Comparison of γ and δ-Al2O3 supported CoMo catalysts in the ydrodesulfurization of straight-run gas oil

Document Type : Research Note


Iran Polymer and Petrochemical Institute, P.O. Box 14965/115, Tehran, Iran.


The effect of two different crystal species of alumina on hydrodesulfurization activity of the corresponding CoMo catalysts was studied. Cylindrical extruded alumina with two different crystal structures i.e. γ-Al2O3 and δ-Al2O3 was prepared using boehmite and nitric acid as a peptizing agent by calcination at 550 ˚C and 900 ˚C, respectively. The Al2O3 support were impregnated with 9 wt.% of Mo and 2 wt.% Co via incipient wetness impregnation method. The CoMo/Al2O3 catalysts were used for hydrodesulfurization (HDS) and hydrodenitrification (HDN) of Iranian straight-run gas oil (ISRGO). The supports and catalysts were characterized by nitrogen adsorption-desorption isotherm, XRD, UV-vis-DRS, TPD, TPR and ICP-OES. The HDS activity of CoMo/γ-Al2O3 catalyst was higher than that of CoMo/δ-Al2O3 and was found to be 95.74%. This result was due to the formation of larger CoMoO4 and MoO3 crystals in CoMo/δ-Al2O3 catalyst which reduces the active metal phase dispersion and the performance of the catalyst. The HDS activity of CoMo/γ-Al2O3 catalyst was remarkable as the metal content of the catalyst was low. The HDN activity of CoMo/γ-Al2O3 was also about 66%.


Main Subjects

1. Badoga, S., Mouli, K.C., Soni, K.K., Dalai, A.K., and Adjaye, J. Bene_cial inuence of EDTA on the structure and catalytic properties of sul_ded NiMo/SBA- 15 catalysts for hydrotreating of light gas oil", Applied Catalysis B: Environmental, 125, pp. 67-84 (2012). 2. Tao, X., Zhou, Y.,Wei, Q., Ding, S., Zhou, W., Liu, T., M. Zarezadeh-Mehrizi et al./Scientia Iranica, Transactions C: Chemistry and ... 26 (2019) 1555{1565 1563 and Li, X. Inhibiting e_ects of nitrogen compounds on deep hydrodesulfurization of straight-run gas oil over a NiW/Al2O3 catalyst", Fuel, 188, pp. 401-407 (2017). 3. Usman Kubota, T., Hiromitsu, I., and Okamoto, Y. E_ect of boron addition on the surface structure of Co-Mo/Al2O3 catalysts", Journal of Catalysis, 247(1), pp. 78-85 (2007). 4. Al-Hammadi, S.A., Al-Amer, A.M., and Saleh, T.A. Alumina-carbon nano_ber composite as a support for MoCo catalysts in hydrodesulfurization reactions", Chemical Engineering Journal, 345, pp. 242-251 (2018). 5. Liu, X., Li, X., and Yan, Z. Facile route to prepare bimodal mesoporous -Al2O3 as support for highly active CoMo-based hydrodesulfurization catalyst", Applied Catalysis B: Environmental, 121-122, pp. 50-56 (2012). 6. De Souza, W.F., Guimar~aes, I.R., Guerreiro, M.C., and Oliveira, L.C.A. Catalytic oxidation of sulfur and nitrogen compounds from diesel fuel", Applied Catalysis A: General, 360(2), pp. 205-209 (2009). 7. Rezaee, M., Kazemeini, M., Fattahi, M., Rashidi, A.M., and Vafajoo, L. Oxidation of H2S to elemental sulfur over alumina based nanocatalysts: Synthesis and physiochemical evaluations", Scientia Iranica, 23(3), pp. 1160-1174 (2016). 8. El Sayed, H.A., El Naggar, A.M.A., Heakal, B.H., Ahmed, N.E., Said, S., and Abdel-Rahman, A.A.H. Deep catalytic desulphurization of heavy gas oil at mild operating conditions using self-functionalized nanoparticles as a novel catalyst", Fuel, 209, pp. 127- 131 (2017). 