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Abstract. In the present paper, a new accuracy function is provided to overcome
the limitations of the existing score/accuracy functions for interval-valued Pythagorean
Fuzzy Sets (PFSs). The proposed accuracy function is validated and discussed in detail
through illustrative examples. Furthermore, a new distance measure for interval-valued
Pythagorean fuzzy numbers is proposed and used in terms of the existing weighted
averaging operators. Finally, with regard to the proposed accuracy function, distance
measure, and weighted averaging operators, a numerical example of Multi-Criteria Decision
Making (MCDM) process is presented to validate the methodology.
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1. Introduction

Fuzzy sets [1] have been used to express imprecise
or vague information in various �elds of real-world
application. Intuitionistic Fuzzy Set (IFS) proposed
by Atanassov [2] has been found a highly adjustable
framework to grapple with uncertainty with a certain
amount of hesitation arising from imperfect or vague
information. The concept of IFS has been widely
studied and applied to deal with uncertainties and
hesitancy inherent in practical circumstances. The
most signi�cant characteristic of an IFS is that it
assigns a number from the unit interval [0, 1] to
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every element in the domain of discourse, a degree of
membership, and a degree of non-membership along
with the degree of indeterminacy, whose total sum
equals unity. In the literature, IFSs and interval-valued
IFSs comprehensively span applications to the �elds of
decision making problems [3], pattern recognition, sales
analysis �nancial services, medical diagnosis, etc.

Pythagorean Fuzzy Set (PFS) [4] is an e�cient
generalization of IFS characterized by the inequal-
ity that the squared sum of membership and non-
membership values is less than or equal to one. Yager
and Abbasov [5] stated that in some practical Multiple-
Criteria Decision Making (MCDM) problems, it is
viable that the sum of the degree of the membership
and the degree of non-membership in a particular al-
ternative provided by a decision maker may be greater
than one, where it would not be feasible to use IFS. PFS
has proven more pro�cient than IFS in representing and
handling vagueness, impreciseness, and uncertainties in
various decision making processes. Since the span of
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membership degree of PFS is greater than that of IFS,
it may be stated that it is more generalized and has
wider applicability.

Yager [4] also developed some aggregation op-
erations under the PFS environment. Furthermore,
Yager and Abbasov [5] investigated the correspondence
between the degrees of Pythagorean membership and
complex numbers and found that Pythagorean mem-
bership degrees were only subsets of the complex num-
bers, called �{i numbers. Utilizing PFSs for solving
MCDM problems, Zhang and Xu [6] enhanced the
existing technique for order of preference by similarity
to ideal solution. PFSs were generalized to interval-
valued PFSs by Peng and Yang [7], who provided some
interval-valued Pythagorean fuzzy aggregation opera-
tors for handling the related problems. Various new
operators with di�erent properties and applications to
the �eld of decision making have also been presented
by Peng [8]. A ranking method for Pythagorean fuzzy
numbers as well as Interval-Valued Pythagorean Fuzzy
Numbers (IVPFNs) was proposed by Zhang [9] by
taking the idea of closeness index into account.

In the literature, the notion of distance measures
plays a key role in the fuzzy set theory and in the appli-
cation �elds such as MCDM problems [10,11], pattern
recognition, medical diagnosis, �nancial services, etc.
Recently, various researchers have proposed di�erent
types of distance measures for di�erent types of sets,
viz. fuzzy sets, IFSs, and PFSs [12]. The Hamming
distance, Euclidean distance, and Hausdor� distance
measures are some popular and widely utilized distance
measures in the application and research world of soft
computing [13{19]. Zhang and Xu [6] provided a new
measure for Pythagorean fuzzy numbers and applied it
to an MCDM problem. Furthermore, Li and Zeng [20]
stated that the strength and direction of commitment
would play an important role in well describing PFNs.

