that the normal component of velocity decreased by increasing Reynolds
number or the viscoelastic constraint. Both temperature and concentration pro�les were
enhanced by increasing combined parameter and Reynolds number. The presence of
thermal relaxation number and concentration relaxation number decreased temperature
and concentration pro�les, respectively.

© 2020 Sharif University of Technology. All rights reserved.

1. Introduction

The phenomenon of heat transport occurs by thermal
energy movement from an object to another one due
to temperature di�erence. Such object may be solid,
liquid, gas, or solid within a gas or liquid. The interest
in heat transfer phenomenon is substantially increasing
due to its countless industrial and technological ap-
plications. Instances of such applications are in fuel
cells, energy production, and cooling process in various
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atomic devices. Fourier [1] developed one of the most
e�ective uid models for heat transport analysis. The
unique feature of this model is its capability of heat
transfer analysis in macroscopic systems. Furthermore,
Fourier's mathematical modeling obtains the parabolic
form of energy expression. Cattaneo [2] presented
the generalization of this theory by adding relaxation
time phenomenon, which transformed the expression
of energy into hyperbolic type. This formula enabled
the transport of heat by means of thermal waves with
con�ned speed. Christov [3] extended Cattaneo's the-
ory [2] by changing the time derivative with Oldroyd-
B upper convected derivative. Straughan [4] utilized
this law to elaborate the aspects of thermal convection
in the ow of horizontal-layer viscous liquids. Han
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et al. [5] observed that the presence of thermal relax-
ation constraints suppressed thermal thickness of the
boundary layer. Khan et al. [6] presented a numerical
solution by using shooting technique to examine heat
transport characteristics based on Cattaneo-Christov
expressions. Later on, Meraj et al. [7] employed this
heat di�usion model to address the heat transport
e�ects on the ow of Je�rey uid with variable con-
ductivity.

In several medical and engineering processes,
the combination of stretched Magneto-Hydro-Dynamic
(MHD) ows and electrically conducting materials
has various applications, e.g., in metal working, nu-
clear reactors, plasma, thermal insulators, modern
metallurgy, oil exploration, extraction of geothermal
energy, and MHD generators. MHD ows in arteries
in several physiological processes have signi�cantly
attracted the interest of researchers and scientists. An
applied magnetic �eld is used to control the uid ows,
mixing of samples, heat transfer rate and biological
transportation. Many researchers have contributed to
the extensive analysis of the ow of various uids in
the presence of applied magnetic �eld [8{18].

Porous media have manifold applications to di�er-
ent engineering �elds including petroleum technology,
solar collectors, porous insulation, drying processes,
geothermal energy, geophysics, oil recovery, packed
beds, etc. Fluid ows in porous media mainly depend
on the di�erential expression of the macroscopic motion
of liquid. Darcy [19] in an experimental study observed
that applied pressure gradient and ow velocity were
linearly proportional in case of unidirectional ow
under uniform medium. Darcy's theory has a very
e�ective role in di�erent applications of biomedical
engineering, e.g., biological tissues [20]. Attia [21]
computed asymptotic solutions for viscous liquid ow
through an insulated disk by utilizing Darcy's model.
In another attempt, Attia et al. [22] presented ow
characteristics for time-dependent non-Newtonian liq-
uid over rotating insulated disk with porous medium.
Siddiq et al. [23] examined the Darcy-Forchheimer
porous theory for convectively heated nanouid ow.
Some novel numerical computations regarding the
ow of alumina nanoparticles through a permeable
porous enclosure were presented by Sheikholeslami et
al. [24].

In the past few decades, great attention has been
devoted to the analysis and mathematical modeling
of ow between stretching boundaries because of its
scienti�c applications, e.g., in extrusion process in
plastic and metal industries, arti�cial �bers, metal
spinning, glass blowing, drawing plastic �lms, and
metal industries. Many authors have studied this
phenomenon in various uids models with di�erent
physical properties. Ashraf and Batool [25] developed
the algorithm of shooting method to �nd a numerical

solution for buoyancy driven-ow of micropolar uid
in a disk. Turkyilmazoglu [26] computed the numer-
ical expressions of ow of viscous uid by radially
stretchable rotating disk employing spectral numerical
integration scheme. Hayat et al. [27] employed the
Homotopy Analysis Method (HAM) to discuss steady-
state ow of Newtonian uid generated by stretchable
rotating disk.

