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Abstract. The present study is based on the development of an inverse approach in the
domain of Recurrent Neural Networks (RNNs) to identify and quantify multiple cracks on
a cantilever beam structure subjected to transit mass. First, the responses of the multi-
crack structure subjected to transit load were determined using fourth-order Runge-Kutta
numerical method and Finite Element Analysis (FEA) executed using ANSYS software to
authenticate the employed numerical method. The existence and positions of cracks were
identi�ed from the measured dynamic excitation of the structure. The crack severities
were found as a forward problem through FEA. The modi�ed Elman's Recurrent Neural
Networks (ERNNs) approach was implemented to predict the locations and severity of
cracks in the structure as an inverse problem by applying Levenberg-Marquardt (L-M)
back propagation algorithm. The analogy was carried out in a supervised manner to check
the convergence of the proposed algorithm. The results of the proposed ERNNs method
were in good agreement with the theoretical and FEA results.
© 2020 Sharif University of Technology. All rights reserved.

1. Introduction

Damage identi�cation and assessment in the structures
using vibration data have drawn the attention of the
researchers since several decades ago. E�ective struc-
tural damage detection is the key to structural health
monitoring and condition assessment of structures.
Several techniques have been developed and applied to
detecting and quantifying the severity of damages as
forward and inverse problems.

Chaudhari and Maiti [1] employed the Frobenius
method to analyse the transverse vibration of a slender
beam in and o� the presence of cracks. Chinchalkar [2]
developed a numerical method to determine the crack
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location in a stepped beam using the lowest three
natural frequencies of the structure. Valoor et al. [3]
developed a self-adapting vibration control method for
a composite beam structure using Diagonal Recurrent
Neural Network (DRNN) and Feed Forward Neural
Network (FFNN). Lee et al. [4] developed a damage
detection method for bridge structures under vehicle
loading using the ambient vibration data by Finite
Element Analysis (FEA) followed by experimental
veri�cations. They employed the neural network
techniques in damage assessment of the structure as
an inverse problem. Kao and Hung [5] presented
a neural-network-based method for structural dam-
age detection. They formulated the method in two
steps of structural system identi�cation and damage
detection. Seker et al. [6] applied Elman's Recurrent
Neural Network (ERNN) to the diagnosis and condition
monitoring of a nuclear power plant structure with
rotating machinery.

Using the changes in natural frequencies of the
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structure, Kim and Stubbs [7] proposed a crack de-
tection method to locate and quantify the severity
of cracks. Law and Zhu [8] presented a damage
detection technique using the changes in the nonlinear
characteristics of a damaged reinforced concrete beam
under moving vehicle. Nahvi and Jabbari [9] devel-
oped a crack identi�cation method for cantilever beam
structures using experimental modal data and �nite
element model. The approach was based on measure-
ment of natural frequencies and mode shapes of the
structure. Chasalevris and Papadopoulos [10] investi-
gated the multiple-crack detection method for beam-
like structures under vibrating conditions. Schafer
and Zimmermann [11] presented the Recurrent Neural
Networks (RNNs) as universal approximators in the
state space model. They also extended the capabilities
of the RNN and normalized it for error correction. Zhu
and Law [12] established a damage detection method
for a simply supported concrete bridge in time domain.
They used the interaction forces between the bridge
and traversing vehicles as the excitation forces on the
damaged structure.

Li and Yang [13] developed a damage identi�-
cation method using the Arti�cial Neural Networks
(ANNs) technique based on statistical properties of
structural dynamic responses. Talebi et al. [14] adopted
the RNN in fault identi�cation and isolation with appli-
cation to satellite altitude control subsystem. Sayyad
and Kumar [15] studied a crack detection method for
a simply supported beam with single crack by the
measurement of natural frequencies. They also devel-
oped the relationship among the natural frequencies,
crack location, and crack size. Perez and Gonzalez [16]
proposed a neural-network-based damage identi�cation
method to localize and quantify the damage extent
using modal data. Based on ANNs technique, Shu et
al. [17] presented a damage detection method using the
statistical properties of structural dynamic responses
as damage indices for input. By applying the concept
of probability distribution function, Asnaashari and
Sinha [18] developed a crack identi�cation analogy in
time domain approach. A novel method was developed
by Oshima et al. [19] for the condition monitoring of
a bridge structure based upon mode shape analysis of
the response of a moving vehicle.