They considered four fundamental parameters,
namely membership, non-membership, strength, and
direction of commitment of PFNs, and provided some
distance measures. Most recently, Liu et al. [21]
introduced important distance measures for IVPFNs
along with their generalized, weighted, and ordered
weighted versions. In addition, they proposed some
generalized probabilistic distance measures and vari-
ous important operators and used them for MCDM
problems. This study incorporates a new accuracy
function for IVPFNs to overcome the limitations of the
score/accuracy function in the existing methodologies
and employs IVPFNs for solving an MCDM problem.

Di�erent parts of this paper are organized as
follows. First, the basic notation for Pythagorean fuzzy
numbers is presented along with their corresponding
scores and accuracy functions in Section 2. Then, the
notion of IVPFNs is discussed and the shortcomings
in the existing score/accuracy functions of IVPFNs

are investigated in Section 3. Also, in this section, a
new accuracy function for IVPFNs will be proposed
to handle the stated shortcomings. In Section 4,
�rst, some exiting distance measures and weighted
averaging operators are listed for IVPFNs and then,
a new interval-valued Pythagorean fuzzy p-distance
measure for IVPFNs is introduced in order to overcome
the shortcomings in the existing methodology. In
Section 5, procedural steps of the proposed algorithm
are provided for an MCDM problem. Subsequently, a
numerical example is solved to validate the algorithm
as well as the applicability of the proposed accuracy
function, IVPF p-distance measure, and the weighted
averaging operators. Based on the illustrative example
of the MCDM problem, some important remarks on the
limitations of the existing methods are given in Section
6. Finally, Section 7 provides the concluding remarks
and the scope for future work.

2. Pythagorean fuzzy numbers and their score
and accuracy functions

Some fundamentals related to PFSs/numbers along
with their score/accuracy functions are presented in
this section.

A PFS over U (domain) is de�ned by Yager [4]
as:

P = f< u; �P (u); �P (u) > ju 2 Ug;
where �P : U ! [0; 1] and �P : U ! [0; 1] are the
membership and non-membership functions such that
0 � (�P (u))2 + (�P (u))2 � 1. The numbers �P (u)
and �P (u) denote the degrees of membership and non-
membership of u 2 U in P , respectively. For each PFS
P 2 U , the quantity �P (u) =

p
1� �2

P (u)� �2
P (u)

represents the degree of indeterminacy of u 2 U .
For simplicity, Zhang and Xu [6] called the pair

(�P (u); �P (u)) as a Pythagorean fuzzy number denoted
by p = (�P ; �P ). Peng and Yang [7] de�ned an interval-
valued PFS in U given by:

P =
�
u; �p(u) = [�p(u); �p(u)];

�p(u) = [�p(u); �p(u)]ju 2 U
�
;

where [�p(u); �p(u)] and [�p(u); �p(u)] denote the
membership and non-membership degrees of u in P ,
respectively, under the condition 0 � �

�p(u)
�2 +

(�p(u))2 � 1. Here, �p(u) = inf �p(u), �p(u) =
sup�p(u), �p(u) = inf �p(u), �p(u) = sup �p(u) for
all u 2 U . The degree of indeterminacy �p(u) =
[�p(u); �p(u)] for all u 2 U is called the interval-valued
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Pythagorean fuzzy index of u in P , where:

�p(u) =
q

1� ��p(u)
�2 � (�p(u))2;

�p(u) =
r

1� (�p(u))2 � ��p(u)
�2:

Yager and Abbasov [5] used another representa-
tion of PFN as p = (rP ; dP ), where rp; and dp 2 [0; 1]
are called the strength and direction of the commitment
of p, respectively. There is a one-to-one correspon-
dence between (�p; �p) and (rp; dp), given by �p =
rp cos(�p); �p = rp sin(�p); where �p = arccos(�p=rp)
and dp = 1� 2�p

� .
Furthermore, Yager and Abbasov [5] showed that

the Pythagorean membership degrees were contained
in the class of complex numbers, denoted by

Q�i.
Therefore, they presented PFN p = (�p; �p) as p =
re�i�, where �p = rp cos(�) and �p = rp sin(�).