The ow problem associated with pulsating mo-
tion of the walls of channel has been another hot
research topic in recent years. The magnetohydrody-
namic channel ow has various theoretical and practi-
cal applications, e.g., in space vehicle reentry, accelera-
tors, astrophysical ows, and solar power technology.
An extensive analytical study of a viscoelastic uid
ow caused by stretching walls of the channel has been
presented in [28]. Misra et al. [29] captured the novel
features of a viscous uid model by considering MHD
ow in a channel with pulsating walls by using �nite
di�erence method. Misra et al. [30] carried out numer-
ical investigations into electrically conducing ow of
non-Newtonian uid through a stretching wall channel.
They considered the blood as non-Newtonian uid in
their investigation. In another contribution, Misra et
al. [31] explored the e�ects of induced magnetic �eld
on ow of the second grade between channel walls.
They also utilized the heat transfer phenomenon by
using well Fourier law of heat conduction. Raftari
and Vajravelu [32] showed that the series solution
obtained by HAM had an excellent agreement with the
results achieved by Misra et al. [31]. Abbasi et al. [33]
presented slip ow of electrically conducting Maxwell
uid in porous channel with stretchable walls.

This study is aimed at combined mass transport
analysis of electrically conducting viscoelastic uid
in a porous channel with stretching walls by using
Cattaneo-Christov heat di�usion. The results of this
study may be of interest to uid dynamicity researchers
and physiologists in their investigations into blood
ow in arteries under chemical reaction. The solution
to the modeled problem is obtained via the HAM.
The physical properties of various ow parameters are
explored with various graphs in this study.

2. Flow analysis

We consider the steady-state situation of laminar,
incompressible, second-grade uid ow con�ned by
planes y = �a. It is assumed that the uid particles
ow solely by the motion of stretching walls. A
magnetic force of strength B0 is imposed perpendicular
to the walls of the channel (see Figure 1). It is
noteworthy that the dominance of the induced mag-
netic force can be neglected, because we assume low
magnetic Reynolds numbers. Let Tw represent the
constant temperature of the walls. The equations of



S. Ullah Khan et al./Scientia Iranica, Transactions B: Mechanical Engineering 27 (2020) 1945{1954 1947

Figure 1. Geometry of problem.

ow dynamics in the channel can be developed as [24]:
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where u and � reect velocity components along the
coordinate axes �x and �y, respectively. Moreover, �
is the kinematic viscosity, � the electric intensity, B0
strength of the applied magnetic �eld, � uid density,
k0 the elasticity parameter, # the porosity parameter,
and k� the permeability parameter. The imposed
boundary conditions are [24]:

u = b�x; v = 0; at �y = a;
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= 0; v = 0; at �y = 0: (3)

Let us introduce dimensionless quantities [21]:

u = bxf 0 (�) ; v = �abf (�) ; � =
y
a
: (4)

Using the above dimensionless variables, Eqs. (2) and
(3) can be transformed to:
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where K = �1b=� is the viscoelastic parameter, M =q
�
�B0a + �#

bk� the combined magnetic and porosity

parameter, and Re = a2b=� the Reynolds number.

