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Abstract. This study proposes a structure for graphene spaser (surface plasmon
ampli�cation by stimulated emission of radiation) and develops an electrostatic model for
quantizing plasmonic modes. Using this model, one can analyze any spaser consisting of
graphene in the electrostatic regime. The proposed structure is investigated analytically
and the spasing condition is derived. We show that spasing can occur at some frequencies
where the quality factor of plasmonic modes is higher than some particular minimum
values. Finally, an algorithmic design procedure is proposed by which one can design a
viable structure at a given frequency. As an example, a spaser with plasmon energy of
0.1 eV is designed.

© 2020 Sharif University of Technology. All rights reserved.

1. Introduction

Spaser, as its name suggests, is a counterpart of laser
in sub-wavelength dimensions. The di�erence between
spaser and laser is that the latter emits photons, while
the former emits intense coherent Surface Plasmons
(SPs). This idea was emerged after trying to overcome
the main shortcoming of laser. Emission of photons
in laser restricts its use in small dimensions due to
the di�raction limit of light. The electromagnetic �eld
of photons cannot be concentrated in spots that are
smaller than half their wavelength, qualitatively. This
is a fundamental theoretical limit and thus, cannot
be circumvented. So, spaser inventors, Bergman and
Stockman, suggested using another particle, instead
of a photon, which does not have this theoretical
constraint [1]. Their idea was to utilize the extra con-
�ned nature of SPs. SPs can con�ne in regions much
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smaller than their wavelengths. In 2003, Stockman and
Bergman published the �rst paper about the idea and
introduced the word spaser to the literature [1]. Since
then, many people and groups have focused on ana-
lyzing and realizing the spaser. In 2009, Noginov et al.
demonstrated an experimental spaser using an aqueous
solution of gold nanoparticles, each surrounded by dye-
doped silica shell as a gain medium [2]. In 2010,
Stockman proposed a plasmon ampli�er using spaser
and analyzed its equation of motion using optical
Bloch equations. The author claimed that the spaser
could not be analyzed classically [3]. Zhong and Li
tried to analyze the spaser semi-classically in 2013 [4].
Dorfman et al. focused on the full quantum mechanical
description of spaser in 2013 [5]. In 2014, Apalkov and
Stockman proposed a graphene-based spaser [6]. Until
now, many papers have been published covering many
aspects of spaser [7{31].

Spaser, similar to laser, consists of two main parts:
a medium for supporting SP modes and an active
or gain medium. SPs can propagate along interface
between two materials, one of which has negative
dielectric constant. Metals have negative permittivity
below their plasma frequencies and thus, a majority
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of papers focus on them as a medium for supporting
and propagating plasmon modes. However, metals are
not the ideal ones. Metal losses avoid plasmons to
propagate along long distances. In this paper, we will
use graphene instead of metal.

Graphene is a material that forms by a 2D
arrangement of carbon atoms in a honeycomb lattice
bonding by strong sp2 hybridized covalent � bonds [32].
The pz electrons of carbons, lying in � orbitals, give
the graphene some extraordinary electronic properties,
making it an interesting potential candidate in many
applications [33{35]. The graphene electrons, near
Dirac points, have a linear dispersion; thus, they
behave like massless Dirac fermions. Plasmons can
propagate along and con�ne close to graphene about
an order of magnitude stronger than metals [36].

The active medium provides the energy required
for initiating and maintaining the spasing process. The
main factor in choosing the active medium is that
which pumping mechanism we wish to use. Similar
to laser, pumping method can be optical, chemical,
electrical, and so forth. In our research, we are going to
use electrical pumping method by utilizing a Quantum
Wire (QW) as the gain medium.

In this paper, the full quantum mechanical ap-
proach is used for analyzing the structure. The
most important quantity in quantum mechanics is the
system's Hamiltonian. The Hamiltonian of the entire
system is H = Hsp +Ham +Hint, where Hsp, Ham, and
Hint are SP, active medium, and interaction Hamilto-
nians, respectively. The individual Hamiltonian parts
are quantized in the subsequent sections.

The paper is organized as follows: Section 2
introduces our proposed structure which will be used
throughout the paper. Section 3 is devoted to the
Hamiltonian of SP �eld and its quantization. Sec-
tion 4 concentrates on active medium, and Section 5 is
dedicated to the interaction mechanism and derivation
of the spasing condition. Moreover, in this section, a
procedure for designing the structure is suggested.