In order to compare two PFNs, Yager [4] proposed
the following formula:

V (p) =
1
2

+ rp
�
dp � 1

2

�
=

1
2

+ rp
�

1
2
� 2�p

�

�
: (1)

Let p1 = (rp1 ; dp1) and p2 = (rp2 ; dp2) be two PFNs,
then:

� If V (p1) > V (p2), then p1 � p2;
� If V (p1) = V (p2), then p1 � p2.

Furthermore, for comparing two Pythagorean
fuzzy numbers, Zhang and Xu [6] proposed a score
function of p = (�p; �p) given as:

s(p) = (�p)2 � (�p)2; (2)

where s(p) 2 [�1; 1].
Based on the score function (Eq. (2)), Zhang and

Xu [6] gave the comparison rule of:
Let p1 = (�p1 ; �p1) and p2 = (�p2 ; �p2) be two

PFNs, then:

� s(p1) < s(p2)) p1 � p2;
� s(p1) > s(p2)) p1 � p2;
� s(p1) = s(p2)) p1 � p2.

It has also been pointed out by Peng and Yang [22]
that the score function de�ned by Zhang and Xu [6] is
not reasonable in some cases. For instance, suppose
that for two PFNs, p1 = (0:6; 0:6) and p2 = (0:7; 0:7);
then, by using score function (Eq. (2)), we have p1 �
p2. However, p1 and p2 are di�erent. Thus, with regard
to the shortcoming of score function (Eq. (2)), the idea
of accuracy function of a PFN has been proposed in
the literature. The revised rules for comparison are as
follows:

� Let p = (�p; �p) be a PFN, then the accuracy
function of p is given by

a(p) = (�p)2 + (�p)2; (3)

where a(p) = [0; 1]. Based on the above accuracy
function (Eq. (3)), the following comparison rules
are provided.

� Let p1 = (�p1 ; �p1) and p2 = (�p2 ; �p2) be two
PFNs, then

1. s(p1) < s(p2)) p1 � p2;
2. If s(p1) = s(p2), then:

� a(p1) < a(p2)) p1 � p2;
� a(p1) = a(p2)) p1 � p2.

3. Proposed score and accuracy functions

Here, the basics of interval-valued fuzzy numbers along
with their score and accuracy functions are discussed.
Also, a new accuracy function for the interval-valued
fuzzy numbers is proposed and studied in contrast with
the existing accuracy functions.

For an interval valued PFS P , consider the pair:�
[�p(u); �p(u)]; [�p(u); �p(u)]

�
;

as an IVPFN denoted by:

p =
�

[�p(u); �p(u)]; [�p(u); �p(u)]
�
:

Then, for convenience, we represent IVPFN as p =�
(rp; rp); (dp; dq)

�
, where the pair (rp; rp) is called the

lower and upper strength of p and the pair (dp; dp)
is called the lower and upper directions of the lower
and upper strength of p, respectively. Moreover, the
pairs (rp; rp) and (dp; dp) are connected with interval-
valued membership degree [�p(u); �p(u)] and non-
membership degrees [�p(u); �p(u)], indicating the sup-
port for membership/belongingness and the support
against membership of u 2 P , respectively.

The relationship between ([�p(u); �p(u)]; [�p(u);
�p (u)]) and

�
(rp; rp); (dp; dq)

�
is as follows:

�p(u) = rp cos(�p); �p(u) = rp sin(�p);

�p(u) = rp cos(�p); �p(u) = rp sin(�p);

and:�
dp; dp

�
=
�

1� 2�p
�
; 1� 2�p

�

�
;

where:

�p = arccos(�p(u)=rp); �p = arccos(�p(u)=rp):
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Furthermore, we can easily show that the
Pythagorean membership and non-membership degrees
of IVPFN, p =

�
[�p(u); �p(u)]; [�p(u); �p(u)]

�
, can be

viewed as a radial length, p = [rpe
i�p ; rpei�p ], in the

complex plane, where:

rp =
r

(�p(u))2 +
�
�p(u)

�2;
rp =

q�
�p(u)

�2 + (�p(u))2:

To resolve the issue of the comparison of IVPFNs,
Peng and Yang [7] utilized the notion of score and
accuracy functions, which are given as follows:

s(p)=
1
2

�
(�p(u))2+

�
�p(u)