Hakim et al. [20] developed an ANNs-based ap-
proach for localizing the position and quantifying the
severities of cracks in an I-beam structure. They
considered the �rst �ve natural frequencies and mode
shapes of the structure as input to the network
model. Kourehli [21] presented a feed forward Back
Propagation Neural Network (BPNN) technique to
quantify damage and estimate its location. He used
incomplete modal data for the training of the ANNs
model. Vosoughi [22] developed a hybrid method to
identify cracks in a beam-like structure using the Euler-

Bernoulli and fracture mechanics theories. Aydin
and Kisi [23] proposed a damage diagnosis method
for beam-like structures using ANNs. Multi-Layer
Perceptron (MLP) and Radial Basis Neural Networks
(RBNNs) were employed to identify the location and
severities of cracks. Jena and Parhi [24] determined
the responses of di�erent types of beam structures sub-
jected to moving load under variable damage conditions
of structure.

Ko�c et al. [25] combined the �nite element and
neural networks method to predict the end deection
of a barrel and investigated the consequences of an
accelerating projectile. Back propagation algorithm
was implemented in the model. He and Zhu [26]
developed a closed-form solution for the dynamic re-
sponse of a damaged simply supported structure under
a transit load and investigated the e�ects of the loss
of local sti�ness. The aim of their work was damage
localization based on moving load-induced response
of the structure. Limongelli et al. [27] presented
an experimental method for the early detection of
damage in deteriorated bridge structures. Amezquita-
Sanchez et al. [28] conducted a literature survey of the
implementation of ANNs in the area of civil engineering
for structural system credentials problem. Jena and
Parhi [29,30] carried out numerical along with FEA
and experimental studies to determine the responses of
di�erent types of beam structures subjected to moving
load. Yeang et al. [31] developed an algorithm for
damage localization in a structure subjected to moving
vehicle. Obrien et al. [32] used the response of vehicle
axle force as information to detect the existence of
damage in a bridge structure. Toloue et al. [33]
carried out an experimental work to develop a damage
detection procedure by using noisy accelerometers and
damage load vectors in a three-dimensional framed
structure. He et al. [34] applied the mode shape
curvature concepts as damage localizing method for
vibrating structures. The mode shapes were extracted
for a structure subjected to a moving vehicle in this
methodology. Using the generalized S-transformation
approach, Tehrani et al. [35] developed a damage local-
ization method for the exural members of structures.
They validated this method with numerical examples
followed by experimental studies. Zhang et al. [36]
adopted the concept of contact-point response of a
transit vehicle for fault detection in bridge structures.

The majority of damage detection methods in-
volve the use of measured structural responses under
dynamic excitation as forward problem and application
of ANNs as inverse problem to predict structural
damages. RNNs are superior in performance to FFNNs
as they provide explicit model memory and are able
to identify inter-temporal dependencies. The dynamic
memory is supplied by means of feedback connections
in RNNs. In the present article, a numerical method
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followed by FEA veri�cation is proposed as forward
method to identify the locations and quantify the
severities of cracks by the dynamic excitation of the
structure. The modi�ed ERNNs approach is employed
as an inverse method to quantify the cracks and predict
their possible locations in the structure. An analogy
will be carried out in a supervised manner.

2. Problem formulation

The schematic view of a damaged cantilever beam with
multiple cracks subjected to transit mass is shown in
Figure 1. A mass `M ' is moving across the beam from
the �xed end to the free end of the damaged cantilever
beam with a speed of `v'. Including the e�ects of
inertial, centrifugal, and Coriolis forces and ignoring
the damping e�ects and longitudinal vibrations of
the beam, the equation of motion for a beam under
transit mass at no loading condition considering Euler-
Bernoulli's beam theory is given as:

EI
@4y
@x4 +m

@2y
@t2

=P (t)�(x� �); (1)

where EI is exural rigidity, m beam mass per unit
length, � Dirac delta function, x beam deection at
the considered point `Z', � = vt position of the transit
mass at any time `t,' and v speed of the transit mass.
Also, relative crack depth is � = d

H , �1;2;3 = d1;2;3
H , and

relative crack positions is �1;2;3 = L1;2;3
L .