2. The main structure

Our proposed structure consists of a graphene-coated
tube made of layered semiconductor heterostructure,
as shown in Figure 1. The average dielectric constant
of materials inside the tube is �1. The heterostructure
makes up of two layers of semiconductors with di�erent
energy gaps. The energy gap of inner rod is lower
than that of outer shell so that the heterostructure
forms a QW system. The inner rod plays the role of
QW and the outer shell is its barrier. The graphene-
coated tube is embedded in a matrix with dielectric
constant �2. Regarding the extra-con�ne nature of
SPs, it can be assumed that �1 is equal to the outer
shell dielectric constant because, roughly speaking, the

Figure 1. The proposed structure. The materials which
are included in the structure are distinguished by di�erent
colors. The shown structure is embedded in a matrix of
InP.

Table 1. Physical parameters of materials which are used
in this paper. All the alloys are chosen such that to be
lattice matched with InP at 295 K. Dielectric constants of
ternary alloys are calculated using interpolation
method [37,38]. In this table, �r, m�, and m0 represent
dielectric constant, electron's e�ective mass, and electron
mass, respectively.

Material �r m�=m0

InP 12.56 0.077
Al0:48In0:52As 12.46 0.075
Ga0:47In0:53As 13.60 0.041

inner rod only senses the weak tail of SPs' �eld. For
numerical calculations, the speci�c material system,
Al0:48In0:52As/Ga0:47In0:53As, is used. All the materi-
als are chosen such that they are lattice matched to the
matrix, InP, at room temperature 295 K. The required
physical parameters are listed in Table 1.

The graphene tube will support plasmonic modes.
The cylindrical symmetry of the con�guration makes
it possible to derive plasmonic modes, analytically. In
addition, choosing the cylindrical structure has the ad-
vantage of dealing with fewer geometrical parameters,
i.e., tube's radius, to design.

The QW is used as an active medium to provide
energy for plasmons. By applying electric potential
di�erence between graphene and QW, the electrons
in QW excite. Depending on the degree of coupling
strength between QW and SPs, the energy can in-
terchange among electrons and SPs. The oscillation
of energy exchange can continue steadily under some
conditions. The next sections deal with �nding this
condition.

Throughout the paper, the tube is assumed to
be in�nitely long such that the edge e�ects can be
neglected, and also its radius to be large enough
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such that size quantization e�ects do not in
uence its
conductivity, signi�cantly.

3. SP Hamiltonian

For quantizing the SP Hamiltonian, the orthogonal
potential modes of the structure should be derived.
Therefore, this section is divided into two subsections.
The �rst subsection deals with extracting the potential
modes and the second one is about writing SP Hamil-
tonian in the quantized form.

3.1. Graphene tube's plasmonic modes
Before dealing with derivation of modes, the surface
conductivity of graphene is introduced. This quantity
can be derived using the well-known linear response
theory, Kubo formula, and Random Phase Approxi-
mation (RPA). In the low momentum regime, which
means de�nitely not for the ultra-low doping [39]
cases, the �rst order or local response approximation
of conductivity leads to �(!) = �intra(!) + �inter(!),
where:

�intra =
2e2kBT
�~2

i
! + i��1 ln

�
2 cosh

�
EF

2kBT

��
; (1)

and:

�inter =
e2

4~ �
 

H(!=2)

+
4i(! + i��1)

�

Z 1
0

[H(�)�H(!=2)] d�
(! + i��1)2 � 4�2

!
;
(2)

with the following de�nition:

H(�) =
sinh(~�=kBT )

cosh(EF=kBT ) + cosh(~�=kBT )
: (3)

In the above relations, e, kB, ~, T , EF, and � '
0:4 ps [6] are elementary charge, Boltzmann, and
reduced Planck constants, temperature, Fermi en-
ergy, and electron relaxation time, respectively. In
circumstances where ~! < 2EF and ~! < ~!oph
(where ~!oph ' 0:2 eV is optical phonon energy in
graphene), Drude-like pro�le is a good approximation
for graphene's conductivity [36]:

� =
e2EF

�~2
i

! + i��1 : (4)

Out of the speci�ed range of frequencies, two main
damping channels are opened. For ~! > 2EF the
most remarkable mechanism is due to vertical Landau
damping, and for ~! > ~!oph, optical phonon damping
manifests itself. Just for simplicity of analyses, we stick
to the range where these damping mechanisms are not
a trouble.