�2���p(u)
�2�(�p(u))2

�
;

(4)

a(p)=
1
2

�
(�p(u))2+

�
�p(u)

�2+
�
�p(u)

�2+(�p(u))2
�
;

(5)

where s(p) 2 [�1; 1] and a(p) 2 [0; 1].
Based on these functions, they provided the com-

parison rules of: Let p1 and p2 be two IVPFNs, then:

1. s(p1) < s(p2)) p1 � p2;
2. s(p1) > s(p2)) p1 � p2;
3. If s(p1) = s(p2), then:

� a(p1) < a(p2)) p1 � p2;
� a(p1) > a(p2)) p1 � p2;
� a(p1) = a(p2)) p1 � p2.

In some cases, it may be observed that the score and
accuracy functions given by Eqs. (4) and (5) are not
able to rank IVPFNs accurately. In the following
example, it is shown that the existing score and the
accuracy functions are not su�ciently appropriate to
set the correct order of preference of the objects
involved in the MCDM problem.

Example 1. Consider two IVPFNs given by:

p1 = ([0:3; 0:6]; [0:4; 0:8]) ;

and:

p2 =
�

[
p

0:20;
p

0:25]; [
p

0:35;
p

0:45]
�
:

Using Eq. (4), we get s(p1) = �0:1750 and s(p2) =
�0:1750. Now, we compute the value of accuracy
function by using Eq. (5) and get a(p1) = 0:6250 and
a(p2) = 0:6250. Therefore, based on the comparison
rule, we get p1 � p2. However, it may clearly be noted
that p1 6= p2. Hence, the existing score and accuracy

functions of the IVPFNs are not capable enough to give
the correct order of preference.

Furthermore, to overcome the shortcomings of the
accuracy function given by Eq. (5), Garg [23] proposed
a new improved accuracy function by considering the
hesitation degree in the formulation.

For any IVPFN, p = ([�p(u); �p(u)]; [�p(u); �p
(u)]), the improved accuracy function K(p) of p is
de�ned as:

K(p) =
1
2

�
(�p(u))2 +

�
�p(u)

�2
r

1� (�p(u))2 � ��p(u)
�2 + (�p(u))2

+(�p(u))2
q

1� (�p(u))2 � (�p(u))2
�
: (6)

Garg [23] gave the comparison rule on the basis of
Eq. (6): Let p1 and p2 be two IVPFNs:

� K(p1) < K(p2)) p1 � p2;
� If K(p1) > K(p2)) p1 � p2;
� If K(p1) = K(p2)) p1 � p2.

If we apply Eq. (6) to Example 1, then we get K(p1) =
0:3809 and K(p2) = 0:3636. Since K(p1) > K(p2),
then p1 has higher preference than p2.

Example 2. Let p1 =
�
[0:1; 0:2]; [

p
0:05; 0:6]

�
and

p2 =
�
[0:1; 0:2]; [

p
0:04;

p
0:37]

�
be two IVPFNs;

then, by using Eqs. (4) and (5), we obtain the values
s(p1) = �0:1400; s(p2) = �0:1400 and a(p1) =
0:2700; a(a2) = 0:2700: This shows that p1 and p2 are
equivalent. However, in fact, they are di�erent. On the
other hand, by using Eq. (6), we get K(p1) = 0:04826
and K(p2) = 0:04833, i.e. K(p1) < K(p2), which
implies that p1 � p2. If we take the value of accuracy
function up to four decimal places, then the improved
accuracy function is unable to di�erentiate between
p1 and p2. Hence, both existing accuracy functions
(Eqs. (5) and (6)) are unable to di�erentiate between
the IVPFNs.

Hence, to resolve the above-stated comparison
issues between IVPFNs, we extend Yager's [4] accuracy
function (Eq. (1)) of PFNs to IVPFNs as follows.