Finally, P (t) indicates the force induced due to

the transit mass `M ' = Mg �M� @
@t + v @

@�

�2
y(�; t).

Substituting the value of P (t) in Eq. (1), we have:
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The solution to Eq. (2) can be written in series
form, i.e.:

Figure 1. Schematic view of the damaged cantilever
beam with multiple cracks under transit mass.

y(x; t) =
1X
n=1

�n(x)Tn(t); (3)

where y(x; t) is transverse deection of the beam, �n(x)
shape function of the beam, Tn(t) amplitude function
to be calculated, and n number of modes of vibration.

For calculating �n(x), Eq. (3) can be written as:

�niv(x)� �n4�n(x) = 0: (4)

Here, �4
n = �A!2

n
EI and !n is natural frequency of the

beam.
Substituting Eq. (3) in the right part of Eq. (2)

and doing the simpli�cations give:"
Mg �M

�
@
@t

+ v
@
@�

�2 1X
n=1

�n(�)Tn(t)

#
�(x� �)

=
1X
n=1

�n(x)Tn(t): (5)

We can simplify Eq. (5) and reach the �nal so-
lution equation, as presented earlier by Jena and
Parhi [29,30], as follows:
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(6)

The response of the vibrating structure is determined
by solving Eq. (6) using Runge-Kutta fourth-order
rule [29,30]. The response of the structure due to the
interaction of moving load is calculated by the solution
to Eq. (6). It is done by using Runge-Kutta method
through developing a MATLAB code.

3. Finite Element Analysis (FEA) of cracked
structures under transit mass using ANSYS

FEA of the cracked beam structure under transit mass
is carried out by employing transient dynamic analysis
method in ANSYS Workbench 2015. The responses
of the structure are calculated in di�erent damage
scenarios. The numerical method inbuilt in ANSYS
is Newmark-� integration method.

The equation of motion of a structure under
travelling mass in FEA (transient dynamic analysis)
can be articulated as:

M [�xt] + C[ _xt] +K[xt] = F (t); (7)

where x is the displacement of the structure _x and
�x are velocity and acceleration of the transit mass,
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Table 1. Frequency ratios of the damaged cantilever structure.

Mode
no.

�1;2;3 = 0:25; 0:5; 0:35
L1;2;3 = 0:384; 0:48; 0:64

�1;2;3 = 0:4; 0:6; 0:45
L1;2;3 = 0:44; 0:56; 0:768

�1;2;3 = 0:25; 0:5; 0:35
L1;2;3 = 0:44; 0:56; 0:768

�1;2;3 = 0:4; 0:6; 0:45
L1;2;3 = 0:384; 0:48; 0:64

1 0.9901 0.9931 0.9703 0.9875

2 0.9631 0.9808 0.9885 0.9703

3 0.9891 0.9789 0.9702 0.9891

Percentage of deviation =
(FEA values - Theoretical values)

FEA values
� 100;

Average percentage of deviation =
Sum of the percentage deviations

Total number of observations
;

Total percentage of deviation =
Sum of the average percentage of deviation

Total number of average percentage of deviations
:

Box I

Figure 2. Transit mass-structure interaction of the
cracked cantilever beam for �1;2;3 = 0:25; 0:5; 0:35,
�1;2;3 = 0:384; 0:48; 0:64, and M = 2:5 kg.

respectively. Also, F (t) is applied force, K[xt] sti�ness
force, C[ _xt] damping force, and M [�xt] inertial force.