After this short introduction to graphene's con-
ductivity, we turn back to the main target, which

is calculation of modes. The quasi-electrostatic ap-
proximation is utilized throughout the paper. It can
be shown that this approximation describes plasmon
modes quite well [40]. We will discuss the approxima-
tions in Appendix A in detail.

Considering the cylindrical symmetry of the struc-
ture, the following ansatz can be used for the electric
potential:

�(r; t)=

(
AmIm(k�) exp i(kz+m'�!k;mt) ��a
BmKm(k�) exp i(kz+m'�!k;mt) �>a (5)

where Am and Bm are dependent arbitrary coe�cients
to be determined; k, m, !k;m, Im, and Km are mode
indices, the corresponding frequencies, and m'th order
modi�ed Bessel functions of �rst and second kind,
respectively. In this paper, �, �, and z symbols
are reserved for radial and angular coordinates in
cylindrical coordinate system. The unit vector along
any direction is denoted by adding a hat symbol above
the vector associated with that direction; moreover,
the hat symbol is reused for representing operators,
without adding any ambiguity. Furthermore, without
any loss of generality, it is assumed that graphene tube
is oriented along the z direction.

For the ansatz to be a valid solution, it must ful�ll
boundary conditions. After application of potential
continuity across the boundary, � = a, the following
is obtained:

Am
Bm

=
Km(ka)
Im(ka)

: (6)

By using Ohm's law, Js = �2DEt (where Js, �2D, and
Et are surface current density, surface conductivity,
and tangential electric �eld, respectively) and exploit-
ing current continuity equation, the following relation
for the surface charge is derived:

�s =
�2D(!k;m)
i!k;m

AmIm(ka)
�
m2

a2 + k2
�

� exp i(kz +m'� !k;mt) + c.c.; (7)

where c.c. stands for the complex conjugate of previous
terms. By using Eq. (7) and substituting it in per-
pendicular electric �eld boundary condition, another
relation for coe�cients is derived:

Bm
Am

=
�0�1kI0m(ka)� �2D(!k;m)

i!k;m

�
m2

a2 + k2
�

Im(ka)

�0�2kK0m(ka)
:

(8)

In the above relation, �0 is vacuum permittivity and
primes denote derivation with respect to the argument.
Combining Eq. (6) with Eq. (8) leads to the dispersion
relation of plasmons:
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�2D(!k;m)
i!k;m�0a

=
�1

I0m(ka)
Im(ka) � �2 K0m(ka)

Km(ka)

[m2 + (ka)2]
� ka: (9)

Until now, no assumption has been used for surface
conductivity pro�le. Thus, the derived dispersion rela-
tion is generalizable to any arbitrary pro�le of surface
conductivity and is not restricted to graphene. For
further simpli�cation, we assume Drude approximation
of graphene conductivity, Eq. (4), in the lossless regime,
i.e., !� � 1:

!m(k) =

s
e2EF

�~2�0a
1p

�m(ka)
; (10)

where:

�m(x) � x�1
I0m(x)
Im(x) � �2 K0m(x)

Km(x)

(m2 + x2)
: (11)

If we further assume �1 = �2 � ��, then the result is
more simpli�ed:

!2
k;m =

e2EF

�~2a�0��
gm(x); (12)

where:
gm(x) = (m2 + x2)Im(x)Km(x): (13)

In the derivation of the above relation, the Wron-
skian property of the modi�ed Bessel functions,
I0m(x)Km(x)�Im(x)K0m(x) = 1=x, is utilized [41]. This
result is exactly the same as the one derived from [42]
by a completely di�erent method using zeros of RPA
dielectric constant. Figure 2 shows dispersion curves,
Eq. (12), for some lower order modes. In drawing this
�gure, it is assumed that a = 100 nm and EF =
0:4 eV. Figure 2(a) depicts ~! normalized to Fermi
energy versus k normalized to Fermi wavenumber, kF =
EF=~vF , where vF = 106 m/s is Fermi velocity, and
Figure 2(b) draws normalized plasmon energy versus
ka. From this �gure, it can be seen that there are
two main regions that can be discussed. For large
k=kF's (especially in this case k & 0:2kF or equivalently
~! & 0:2EF) all the modes, regardless of the value ofm,
become degenerate and have the square root feature of
conventional 2D plasmons. This result was predictable
a priori, because for large enough wavenumbers, SPs
are mostly con�ned to the graphene and do not sense
tube's radius, practically. The asymptotic form of
dispersion relation, assuming Drude-like conductivity,
is:

!(k) =

s
e2EF

2�~2�0��
� pk: (14)

This result resembles that of the extended graphene.
Let's look at the �gure more precisely for small values
of k=kF. There are two di�erent categories of behaviors
for m = 0 and m 6= 0. In case of m = 0, if the

Figure 2. Plasmons dispersion for di�erent Fermi
energies. In deriving these curves, The Drude
approximation is assumed: (a) Normalized plasmon
energy as a function of normalized wavenumber and (b)
normalized plasmon energy versus dimensionless ka.
These �gures show that for large enough wavenumber, all
the modes become degenerate.

small argument approximation of the modi�ed Bessel
functions is used, I0(x) ! 1 and K0(x) ! � lnx,
then it turns out that low momentum plasmons in
graphene tube behave almost like 1D plasmons, i.e.
!0(k) ' !pka

p� ln ka, where plasma frequency is
de�ned as !p = (e2n0=�m�e)1=2, as in 3D case except for
m�e which must be replaced by our speci�c de�nition
made later in Subsection 3.2. In case of m 6= 0,
the situation is di�erent. It would be interesting to
�nd a relation for !m(0). By exploiting the small
argument approximation of modi�ed Bessel functions,
it can be shown that gm(0) = m=2 and therefore
!m(0) = !p

p
m=2, roughly speaking, like the �rst-

order approximation of 3D plasmons.
It is worth mentioning that these features of

dispersion are mostly due to the 2D nature of graphene
rather than its peculiar band-structure [40], and the
results are almost the same for other 2D materials.

It must be noted that for the Drude approxima-
tion to be applicable, EF must lie in one of the following
two regions:
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0:1 < EF <
0:08��0��

ek
; (15)

ek
8��0��

< EF < 0:1: (16)

These intervals are obtained if we consider that ~! <
2EF and ~! < ~!oph ' 0:2 eV. The �rst interval is
obtained if 2EF > ~!oph and the second when 2EF <
~!oph. At the above intervals, EF is in eV unit.

Finally, the normalized potential can be written
in the following form:

�(r; t)=

8><>:
Im(k�)
Im(ka) exp i(kz+m'�!k;mt) � � a
Km(k�)
Km(ka) exp i(kz+m'�!k;mt) � > a (17)

The normalized potential pro�les of �rst four lower
order modes are shown in Figure 3.

The other important parameter, which will be
encountered later in this work, is the Quality factor
of modes. If we write 
(k) = !(k) � i
(k) and
�2D = �02D +i�002D, and replace !(k) by 
(k) in Eq. (9),
and then equating the real and imaginary parts of both
sides, assuming 
 � ! (which is valid for the frequency
range which will be used), the Quality factor of SP
modes is derived by using the de�nition Q = !=2
:

Q(!(k)) =
�002D(!(k))
2�02D(!(k))

; (18)

Figure 4 shows the Quality factor of SP modes as
a function of plasmon wavenumber and energy for

di�erent values of EF using Eq. (18). If Drude
conductivity is inserted into Eq. (18), the following
linear approximation can be made:

Q ' !(k)
2��1 : (19)

The linear behavior is apparent from Figure 4(b) in the
frequency range where Drude model is more accurate,
i.e., ~!=EF � 2.

3.2. Quantization of SP Hamiltonian
In the electrostatic regime, the SP Hamiltonian is
composed of kinetic and potential parts, Hsp = Hkin +
Hpot, where for the potential part:

Hpot =
1
2

Z
Sg
�s�d2r; (20)

such that �s is the surface charge density of graphene
due to the existence of plasmons and � is total electric
potential. The integration runs over the graphene's
surface, Sg. The kinetic part is [43]:

Hkin =
1
2
ns0m�e

Z
Sg
jvej2 d2r; (21)

where ns0, m�e and ve are the surface density of
electrons in equilibrium, a suggested plasmonic electron
e�ective mass (not equal to common electron e�ective
mass), and average drift velocity of electrons, respec-
tively. The above kinetic Hamiltonian resembles that
of 3D electron gas one. Indeed, we suggest using the
same formulation for graphene, but with a modi�ed

Figure 3. Cross-section view of the �rst four normalized potential modes so that their maximums become unity. The
notation Mm is used for modes, where m is the mode index de�ned in the paper.
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Figure 4. The quality factor of modes as a function of
(a) wavenumber and (b) frequency for di�erent Fermi
energies. In Figure (b) one can see the range which linear
approximation is valid.

electron e�ective mass. We propose �nding e�ective
mass by equating the Drude conductivity of graphene
to the 3D electron gas one [44]:

�(!) =
i�0!2

p

! + i

; (22)

where plasma frequency is de�ned by !2
p = e2n0=�0m�e

and n0 is electron number density. By equating
Eq. (22) to graphene conductivity, Eq. (4), one can
�nd m�e = ns0�~2=EF.