9. Van Haandel, L., Hensen, E.J.M., and Weber, T. High pressure ow reactor for in situ X-ray absorption spectroscopy of catalysts in gas-liquid mixtures - A case study on gas and liquid phase activation of a Co- Mo/Al2O3 hydrodesulfurization catalyst", Catalysis Today, 292, pp. 51-57 (2017). 10. Badoga, S., Ganesan, A., Dalai, A.K., and Chand, S. E_ect of synthesis technique on the activity of CoNiMo tri-metallic catalyst for hydrotreating of heavy gas oil", Catalysis Today, 291, pp. 160-171 (2017). 11. Van Haandel, L., Bremmer, G.M., Hensen, E.J.M., and Weber, T. Inuence of sul_ding agent and pressure on structure and performance of CoMo/Al2O3 hydrodesulfurization catalysts", Journal of Catalysis, 342, pp. 27-39 (2016). 12. Jaf, Z.N., Altarawneh, M., Miran, H.A., Jiang, Z.- T., and Dlugogorski, B.Z. Hydrodesulfurization of thiophene over -Mo2N catalyst", Molecular Catalysis, 459, pp. 21-30 (2018). 13. Huang, T., Xu, J., and Fan, Y. E_ects of concentration and microstructure of active phases on the selective hydrodesulfurization performance of sul_ded CoMo/Al2O3 catalysts", Applied Catalysis B: Environmental, 220, pp. 42-56 (2018). 14. Mi~no, A., Lancelot, C., Blanchard, P., Lamonier, C., Rouleau, L., Roy-Auberger, M., Royer, S., and Payen, E. Strategy to produce highly loaded alumina supported CoMo-S catalyst for straight run gas oil hydrodesulfurization", Applied Catalysis A: General, 530, pp. 145-153 (2017). 15. Dorneles de Mello, M., de Almeida Braggio, F., da Costa Magalh~aes, B., Zotin, J.L., and da Silva, M.A.P. Kinetic modeling of deep hydrodesulfurization of dibenzothiophenes on NiMo/alumina catalysts modi- _ed by phosphorus", Fuel Processing Technology, 177, pp. 66-74 (2018). 16. Saleh, T.A., Al-Hammadi, S.A., Abdullahi, I.M., and Mustaqeem, M. Synthesis of molybdenum cobalt nanocatalysts supported on carbon for hydrodesulfurization of liquid fuels", Journal of Molecular Liquids, 272, pp. 715-721 (2018). 17. Dong, Y., Xu, Y., Zhang, Y., Lian, X., Yi, X., Zhou, Y., and Fang, W. Synthesis of hierarchically structured alumina support with adjustable nanocrystalline aggregation towards e_cient hydrodesulfurization", Applied Catalysis A: General, 559, pp. 30-39 (2018). 18. Han, W., Nie, H., Long, X., Li, M., Yang, Q., and Li, D. E_ects of the support Br_nsted acidity on the hydrodesulfurization and hydrodenitrogention activity of sul_ded NiMo/Al2O3 catalysts", Catalysis Today, 292, pp. 58-66 (2017). 19. Ho, T.C. and Markley, G.E. Property-reactivity correlation for hydrodesulfurization of prehydrotreated distillates", Applied Catalysis A: General, 267(1-2), pp. 245-250 (2004). 20. Pang, W.W., Zhang, Y.Z., Choi, K.H., Lee, J.K., Yoon, S.H., Mochida, I., and Nakano, K. Design of catalyst support for deep hydrodesulfurization of gas oil", Petroleum Science and Technology, 27(12), pp. 1349-1359 (2009). 21. Asadi, A.A., Alavi, S.M., Royaee, S.J., and Bazmi, M. Ultradeep hydrodesulfurization of feedstock containing cracked gasoil through NiMo/-Al2O3 catalyst pore size optimization", Energy & fuels, 32(2), pp. 2203-2212 (2018). 22. Vozka, P., Orazgaliyeva, D., _Sim_a_cek, P., Bla_zek, J., and Kilaz, G. Activity comparison of Ni-Mo/Al2O3 and Ni-Mo/TiO2 catalysts in hydroprocessing of middle petroleum distillates and their blend with rapeseed oil", Fuel Processing Technology, 167, pp. 684-694 (2017). 