For each IVPFN, p = ([rp; rp]; [dp; dp]), we de�ne
a new accuracy function as:

T (p) =
2(rpdp + rpdp)� (rp + rp) + 2

4
; (7)

where:

rp =
r

(�p(u))2 +
�
�p(u)

�2;
rp =

q�
�p(u)

�2 + (�p(u))2;
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and:�
dp; dp

�
=
�

1� 2�p
�
; 1� 2�p

�

�
:

Based on the proposed accuracy function
(Eq. (7)), we give the comparison rules of: Let p1 and
p2 be two IVPFNs, then:

� T (p1) < T (p2)) p1 � p2;
� T (p1) > T (p2)) p1 � p2;
� T (p1) = T (p2)) p1 � p2.

If we apply the proposed accuracy function
(Eq. (7)) to the above two examples, we obtain the
following values:

� In Example 1, T (p1) = 0:4322, T (p2) = 0:4288;
� In Example 2, T (p1) = 0:3782; T (p2) = 0:3818;
� In light of the revised comparison rules for the

proposed accuracy function (Eq. (7)), in Example 1,
we have T (p1) > T (p2), which indicate that p1 � p2,
and in Example 2, we have T (p1) < T (p2), which
indicate that p1 � p2.

In order to demonstrate e�ectiveness of the pro-
posed accuracy function, the �ndings and observations
of this study regarding the preference order are pre-
sented in contrast with the existing accuracy functions
in Table 1.

From Table 1, it is clear that for Example 1,
Peng and Yang [7] score and accuracy functions are not
appropriate for setting the correct preference order of
IVPFNs and the preference ordering obtained using the
proposed accuracy functions in this study is consistent
with Garg [23] accuracy functions. For Example 2,
both existing accuracy functions of Peng and Yang [7]

and Garg [23] are not su�ciently appropriate for
setting the correct preference order of IVPFNs, but
the proposed accuracy function in this study is capable
to set the correct ordering. Therefore, the ranking
results obtained by the proposed accuracy function are
better than those of the existing score and the accuracy
functions.

Example 3. Consider two IVPNFs given by:

p1 =
�

[
p

0:3;
p

0:6]; [
p

0:2;
p

0:3]
�
;

and:

p2 =
�

[
p

0:3;
p

0:4]; [
p

0:1;
p

0:2]
�
:

We compute rp1
=
p

0:5, rp1 =
p

0:9, dp1
= 0:5641,

dp1 = 0:6082, rp2
=
p

0:4; rp2 =
p

0:6; dp2
=

0:6082; dp2 = 0:6667, s(p1) = 0:2; s(p2) = 0:2, and
a(p1) = 0:07; a(p2) = 0:05. In view of the rules for
comparison given in [7], we obtain p1 � p2. Also,
by the comparison rules o�ered by Garg [23], we get:
K(p1) = 0:7096; K(p2) = 0:5998, i.e. K(p1) > K(p2),
which implies that p1 � p2. However, by Eq. (7), we get
T (p1) = 0:5740; T (p2) = 0:5946, i.e., T (p1) < T (p2)
which implies that p1 � p2. Hence, the comparison
rules of the proposed accuracy function (Eq. (7)), lead
to contradictory results.

In the above example, the direction of commit-
ment dp1

(> �=4) is greater than the direction of
commitment dp2(< �=4) and dp1 = dp2

= 0:6082 <
�=4, which indicates that p2 supports the membership
better than p1, i.e., p2 is preferred to p1 (refer to Ta-
ble 2). Since the proposed accuracy function (Eq. (7))
takes the direction of commitment of IVPFN as an
input, its ranking result may be better than the existing
score and the accuracy functions.

Table 1. Comparative analysis for Examples 1 and 2.

Example 1

Methodology Score and accuracy functions Preference order

Peng and Yang [7]
s(p1) = �0:175; s(p2) = �0:17

p1 � p2
a(p1) = 0:625; a(p2) = 0:625

Garg [23] K(p1) = 0:381; K(p2) = 0:364 p1 � p2

Proposed method T (p1) = 0:432; T (p2) = 0:429 p1 � p2

Example 2

Peng and Yang [7]
s(p1) = �0:140 s(p2) = �0:140;

p1 � p2
a(p1) = 0:270; a(p2) = 0:270

Garg [23] K(p1) = 0:0483; K(p2) = 0:0483 p1 � p2

Proposed method T (p1) = 0:378; T (p2) = 0:382 p1 � p2
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Table 2. Comparative analysis for Example 3.