2.1. Heat and mass transfer analysis
The generalized expressions of Fourier's and Fick's
theories are [5,6]:
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where q and J denote the heat and mass uxes,
respectively; DB stands for molecular di�usivity of
the species; and �E and �C are the thermal and
concentration relaxation times, respectively. It is
noteworthy that for �E = �C = 0 in Eqs. (7) and (8),
the expressions for Classical Fourier's and Fick's laws
have been retained. Thus, the energy equation and
the presence of thermal radiation and concentration
equation are de�ned as:
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where � represents the liquid thermal di�usivity and
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We impose the following boundary conditions for gov-
erning energy and concentration equations:

T = Tw; C = Cw at �y = a;

@T
@�y

= 0;
@C
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= 0; at �y = 0: (13)

The governing equations are made dimensionless by
introducing the following dimensionless variable:
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T
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where Pr = �=� is the Prandtl number, �T = �Eb
thermal relaxation constraint, Sc = �=DB the Schmidt
number, and �C = �Cb the concentration relaxation
constraint. The dimensionless boundary conditions
are:

�0(0) = 0; �(1) = 1; '0(0) = 0; '(1) = 1: (17)

3. Homotopy Analysis Method (HAM)

Mathematical modeling of many engineering problems
involves the di�erential equations of highly nonlinear
nature. It remains a challenge for engineers to compute
such equations by either the analytical solution or
the numerical one. The famous analytical HAM is
a powerful technique to derive the series solution to
di�erential expressions without the restrictions of large
or small constraints. This useful method o�ers great
freedom to adopt and control the region of convergence.
The main bene�t of this method over various numerical
techniques is that it is round-o�-error-free thanks to
its discretization process. The computations of this
method do not make large demands on time and
computer memory. Since the time the approach was
proposed by Liao [34], various researchers have adopted
it to solve the governing di�erential equations [35{
41]. In the present section, we introduce one of the
most powerful techniques to solve Eqs. (5), (15) and
(16) by using homotopy analysis scheme for discussing
the analytical solution for all the values of given
parameters. In the beginning, we suggest the following
initial approximations for the given ow problem:
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where Ai (i = 1; 2; :::; 8) denotes constants.

4. Convergence of solution

The series solution obtained in the previous section
is highly dependent on auxiliary constraints hf , h�,

Table 1. Comparison of the presented results with those
of Hayat et al. [28] for � = 6:0.

K Re Hayat et al. [28] Presented results

0.0 10 7.7958 7.79583

0.4 15.4094 15.40952

0.6 22.1710 22.17100

0.6 0.0 17.7101 17.71010

5.0 18.2930 18.29329

15.0 19.4301 19.43020

and h'. The appropriate values of these parameters
are necessary for convergence of the HAM solution.
Graphs of these auxiliary parameters are plotted at the
16th order of approximation for the selection of the
suitable range for these parameters. The admissible
values for �0:8 � hf � �0:2, �1:5 � ~� < �0:3,
and �1:5 � h' < �0:3 are given in Figure 2.
The role of convergence in the given region is quite
vital for guaranteeing the attainment of the proper
solution. It is commonly known that when the values
of the involved parameters are not properly selected,
comparison of HAM with other exact or numerical
methods becomes quite di�cult and time consum-
ing. Hence, suitable selection of the parameters also
guarantees achieving the solution for various sundry
parameters [42]. In order to validate the achieved
solution, the presented results are compared with the
already available numerical values reported by Hayat
et al. [28] (see Table 1). It will be observed that our
results are in excellent agreement with the reported
results.

5. Results and discussion

After achieving the explicit analytical solution dis-
cussed in the previous section, the aim of this section is
to provide a deeper view of the presented results with
various ow parameters. A graphical analysis for the
distinct governing parameters of velocity, temperature,
and concentration pro�les is presented in Figures 3{
17. The viscoelastic parameter K on normal velocity
component f(�) is graphically shown in Figure 3. The
values of K range from 0 to 5.5. It is observed that
the magnitude of velocity increases with larger values
of K. Figure 4 indicates that back mass ow rate
decreases when M increases. The combined parameter,
which is a combination of both Hartmann number and
porosity parameter, e�ectively reduces the magnitude
of the velocity of uids particles. Figure 5 depicts
the inuence of Reynolds number (Re) on the velocity
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Figure 2. h-curves for (a) velocity, (b) temperature, and
(c) concentration pro�le.

component f(�). The magnitude of velocity f(�)
decreases in the whole region by increasing Reynolds
number (Re). Figure 6 demonstrates that when M and
Re are constant andK is varying, the back ow velocity
in the center line decreases, but the region of back ow
increases. Here, an observation is of signi�cance within
the region of the channel. While the ow smoothly
increases near the central line, it is reduced near the
walls of the channel.