Initially, modal analyses for up to �ve modes of
vibration are carried out. In the present analysis,
Newmark-� integration method is adopted under zero
damping, unconditional stability, and constant average
acceleration conditions to �nd out the responses of the
structure in ANSYS Workbench 2015. In ANSYS,
the responses of the structure at di�erent locations
of the transit mass and the particular location of the
structure are calculated. The dynamic interaction of
the moving mass and the cantilever structure is shown
in Figure 2. The magni�ed view of a crack is shown
in Figure 3. The dimensions of the cantilever structure
are same as those in the numerical formulation with
the same damage con�gurations, traversing mass, and

Figure 3. Magni�ed view of the crack zone for � = 0:5.

speed. The crack is represented in an enhanced view
(Figure 3). The transient structural dynamics analysis
of the cracked cantilever beam in ANSYS Workbench
2015 is shown in Figure 4. The frequency ratios of the
cantilever beam in various damage con�gurations are
represented in Table 1. Dimensions of the structures
are same as those in the experimental model with
the same damage con�gurations, traversing mass, and
speed. The expression for percentage of results between
the FEA and theoretical values are represented in
Box I.

4. Forward problem formulation

The results obtained from the numerical method are
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Figure 4. Schematic view of transient structural model for the cracked cantilever structure.

Figure 5. Deection vs. travelling time for M = 2:5 kg,
v = 6:5 m/s, �1;2;3 = 0:25; 0:52; 0:35, and
� = 0:384; 0:48; 0:64.

veri�ed by FEA. To evaluate the forward problem for
determining the response of the damaged structure due
to the moving mass, a numerical example is formulated
for a damaged cantilever beam made up of mild steel
with the dimensions of 125 cm� 6 cm� 0:5 cm, speed
of 6.5 m/s, and moving mass of 2.5 kg.

Relative crack depth is �1;2;3 = d1;2;3/H and
relative crack location is �1;2;3 = L1;2;3/L. The
subscripts 1, 2, and 3 stand for the �rst, second, and
third positions, respectively.

The numerical analysis and FEA of the responses
of the cracked cantilever structure under transit load
are illustrated in Figures 5 and 6. The deections at
the free end (x = L) and at any location (x = vt) of
the cracked structure under transit load are determined
(Figures 5 and 6). The probable existence and locations
of cracks are estimated from the measured dynamic
response of the vibrated cracked structure under transit
load. The forward problem analysis of the existence
and locations of cracks is given in Figures 7(a) and 7(b).
After detecting and localizing the cracks on the struc-
ture, the severity of cracks is determined from the nat-
ural frequencies and mode shape analyses of the struc-
tures by FEA [10] using ANSYS Workbench 2015. It
is observed that the results of FEA agree well with the

Figure 6. Deection vs. travelling time for M = 2:5 kg,
v = 6:5 m/s, �1;2;3 = 0:42; 0:61; 0:45, and
�1;2;3 = 0:44; 0:56; 0:768.

Figure 7a. Crack detection of the beam for
�1;2;3 = 0:384; 0:48; 0:64.

theoretical results. The details are elaborated on in the
section devoted to the analysis of results in this study.

5. Modi�ed Elman's Recurrent Neural
Networks (ERNNs) approach to damage
detection in a structure subject to transit
mass as an inverse problem

The ERNNs are partial RNNs which identify patterns
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Figure 7b. Crack detection of the beam for
�1;2;3 = 0:44; 0:56; 0:768.

in a sequence of values by implementing back propaga-
tion analysis through the mechanism of time learning.
The ERNNs which was named after the researcher
Elman which include the conception between the feed
forward and recurrent network [37]. There are four
layers in ERNNs, namely input, output, hidden, and
context. The context layer is structured on the feed-
back connections from the hidden layer. The context
layer provides the network with dynamic memory. This
paper introduces the approach of modi�ed ERNNs for
fault detection in a damaged structure under transit
mass. The modi�ed structural architecture of ERNNs
is shown in Figure 8. The present ERNNs model
includes one input and output, three hidden, and two
context layers. There are six neurons in each of the
input and output layers, while those in each context

Figure 8. Modi�ed Elman's Recurrent Neural Networks (ERNNs) architectural model.
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and hidden layers are 18. The numbers of neurons in
the hidden layer are the same as those in the context
layer, because the context layer can copy or accumulate
all the exact data or information and reuse it later. The
�rst hidden layer gives information to context layer 1
through feedback links and again, collects information
from context layer 1 as output. Context layer 1 also
supplies feedback signals to context layer 2 and the �rst
hidden layer gets the information as output from the
nodes of context layer 2. Likewise, dynamic memories
are provided for the network model using feedback
connection from context layers 1 and 2. The feedback
links are also supplied from the nodes in a hidden layer
to those in the corresponding preceding hidden layer.
The feedback and self-recurrent connections have one
time delay unit. Apart from input and output layers,
all the nodes in the context and hidden layers have self-
recurrent links. Due to the existence of self-recurrent
links, the nodes in the hidden layers supply extra
generalities to the network structure for recognition of
non-linear systems.