Example 3

Methodology Score and accuracy functions Preference order

Peng and Yang [7]
s(p1) = 0:2; s(p2) = 0:2;

p1 � p2

a(p1) = 0:07; a(p2) = 0:05

Garg [23] K(p1) = 0:7096; K(p2) = 0:5998 p1 � p2

Proposed method T (p1) = 0:5740; T (p2) = 0:5946 p1 � p2

4. IVPF distance measures and weighted
averaging operators

In this section, �rst, we present the distance measures
and weighted averaging operators proposed by Liu et
al. [21] for IVPFNs. Then, a new distance measure
is given for IVFFNs and the shortcomings in the
existing distance measure proposed by Liu et al. [21]
are discussed.

Liu et al. [21] proposed the following IVPF
p-distance measure, generalized IVPF weighted dis-
tance measure, generalized probabilistic IVPF Ordered
Weighted Averaging (OWA) distance operators, and
further proceedings for IVPFNs.

De�nition 1. IVPF p-distance measure: Consider
any two IVPFNs:

�1 = (��1 ; ��1) =
�

[��1 ; ��1 ]; [��1 ; ��1 ]
�
;

and:

�2 = (��2 ; ��2) =
�

[��2 ; ��2 ]; [��2 ; ��2 ]
�
:

The IVPF p-distance between �1 and �2 is denoted by
dp(�1; �2) and de�ned as follows:

dp(�1; �2) =
1
4

�
j(��1)2 � (��2)2jp + j(��1)2 � (��2)2jp

+ j(��1)2 � (��2)2jp + j(��1)2 � (��2)2jp

+ j(��1)2 � (��2)2jp + j(��1)2

� (��2)2jp
�
: (8)

De�nition 2. Generalized IVPF Weighted Dis-
tance measure: Let A = (�1; �2; : : : ; �n) and B =
(�1; �2; : : : ; �n) be two n-tuples of IVPFNs, where
(��i ; ��i) =

�
[��i ; ��i ]; [��i ; ��i ]

�
and (��i ; ��i) =�

[��i ; ��i ]; [��i ; ��i ]
�

. Then, the generalized IVPF
Weighted Distance (GIVPFWD) measure is a function
of � : IV PFNn � IV PFNn ! R and de�ned as:

�(A; B) =

 
nX
i=1

!idp(�i; �i)

!1=p

; (9)

where ! = (!1; !2; : : : ; !n)T is a weight vector with

!i > 0;
nP
i=1

!i = 1 and dp(�i; �i) is the IVPF p-distance

between IVPFNs �i and �i de�ned by Eq. (8).
In addition, the following points should be men-

tioned:

� If dp(�i; �i) is the ith largest value of dp(�j ; �j); j =
1; 2; : : : ; n in Eq. (9), then the distance mea-
sure (Eq. (9)) is called the generalized IVPF or-
dered weighted distance (GIVPFOWD) measure for
IVPFNs.

� If we take p = 1 in Eq. (9), then it becomes the IVPF
Weighted Averaging Distance (IVPFWAD) measure
given by:

�(A; B) =
nX
i=1

!id1(�i; �i): (10)

� If we take p = 2 in Eq. (9), then it becomes the IVPF
Weighted Euclidean Distance (IVPFWED) measure
given by:

�(A; B) =

 
nX
i=1

!id2(�i; �i)

!1=2

: (11)

De�nition 3. Generalized probabilistic IVPF-
OWA distance operators. Let A = (�1; �2; : : : ; �n)
and B = (�1; �2; : : : ; �n) be two n-tuples of IVPFNs,
where

(��i ; ��i) =
�

[��i ; ��i ]; [��i ; ��i ]
�
;

and

(��i ; ��i) =
�

[��i ; ��i ]; [��i ; ��i ]
�
:

Then, the Probabilistic generalized IVPF Weighted
Averaging Distance (P-GIVPFWAD) operator is a
function of � : IV PFNn�IV PFNn ! R and de�ned
as:
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�(A; B) =

 
nX
i=1

�idp(�i; �i)

!1=p

; (12)

where ! = (!1; !2; : : : ; !n)T is a weight vector with

!i > 0;
nP
i=1

!i = 1; �i = �iwi + (1 � �i)pi and pi is

the associated probability of IVPF p-distance dp(�i; �i).
�i 2 [0; 1] and (1� �i) represent the degree of weight
and the degree of probabilistic information, respectively.