23. Badoga, S., Sharma, R.V., Dalai, A.K., and Adjaye, J. Synthesis and characterization of mesoporous aluminas with di_erent pore sizes: Application in NiMo supported catalyst for hydrotreating of heavy gas oil", Applied Catalysis A: General, 489, pp. 86-97 (2015). 24. Badoga, S., Dalai, A.K., Adjaye, J., and Hu, Y. Insights into individual and combined e_ects of phosphorus and EDTA on performance of NiMo/MesoAl2O3 catalyst for hydrotreating of heavy gas oil", Fuel Processing Technology, 159 pp. 232-246 (2017). 1564 M. Zarezadeh-Mehrizi et al./Scientia Iranica, Transactions C: Chemistry and ... 26 (2019) 1555{1565 25. Liu, D.,Wang, A., Liu, C., and Prins, R. Ni2P/Al2O3 hydrodesulfurization catalysts prepared by separating the nickel compound and hypophosphite", Catalysis Today, 292, pp. 133-142 (2017). 26. Zarezadeh-Mehrizi, M., Afshar Ebrahimi, A., and Rahimi, A. Preparation of extruded alumina with suitable crushing strength and good stability", Scientia Iranica, 25(3), pp. 1434-1439 (2018). 27. Li, M., Li, H., Jiang, F., Chu, Y., and Nie, H. E_ect of surface characteristics of di_erent alumina on metal-support interaction and hydrodesulfurization activity", Fuel, 88(7), pp. 1281-1285 (2009). 28. Laurenti, D., Phung-Ngoc, B., Roukoss, C., Devers, E., Marchand, K., Massin, L., Lemaitre, L., Legens, C., Quoineaud, A.-A., and Vrinat, M. Intrinsic potential of alumina-supported CoMo catalysts in HDS: Comparison between c, T, and _-alumina", Journal of Catalysis, 297, pp. 165-175 (2013). 29. Pashigreva, A.V., Bukhtiyarova, G.A., Klimov, O.V., Chesalov, Y.A., Litvak, G.S., and Noskov, A.S. Activity and sul_dation behavior of the CoMo/Al2O3 hydrotreating catalyst: The e_ect of drying conditions", Catalysis Today, 149(1-2), pp. 19-27 (2010). 30. Thommes, M., Kaneko, K., Neimark, A.V., Olivier, J.P., Rodriguez-Reinoso, F., Rouquerol, J., and Sing, K.S. Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC technical report)", Pure and Applied Chemistry, 87(9-10), pp. 1051-1069 (2015). 31. Parkhomchuk, E.V., Lysikov, A.I., Okunev, A.G., Parunin, P.D., Semeikina, V.S., Ayupov, A.B., Trunova, V.A., and Parmon, V.N. Meso/ Macroporous CoMo alumina pellets for hydrotreating of heavy oil", Industrial & Engineering Chemistry Research, 52(48), pp. 17117-17125 (2013). 32. Laurer, P.R., Preparation of a Catalyst Carrier from Alumina Mixtures, Google Patents (1981). 33. Wassermann, M. and Meyer, A., Process for Making Extrudates from Aluminum Oxyhydrates, Google Patents (1977). 34. Ram__rez, J., Castillo, P., Ceden~o, L., Cuevas, R., Castillo, M., Palacios, J., and L_opez-Agudo, A. E_ect of boron addition on the activity and selectivity of hydrotreating CoMo/Al2O3 catalysts", Applied Catalysis A: General, 132(2), pp. 317-334 (1995). 35. Nicosia, D. and Prins, R. The e_ect of glycol on phosphate-doped CoMo/Al2O3 hydrotreating catalysts", Journal of Catalysis, 229(2), pp. 424-438 (2005). 36. Matralis, H., Papadopoulou, C., and Lycourghiotis, A. Fluorinated hydrotreatment catalysts e_ect of the deposition order of F-ions on F-CoMo/-AL2O3 catalysts", Applied Catalysis A: General, 116(1-2), pp. 221-236 (1994). 37. Nava, R., Pawelec, B., Morales, J., Ortega, R.A., and Fierro, J.L.G. Comparison of the morphology and reactivity in HDS of CoMo/HMS, CoMo/P/HMS and CoMo/SBA-15 catalysts", Microporous and Mesoporous Materials, 118(1-3), pp. 189-201 (2009). 