6. Use of Levenberg-Marquardt (L-M) back
propagation method in the Recurrent
Neural Networks (RNNs)

L-M back propagation algorithm, which is fast and
stable, is implemented in the present RNNs analysis.
It uses the steepest descent method and Gauss-Newton
method in combination. This algorithm allows for
the high speed of the Gauss-Newton and stability of
the steepest descent analyses. The mechanism of the
proposed algorithm is such that it transforms into the
steepest descent analysis to make a quadratic esti-
mation and then, transforms into the Gauss-Newton
analysis to enhance the convergence of the algorithm
throughout the training procedure.

The fundamental equation of the L-M back prop-
agation algorithm [37] is given by:

�k+1 = �k � (JkTJk + �I)�1Jkek; (8)

where � is the weight of connection or synaptic weights
of the neuron, J the Jacobian matrix, which is eval-
uated by the Gauss-Newton method, I the identity
matrix, and � the combination coe�cient. When the
value of � approaches zero, Eq. (8) will perform as
a Gauss-Newton method and when � is very large,
Eq. (8) performs as the steepest descent method.
According to the update rule of the L-M algorithm, if
the predicted error is smaller than the previous error,
then the value of � should be reduced to decrease the
implication of gradient descent method. On the other
hand, if the calculated error is more than the previous
error, it is required to increase the value of �.

We have � = (1=v) here and � performs as the
training constant or step size. Also, the error vector is

e =  desired �  actual, where  desired is the calculated
output vector and  actual the real output vector.

" = Error function =
1
2

X
all training
patterns

X
all outputs

e2: (9)

The execution of the L-M back propagation algorithm
depends on the value of J and the iterative training
performance in weight updating. During the training
procedure, back propagation recurs for every output
value to accomplish the consecutive rows of the Jacobin
matrix. The values of the error back propagating units
are also analysed for each neuron of the hidden and
output layers, separately, in the calculation of both
forward and backward values. After determination
of the Jacobian Matrix, the training procedure of the
network starts.

During the training and operation steps of the
network model, the training patterns are fed forward
to include the following components:

- i = 1, 2:::N , where N is the number of nodes in the
input layer;

- j1 = j2 = j3 = 1; 2; ::S, where S is the number of
nodes in each of the hidden layers;

- l1;= l2 = 1; 2; ::T , where T is the number of nodes
in each of the context layers 1 and 2;

- k = 1; 2; ::O, where O is the number of nodes in the
output layer;

- X1�6 and V1�6, are the values of context nodes in
the context layers 1 and 2, respectively;

- W , total input values in the input layer;

- rd, relative deection of the structure under moving
mass = deection of damaged beam to undamaged
beam at a speci�ed instant of time;

- rd� 1, rd� 2, rd� 3, and rd� 4, relative deections
of the structure under moving mass at the speci�ed
instants of time `t=4,' `t=2,' `3t=4,' and `t,' respec-
tively;

- W , the values of the input layers;

- W1 = rd � 1;W2 = rd � 2;W3 = rd � 3, and W4 =
rd� 4;

- W5, traversing speed of the mass (v);

- W6, weight of the moving mass (M);

- t, total travelling time of the traversing mass to cross
the beam;

-  1,  3, and  5, the �rst (rcl1), second (rcl2), and
third (rcl3) relative crack locations, respectively;

-  2,  4, and  6, the �rst (rcd1), second (rcd2), and
third (rcd3) relative crack depths, respectively;
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- , the value of self-recurrent links in each node of
the layers (context layers 1 and 2; �rst, second, and
third hidden layers);

- �, weights of connection or synaptic weights of
neurons;

-  t�1
l1 and  t�1

l2 , the net output values of the nodes at
time t�1 of the context layers 1 and 2, respectively;

-  tl1 and  tl2, the net output values of the nodes at
time t of the context layers 1 and 2, respectively;

-  t�1
j1 ,  t�1

j2 and  t�1
j3 , the net output values of the

nodes at time t � 1 of the �rst, second, and third
hidden layers, respectively;

-  tj1,  tj2, and  tj3, the net output values of the nodes
at time index t of the �rst, second, and third hidden
layers, respectively;

-  t�1
k and  tk, the net output values of the output

nodes at times t� 1 and t, respectively; and
- f(:) and g(:), the activation functions in the hidden

and output layers, respectively.