For the purpose of quantizing the plasmon �eld,
we write all the �eld variables in the Hamiltonian,
Eq. (20) and Eq. (21), as a linear combination of
plasmon modes. Therefore, the electric potential can
be written in the following form:

�(r; t)=
X
k;m

Ck;m�k;m(�) exp i(kz+m'�!k;mt)+c.c.;
(23)

where:

�k;m(�) = �+
k;m(�) + ��k;m(�); (24)

��k;m(�) = �(��+ a)
Im(k�)
Im(ka)

; (25)

�+
k;m(�) = �(�� a)

Km(k�)
Km(ka)

: (26)

Ck;m's are expansion coe�cients and � stands for
Heaviside step function. Using this potential, surface
charge density can be derived exploiting perpendicular
electric �eld boundary condition,

�s =
X
k;m

Ck;m
�2D(!k;m)
i!k;m

�
m2

a2 + k2
�

� exp i(kz +m'� !k;mt) + c.c. (27)

The only remaining quantity is drift velocity. The drift
velocity can be derived using Newton's second law,
�eE = m�edve=dt, where E = �r� is electric �eld.
After some algebra, the following result is obtained:

ve(rk; t) =
e
m�e

X
k;m

hm
a
'̂+ kẑ

i 1
!k;m

Ck;m

� exp i(kz +m'� !k;mt) + c.c.; (28)

where rk is the in-plane position vector. By substitut-
ing Eq. (27) and Eq. (28) into Hamiltonians, Eq. (20)
and Eq. (21), and after some cumbersome algebra, the
following results are found:

Hpot =
Ag
2

X
k;m

�2D(!k;m)
i!k;m

�
m2

a2 + k2
�

� [Ck;mC�k;�m exp i(!k;m

+!�k;�m)t+ Ck;mC�k;m
�

+ c.c.; (29)

Hkin =
Age2ns0

2m�e
X
k;m

�
m2

a2 + k2
�

�
��Ck;mC�k;�m
!k;m!�k;�m

exp i(!k;m + !�k;�m)t

+
Ck;mC�k;m
!2
k;m

#
+ c:c: (30)

Throughout the paper, we assume that Ag and L are
the hypothetical area and length of graphene tube,
respectively, and k and m run over all possible index
values. In deriving the above relations, the following
orthogonality properties are exploited:Z L=2

�L=2
ei(k�k0)zdz = L�k;k0 ; (31)
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Z 2�

0
ei(m�m0)'d' = 2��m;m0 ; (32)

where � represents Kronecker delta function. By
combining Eq. (29) with Eq. (30) and assuming that
!k;m = !�k;�m the SP Hamiltonian is obtained:

Hsp =
Ag
2

X
k;m

�2D(!k;m)
i!k;m

�
m2

a2 + k2
�

� �Ck;mC�k;m + C�k;mCk;m
�
: (33)

The above Hamiltonian is analogous to harmonic os-
cillator's one such that by the following substitution
and assuming negligible damping, Hsp recasts to the
operator form:
Ck;m ! 
k;m(!k;m)âk;m; (34)

C�k;m ! 
k;m(!k;m)âyk;m; (35)

where 
k;m is de�ned as follows:


k;m(!k;m) =

 
~!2

k;m

Ag j�002Dj (!k;m)
(m2=a2 + k2)

!1=2

:
(36)

Using these relations, the SP Hamiltonian is simpli�ed
in the following operator form:

Ĥsp =
X
k;m

~!k;m
2

�
âyk;mâk;m + âk;mâ

y
k;m

�
=
X
k;m

~!k;m
�
âyk;mâk;m +

1
2

�
; (37)

where âkm and âykm are annihilation and creation
operators of an SP in the mode k, m, respectively, and
obey bosonic algebra [45]:h

âk;m; âyk0;m0
i

= �k;k0�m;m0 ; (38)

[âk;m; âk0;m0 ] = 0; (39)h
âyk;m; â

y
k0;m0

i
= 0: (40)

By substituting Eq. (36) in Eq. (23), the electric �eld
operator is obtained:

Ê (r; t) =
X
k;m


k;m(!k;m)

� hMk;m(r)âk;m(t) + M�
k;m(r)âyk;m(t)

i
;

(41)

where:

Mk;m (r) = �0k;m(�)�̂+
im
�
�k;m(�)'̂+ ik�k;m(�)ẑ:

(42)

In Eq. (41), we switched to the Heisenberg picture,
where the time dependence is completely transferred
to the operators.