The variation of velocity f 0 against � for distinct

Figure 3. Graph of K on f .

Figure 4. Graph of M on f .

Figure 5. Graph of Re on f .

values of M is depicted in Figure 7. It is evident from
the �gure that the horizontal component of velocity
f 0(�) has increasing behavior near the walls, but a
decreasing trend near the central line of the channel.
By increasing the magnetic �eld, back ow velocity in
the central line decreases, but the region of back ow
increases. The inuence of Re ranging from 0 to 12
on f 0(�) is sketched in Figure 8. The movement of
stretching walls results in a back ow near the central
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Figure 6. Graph of K on f 0.

Figure 7. Graph of M on f 0.

Figure 8. Graph of Re on f 0.

line of the channel. It is observed that velocity near
the walls of the channel decreases down to � = 0:5.
However, an opposite behavior is observed far away
from the center of the channel.

The inuence of di�erent values of Prandtl num-
ber (Pr) on � is demonstrated in Figure 9. In

Figure 9. Graph of Pr on � for (a) �T = 2:5 and (b)
�T = 5:5.

Figure 9(a), variation of Prandtl number, Pr = 0.0,
1.4, 2.4, 4.4, is presented taking �T = 2:5. The
temperature pro�le shows decreasing behavior at low
thermal di�usivity. Figure 9(b) also gives the variation
of Pr for �T = 5:5. A similar trend is observed again.
However, the rate of heat transfer is smaller in this case.
Thus, proper selection of �T can be more useful for in-
creasing or decreasing the uid temperature. Figure 10
indicates superiority of the combined parameter M
over �. The ow �eld develops a Lorentz force, which
acts like a frictional force and hence, increases temper-
ature of the uid. In Figure 11, temperature of the
uid decreases in the whole domain by increasing the
viscoelastic parameter K. In Figure 12, the inuence
of Reynolds number (Re) on �(�) is depicted. A rise
in temperature is observed with the dominant values
of Re. Moreover, a rise in the value of Re increases
the boundary layer thickness. Figure 13 illustrates the
inuence of relaxation time constant �T on temperature
pro�le �: It is observed that the temperature pro�les
with the related thermal boundary layer thickness are
reduced with increase in �T in the whole domain.
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Figure 10. Graph of M on �.

Figure 11. Graph of K on �.

Figure 12. Graph of Re on �.

Figure 14 shows the behavior of concentration pro�le
' with the viscoelastic parameter. The concentration
�eld decreases by increasing viscoelastic parameter.
Contrarily, it is found to increase with increase in
M (Figure 15). Figure 16 elucidates the outcomes
for Re with concentration distribution. It is noted

Figure 13. Graph of �T on �.

Figure 14. Graph of K on '.

Figure 15. Graph of M on '.

that concentration pro�le is enhanced by increasing
Re. Finally, Figure 17 presents the e�ects of relaxation
time constant �C on concentration pro�le. It is seen
that concentration pro�le has a decreasing behavior by
increasing �C .
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Figure 16. Graph of Re on '.

Figure 17. Graph of �C on '.

6. Concluding remarks

Magneto-Hydro-Dynamic (MHD) steady-state ow of
second-grade uid in a channel with stretching walls in
the presence of porous medium was considered. The
partial di�erential system governing the ow was �rst
transformed into a fourth-order nonlinear di�erential
equation and then, solved by employing Homotopy
Analysis Method (HAM). This method can be useful in
other analytical methods that use the series solution.
The conclusions drawn in the present study are the
following:

� A decrease in the normal component of velocity
was observed by increasing combined parameter and
Reynolds number, while it had an opposite trend by
increasing viscoelastic parameter;

� By increasing combined parameter and Reynolds
number, the uid temperature in whole domain
increased and demotion in pro�le was observed by
increasing viscoelastic parameter, Prandtl number,
and thermal relaxation number;

� Larger values of thermal relaxation number reduced
temperature pro�le.
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