38. Gajardo, P., Grange, P., and Delmon, B. Physicochemical characterization of the interaction between cobalt molybdenum oxide and silicon dioxide. 1. Inuence of the cobalt-molybdenum ratio", The Journal of Physical Chemistry, 83(13), pp. 1771-1779 (1979). 39. Ali, S.A., Ahmed, S., Ahmed, K.W., and Al-Saleh, M.A. Simultaneous hydrodesulfurization of dibenzothiophene and substituted dibenzothiophenes over phosphorus modi_ed CoMo/Al2O3 catalysts", Fuel Processing Technology, 98, pp. 39-44 (2012). 40. Nava, R., Infantes-Molina, A., Casta~no, P., Guil- L_opez, R., and Pawelec, B. Inhibition of CoMo/HMS catalyst deactivation in the HDS of 4,6-DMDBT by support modi_cation with phosphate", Fuel, 90(8), pp. 2726-2737 (2011). 41. Wang, Z., Fu, J., Deng, Y., Duan, A., Zhao, Z., Jiang, G., Liu, J., Wei, Y., and Zhao, S. Synthesis of aluminum-modi_ed 3D mesoporous TUD-1 materials and their hydrotreating performance of FCC diesel", RSC Advances, 5(7), pp. 5221-5230 (2015). 42. Kanjanasoontorn, N., Permsirivanich, T., Numpilai, T., Witoon, T., Chanlek, N., Niamlaem, M., Warakulwit, C., and Limtrakul, J. Structure-activity relationships of hierarchical meso-macroporous alumina supported copper catalysts for CO2 hydrogenation: Effects of calcination temperature of alumina support", Catalysis Letters, 146(10), pp. 1943-1955 (2016). 43. Faungnawakij, K., Tanaka, Y., Shimoda, N., Fukunaga, T., Kikuchi, R., and Eguchi, K. Hydrogen production from dimethyl ether steam reforming over composite catalysts of copper ferrite spinel and alumina", Applied Catalysis B: Environmental, 74(1), pp. 144-151 (2007). 44. Paz_e, C., Gubitosa, G., Giacone, S.O., Spoto, G., Llabr_es i Xamena, F.X., and Zecchina, A. An XRD, FTIR and TPD investigation of NO2 surface adsorption sites of _,  Al2O3 and barium supported _,  Al2O3", Topics in Catalysis, 30(1), pp. 169-175 (2004). 45. Wang, A., Wang, Y., Kabe, T., Chen, Y., Ishihara, A., and Qian, W. Hydrodesulfurization of dibenzothiophene over siliceous MCM-41-supported catalysts", Journal of Catalysis, 199(1), pp. 19-29 (2001). 46. Rodriguez, J.A., Chaturvedi, S., Hanson, J.C., and Brito, J.L. Reaction of H2 and H2S with CoMoO4 and NiMoO4: TPR, XANES, time-resolved XRD, and molecular-orbital studies", The Journal of Physical Chemistry B, 103(5), pp. 770-781 (1999). 47. Li, X., Chai, Y., Liu, B., Liu, H., Li, J., Zhao, R., and Liu, C. Hydrodesulfurization of 4,6- dimethyldibenzothiophene over CoMo catalysts supported on -alumina with di_erent morphology", Industrial & Engineering Chemistry Research, 53(23), pp. 9665-9673 (2014). M. Zarezadeh-Mehrizi et al./Scientia Iranica, Transactions C: Chemistry and ... 26 (2019) 1555{1565 1565 48. Boufaden, N., Akkari, R., Pawelec, B., Fierro, J.L.G., Zina, M.S., and Ghorbel, A. Dehydrogenation of methylcyclohexane to toluene over partially reduced silica-supported Pt-Mo catalysts", Journal of Molecular Catalysis A: Chemical, 420 (Supplement C), pp. 96-106 (2016). 49. Boufaden, N., Akkari, R., Pawelec, B., Fierro, J.L.G., Said Zina, M., and Ghorbel, A. Dehydrogenation of methylcyclohexane to toluene over partially reduced Mo-SiO2 catalysts", Applied Catalysis A : General, 502 (Supplement C), pp. 329-339 (2015).