4. Active medium Hamiltonian

In the present work, we propose utilizing a QW of
radius b and volume VQW as the gain medium. For
further investigation of the structure, energy levels and
wavefunctions should be derived using the well-known
Schr�odinger equation. For the sake of simplicity and
obtaining a rule of thumb, appropriate for design pur-
poses, the in�nite wall boundary condition is applied.
The wavefunctions of such a structure are:

 nl(�; �; z) =

8>><>>:
exp i(kzz+n�)p
VQWJn+1(xnl)

Jn
�xnl
b �
�

� � b

0 � > b

(43)

where  nl, xnl, and kz are nl'th eigenfunction, the
l'th zero of n'th order Bessel function of the �rst
kind, and wavenumber along the longitudinal direction,
respectively. The �rst four lower order modes are
sketched in Figure 5. The eigenenergy associated with
nl'th mode is E = Enl + Ec, where Ec = ~2k2

z
2m�w and

energy levels Enl are:

Enl =
~2x2

nl
2m�wb2

; (44)

where m�w is the electron's e�ective mass in the wire.
Maximum coupling between the QW and

graphene is achieved when both are in resonance with
each other, i.e., ~!sp = Ee � Eg, where !sp, Ee, and
Eg are SP's angular frequency, and excited and ground
states energy, respectively. Thus, for design purposes, b
maybe chosen such that the energy di�erence between
excited and ground states coincides with plasmon
energy. After some substitution and rearranging, the
following result is found for QW's radius:

b =

s
~

2m�w!sp

�
x2
nele � x2

nglg

�
: (45)

Another important quantity with a vital role in the
next section is the dipole moment. The value of dipole
moment represents how much the coupling strength is.
It can be shown that for our structure, dipole moments
only have nonzero values between states which have the
same quantum number n. In addition, it is simple to
show that dipole moment has only radial component.
Dipole moment between nl and nl0 states is:

dnlnl0 = 2�ebfnll0 �̂; (46)

where:

fnll0=
1

Jn+1(xnl)Jn+1(xnl0)

1Z
0

�2Jn(xnl�)Jn(xnl0�) d�;
(47)
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Figure 5. Cross-section view of the absolute moduli squared of the �rst four lower order eigenfunctions. The notation
Mnl shows the mode with quantum number nl discussed in the paper.

is a dimensionless number, which depends on n, l,
and l0 and it is independent of b. If  01 and  02 are
considered as the states which are in resonance with
a speci�c plasmon mode, then this number is equal to
0:09722.

According to the spectral decomposition theo-
rem [46], the active medium Hamiltonian, in the basis
which diagonalizes itself, can be written in the following
form:
Ĥam =

X
i

Ei�̂ii; (48)

where i is a representative of all the discrete and
continuous quantum numbers and runs over all the
possible states and �̂ii = jiihij. If we assume that the
only transition, strongly coupled to the plasmon �eld,
is p! q, and further, setting the zero level of energy to
the halfway between these two states, then the active
medium Hamiltonian can be written in the simple form:

Ĥam =
~!qp

2
�̂z; (49)

where the following de�nitions are used:
�̂z = jqihqj � jpihpj ; (50)

~!qp = Eq � Ep: (51)

5. Interaction Hamiltonian and spasing

We assume that the active medium can be approxi-
mated as a dipole. Accuracy of this approximation
depends on how large the multipole terms are, relative
to dipole term, in the potential multipole expansion.