From the analysis of the ERNNs model (Figure 8), we
have:
 l1t =  j1t�1 + �l1t�1; (10)

 l2t =  l1t�1 + �l2t�1: (11)

The net input to the �rst hidden layer is given by using
the following relation:

 j1t =
NX
i=1

Wi�i;j1 +  j1t�1 +  j2t�1 +  l1t +  l2t:
(12)

The net input to the second hidden layer is:

 j2t =
SX

j1=1

 j1t�j1;j2 +  j2t�1 +  j3t�1: (13)

The net input to the third hidden layer or to the
network model is given by:

 j3t =
SX

j2=1

 j2t�j2;j3 +  j3t�1; (14)

nettj =  tj3 =  tj = f(nettj); (15)

nettk =
SX

j3=1

 tj3�j3;k: (16)

The net output of the proposed network is given by:

 kt = g(netkt): (17)

Each of the input and output layers contains six neu-
rons, while each hidden or context layer has 18 neurons.
The number of neurons or nodes in each of the hidden
and context layers is chosen constant, because during
the training process, the hidden and context layers can
replicate the exact information from each other. The
numbers of neurons are selected in an iterative manner
during the training program. Considering di�erent
conditions of damage con�guration in the structural
system, 750 patterns are generated, out of which 650
are used in the training process and 100 in testing.
Some of the patterns generated to train the network
model are shown in Table 2. In Table 2, the output
parameters with the value of zero for `rcl' and `rcd'
clearly exhibit no presence of crack in the structure.
Even the input parameters of `rd' with the value of 1
clearly indicate uncracked regions. The implemented
activation function in the hidden and context layers is
`tan-sigmoid,' while `purelin' is applied to the output
layer. The L-M algorithm has been applied to the
modi�ed ERNNs model to estimate the position and
severity of cracks in the structure. All the training
and testing are carried out in a supervised manner to
check the accuracy of the proposed RNNs model and
L-M algorithm. The approximation error function (")
has been employed in the input nodes of the ERNNs
model to reduce the error value utilizing the updated

Table 2. Training patterns for the Elman's Recurrent Neural Networks (ERNNs) model.

Input parameters to ERNNs model Output parameters
rd1 rd2 rd3 rd4 M (kg) v (m/s) rcl1 rcl2 rcl3 rcd1 rcd2 rcd3

1 1.284 1.295 1.238 2 6 0.325 0.375 0.475 0.2 0.3 0.4
1.09 1.202 1.299 1.2484 1.8 5.8 0.3579 0.4211 0.5263 0.25 0.32 0.43

1 1.079 1.311 1.256 2.2 5.6 0.4286 0.5238 0.5714 0.3 0.4 0.5
1.012 1.115 1.36 1.296 1.4 6 0.48 0.56 0.64 0.4 0.4 0.4

1 1.05 1.377 1.306 1.2 10 0.5333 0.6333 0.7333 0.3 0.5 0.4
1 1 1.268 1.253 1.7 7 0.5385 0.6293 0.7692 0.4 0.5 0.4
1 1.153 1.419 1.911 3 12 0.55 0.65 0.75 0.5 0.5 0.5

1.191 1.281 1.622 3.5 3.4 12 0.4889 0.5778 0.6667 0.25 0.5 0.35
1 1 1 1 3.5 11 0 0 0 0 0 0
1 1 1 1 1 9 0 0 0 0 0 0



1894 S.P. Jena and D.R. Parhi/Scientia Iranica, Transactions B: Mechanical Engineering 27 (2020) 1886{1896

weight factors rule, i.e., �new = �old + ��� , where `�,'
the learning constant, varies from 0 to 1. The sum
square error function has been employed to estimate
the errors in the training process.

7. Results and discussion

The responses of a cracked cantilever structure sub-
jected to transit load is analysed in this section. For
the analysis of the forward and inverse problems, a
numerical problem of a multi-crack cantilever beam
under transit mass is exempli�ed (mild steel with
dimensions of 125 cm�6 cm�0:5 cm, speed of 6.5 m/s,
and mass of 2.5 kg). The deections of the structure
due to the movement of the mass are determined by
both computation and FEA, as given in Figures 5
and 6. The results obtained by computation agree well
with those of FEA. The feasible existence and positions
of cracks are estimated from the measured dynamic
response of the beam, as presented in Figures 7(a) and
7(b). The proposed ERNNs model has been trained
by implementing L-M back propagation algorithm.
The equations for the modi�ed ERNNs were also
developed. Several remedies were applied during the
training process of the network model. A number of
750 patterns, including both damaged and undamaged,
were developed for this problem, out of which 650
were used in the training process and 100 in testing.
The relative crack depth and locations were predicted
by training the network model. The results for the

Figure 9. Graph of iterations vs. sum square error for
Elman's Recurrent Neural Networks (ERNNs) approach.

estimation of crack depth and locations by the ERNNs,
FEA, and theoretical analyses are presented in Tables 3
and 4, respectively. All the training and testing
procedures were conducted by supervised algorithm to
check the accuracy of the implemented RNNs model
and L-M algorithm. The results estimated by the
ERNNs method were compared with FEA and theo-
retical results and they showed good agreement. The
percentage deviation of the results between theoretical
and FEA was about 2.3%, while with ERNNs, it was
about 4.3%. The relation between the error value
and the number of iterations is presented graphically
in Figure 9. The conditions of cracked structures
can be monitored online by employing the ERNNs

Table 3. Comparison of the theoretical, Finit Element Analysis (FEA), and Elman's Recurrent Neural Networks
(ERNNs) results for relative crack depth.

Theory FEA ERNNs
�1 �2 �3 �1 �2 �3 �1 �2 �3

0.25 0.52 0.35 0.244 0.5081 0.3411 0.2389 0.4994 0.3355
0.42 0.61 0.45 0.4117 0.5985 0.4404 0.4021 0.3855 0.4315
Average percentage
of deviation

2.18 2.07 2.32 4.34 4.03 4.33

Total percentage
of deviation

2.23 4.34

Table 4. Comparison of the theoretical, Finit Element Analysis (FEA), and Elman's Recurrent Neural Networks
(ERNNs) results for relative crack locations.

Theory FEA ERNNs

�1 �2 �3 �1 �2 �3 �1 �2 �3

0.384 0.48 0.64 0.3739 0.4676 0.624 0.3661 0.4582 0.6115
0.44 0.56 0.768 0.4291 0.549 0.751 0.4206 0.5379 0.7315
Average percentage
of deviation

2.53 2.27 2.31 4.52 4.23 4.36

Total percentage
of deviation

2.37 4.27
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based method to predict the faults in structures. The
proposed ERNNs model can be very useful for fault
detection in cracked structures.

8. Conclusions

Dynamic analysis of a cracked structure subjected
to transit mass was carried out along with fault
detection in the current study. The responses of
the cracked beam under transit load were evaluated
by both computational and Finite Element Analysis
(FEA) methods. The potential existence and locations
of cracks were determined from the observed dynamic
responses of the structure. The severity of cracks
was determined by FEA as a direct approach. In
addition, a modi�ed Elman's Recurrent Neural Net-
works (ERNNs) approach based on the L-M back
propagation algorithm was developed to predict the
locations and severity of faulty cracks in the structure
as an inverse problem. The proposed ERNNs approach
with Levenberg-Marquardt (L-M) back propagation
algorithm was considered as a supervised process to
check the accuracy of the implemented algorithm. The
results estimated from the ERNNs analyses agreed well
with the FEA and theoretical results. The present
study showed that ERNNs could produce good predic-
tion results and it could be very useful in monitoring
unhealthy structures under transit mass. They might
also be applied to fault detection in structures with an
unsupervised algorithm.
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