As a rule of thumb, the more the distance between QW
and graphene, the more accurate the results will be. By
using this assumption, the interaction Hamiltonian can
be written as Ĥint = �d̂ � Ê, where d̂ and Ê are dipole
moment and electric �eld operators, respectively. d̂ can
be written down in the following form [45]:

d̂ = dqp (�̂+ + �̂�) ; (52)

where dqp is a dipole matrix element, associated with
p ! q transition, and �̂+ = jqihpj and �̂� = jpihqj
are rising and lowering ladder operators, respectively.
After using these relations and considering energy con-
servation, the interaction Hamiltonian can be written
as follows:

Ĥint = �~ �
kmqp(r0)�̂+â+ 
�kmqp(r0)ây�̂�
�
; (53)

where r0 is position vector of dipole and Rabi fre-
quency, 
kmqp = �d̂ � Ê=~ [45], is written as:


kmqp(r0) =

k;m(!k;m)

~ dqp �Mk;m(r0): (54)

Taking into account that dqp has only a component
along the radial direction and substituting Eq. (42) into
Eq. (54), the following result is obtained:


kmqp(r0) =

8><>:

k;m(!k;m)

~ dqpk
I0m(k�0)
Im(ka) �0 < a


k;m(!k;m)
~ dqpk

K0m(k�0)
Km(ka) �0 > a

(55)

where �0 is QW radial position.
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The spasing condition can be written as fol-
lows [3,6]:

(
0km + �qp)
2

(
0km+�qp)
2+(!qp�!k;m)2

X
kz

j
kmqpj2�
0km�qp;
(56)

where �qp, and 
0km are the damping rate of polar-
ization and plasmon mode k, m, respectively, and kz
runs over all possible transverse wavenumbers. By
substituting the rabi frequency, Eq. (55), into spasing
condition, Eq. (56), and assuming near resonance
region, after some manipulations, we �nd that for
spasing to be able to occur, the quality factor of SP
modes should be higher than Qmin:

Qmin =
2�2a~�0�qpZ2

m(ka)
jdqpj2 kFkZ02m(k�0)

�
�
�1

I0m(ka)
Im(ka)

� �2 K0m(ka)
Km(ka)

�
; (57)

or:

Qmin =
�ae2vF�qpZ2

m(ka)
jdqpj2 !2

k;mZ02m(k�0)

�
�
�1

I0m(ka)
Im(ka)

� �2 K0m(ka)
Km(ka)

�
; (58)

where:

Zm(x) =

(
Im(x) �0 < a
Km(x) �0 > a:

(59)

For large values of k, which is the case for SPs, the
condition for minimum quality factor reduces to:

Qmin ' 4�2a~�0���qp
jdqpj2 kFk

; (60)

or as a function of angular frequency:

Qmin ' 2�ae2vF�qp
jdqpj2 !2(k)

=
avF�qp

2�f2
nll0b2!2(k)

: (61)

Figure 6 illustrates, graphically, which frequency re-
gions are allowable for spasing. The �gure shows
that for a �xed EF, there can exist an intersection
point between Q and Qmin curves, which from now
on we call it threshold frequency and denote it by
!th. Spasing can occur for frequencies higher than
!th. This dependency can be driven out analytically
by combining Eq. (61) with Eq. (4):

!th =
avF�qp
�b2f2

nll0�
: (62)

It can be seen that threshold frequency depends on the
ratio of the tube's radius and cross-section area of the
QW.

Figure 6. The solid, dashed, dotted, and dash-dotted
lines show the quality factor of modes versus plasmon
energy for di�erent values of Fermi level as a parameter.
Circle-marked line represents minimum required value of
quality factor.

After this long discussion, we have arrived at
the point where we can design a graphene tube-based
spaser by using derived formulas. We intend to propose
a design procedure:

1. For a given !sp, calculate b from Eq. (45);
2. Calculate a using Eq. (62) so that !sp > !th or

equivalently:

a <
�b2f2

nll0�
vF�qp

� !3
sp:

3. Determine EFk using Eq. (14);
4. Derive EF and k separately so that the validation

ranges, Eqs. (15) or (16), are satis�ed.

There exists a freedom for assigning EF and k values,
separately, as long as the validation range is ful�lled.
Increasing k con�nes SPs more and more; thus, EF can
be utilized for changing spot size.

As an example, we design a spaser for ~!sp =
0:1 eV. The calculated b for this speci�c frequency is
15.1 nm, the maximum value for a is 1.73 �m and
EFk = 4:33 � 107. The maximum value for EFk is
17:39 � 107 provided that we choose EF > 0:1 eV,
Eq. (15). As long as EF > 0:1 eV, we can change EF to
focus SPs beam. The smallest spot is obtained where
EF = 0:1 eV. In drawing Figure 6, we use these values
for a and b and further assume that �qp = 3:6 meV [6].

6. Conclusion

In summary, this paper suggested a structure for
spasing. The structure was analyzed theoretically
using full quantum mechanical approach, which treats
both the �eld and matter quantum mechanically. In
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quantizing the Surface Plasmon (SP) �eld and also in
writing the kinetic energy of electrons inside graphene,
a special e�ective mass was de�ned. The spasing
condition for the structure was derived by quantizing
the Hamiltonian of the system. Finally, a design
procedure was proposed and a spaser for plasmon
energy of ~!sp = 0:1 eV was designed. Throughout
the paper, the electrostatic approximation was used.
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Appendix A. Beyond exploited approximations

As we mentioned in the text, electrostatic treatment
can describe most features of plasmons. But, for a
while, let's examine what happens if full electrodynam-
ics is considered, qualitatively. The �rst and most in-
teractive feature is the appearance of TE mode, which
is not predictable by electrostatics [47,48]. However, it
is worthwhile to mention several important notes about
TE mode in graphene tube:

1. While TE and TM modes are completely dis-
tinguished in extended graphene, it is not so in
graphene tube. Actually, there are no pure TE
and TM modes in graphene tube, except for the
case of total azimuthal symmetry, i.e., m = 0. All
the other m 6= 0 modes are essentially hybrid in
character. m = 0 requires some further attention.
By solving Maxwell equations, it can be shown that
for m = 0, dispersion relation reduces to [48]:
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Figure A.1. Quality factor of TE mode as a function of
normalized frequency in the valid range. The curves
belong to di�erent Fermi energies speci�ed on the legend.�

�1
�1

I1(�1a)
I0(�1a)

+
�2
�2

K1(�2a)
K0(�2a)

� �
j!�0

�
�
�
�1

I0(�1a)
I1(�1a)

+ �2
K0(�2a)
K1(�2a)

� j!�0�
�

= 0;
(A.1)

where �0 is vacuum permeability and �i = (k2 �
!2�0�i�0)1=2.

Apparently, TE and TM modes are decoupled.
The �rst parenthesis on LHS led to the TM disper-
sion relation (for k � !2�0�0 this equation matches
Eq. (9) for m = 0) and likewise, the second one to
that of TE mode. So, the TE dispersion relation is:

�1
I0(�1a)
I1(�1a)

+ �2
K0(�2a)
K1(�2a)

= j!�0�: (A.2)

It is clear that TE mode exists only if =� < 0,
which corresponds to ~! & 1:6671EF;

2. The Quality factor of TE mode can be found
straightforwardly, using Eq. (A.2), the same as the
procedure that has already been done in deriving
Eq. (18). Doing some algebra leads to the following
result:

QTE = � �00
2�0 (�00 < 0): (A.3)

Figure A.1 shows the Quality factor of TE mode
as a function of frequency in the speci�ed range,
1:6671 < ~!=EF < 2 where TE mode exists and for
di�erent values of Fermi Energies. By comparing
this �gure with Figure 4(b), it is obvious that
Quality factor of TE mode is an order of magnitude
less than those of other TM and hybrid modes.
Therefore, including the TE mode in calculations

only complicates the analysis while achieving noth-
ing more than what has been achieved by neglecting
it;

3. It can be proven that TE mode exists for the cases
where the absolute value of the di�erence between
two dielectric constants surrounding graphene is
quite small, which is practically hard to achieve [40].
Even if we could �nd two materials with very
close dielectric constants, there is no guarantee that
small perturbations in dielectric constants, which
are common in reality, keep the criterion satis�ed;

4. In case of TE mode, we have to solve full vectorial
Maxwell equations. One may propose considering
the TE mode by inserting it to the derived elec-
trostatic relations, manually. Although it seems
a good idea, it is absolutely wrong. Because the
eigen-solutions of Laplace equation build an orthog-
onal basis and thus, inserting the TE mode makes
the basis over-complete which is unacceptable and
may lead to unphysical results.

Apart from TE mode which is a consequence of electro-
magnetic consideration, there exists a new hybrid mode
for the undoped graphene that is absent normally.
This is due to the addition of spin-
ip corrections to
the response function [49]. It can be shown that for
the doped case, spin-
ip excitations only slightly shift
plasmons energy towards generically lower values [49].
However, fortunately, it is not a concern of our work
because we decided not to use undoped graphene.

Finally, it can be shown that in graphene tubes,
the condition kFa � 1 should be satis�ed for the
derived dispersion relation to be valid [42]. It can
be checked in the �nal step of design procedure. For
instance, considering EF = 0:1 eV, the condition means
that a� 6:9 nm, far below our designed radius, which
is in the order of micrometer.
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