Remarks

� If �i = 0, then GPWIVPF distance measure
(Eq. (12)) is called the probabilistic generalized
IVPF distance measure.

� If �i = 1, then it reduces to GIVPFWD distance
measure (Eq. (9)).

� If we take p = 1 in Eq. (12), then it becomes P-
IVPFWAD operator, given by:

�(A; B) =
nX
i=1

�id1(�i; �i): (13)

� If we take p = 2 in Eq. (12), then it becomes the
Probabilistic Interval-Valued Pythagorean Fuzzy
Weighted Euclidean Distance (P-IVPFWED) oper-
ator, given by:

�(A; B) =

 
nX
i=1

�id2(�i; �i)

!1=2

: (14)

� If dp(�i; �i) is the ith largest dp(�j ; �j); j =
1; 2; : : : ; n and pi is its corresponding probability
then the distance measure (Eq. (12)) is called P-
GIVPFOWAD operator.

� If we take �i = wipi
nP
i=1

wipi
and dp(�i; �i) as the ith

largest dp(�j ; �j); j = 1; 2; : : : ; n with pi as the cor-
responding probability of the ith largest dp(�j ; �j),
then the distance measure (Eq. (12)) is called IP-
GIVPFOWAD operator.

It may be observed that the above distance mea-
sures or operators sometimes lead to some unreasonable
output. For instance:

Example 4. Let �1 = ([0:5; 0:6]; [0:6; 0:7]) ; �2 =
([0:6; 0:7]; [0:5; 0:6]) and �3 = ([0:3; 0:4]; [0:4; 0:5]) be
three IVPFNs then, by using Eq. (8) for p = 1, we
have:

d(�1; �3) = d(�2; �3) = 0:40

r�1 = r�2 = 0:7810; r�1 = r�2 = 0:9220;

��1 = 0:8761; ��1 = 0:8622;

��2 = 0:6947; ��2 = 0:7086;

d�1 = 0:4423; d�1 = 0:4511;

d�2 = 0:5577; d�2 = 0:5489:

It is observed that �1 and �2 have the same lower and
upper lengths, but di�erent lower and upper directions
of commitment (strength). Thus, the distance between
�1 and �3 should be di�erent from the distance between
�2 and �3. Hence, in this case IVPF p-distance measure
(Eq. (8)) is not appropriate to use.

Since the strength and direction of commitment
are important parameters of IVPFNs, ignoring them
may lead to inappropriate results. Hence, by taking all
the four parameters into account for IVPFNs,

[�p(u); �p(u)]; [�p(u); �p(u)]; (rp; rp); and (dp; dp);

we propose the IVPF p-distance measure between two
IVPFNs, �1 and �2, as follows:

dpT (�1; �2) =
1
4

�
j��1 � ��2 jp + j��1 � ��2 jp

+ j��1 � ��2 jp + j��1 � ��2 jp

+ jr�1 � r�2 jp + jr�1 � r�2 jp

+ jd�1 � d�2 jp + jd�1 � d�2 jp
�
: (15)

By using the proposed IVPF p-distance measure
(Eq. (15)) for p = 1, for Example 4, we have
dT (�1; �3) = 0:3542 and dT (�2; �3) = 0:4075.

Based on Table 3, we can state that the proposed
IVPF p-distance measure (Eq. (15)) is a better measure
than Eq. (8).

5. Application to a MCDM problem

In this section, we employ the proposed accuracy
function, distance measures, and OWA operators
to deal with MCDM problem with interval-valued

Table 3. Comparative analysis for Example 4.

Example 4

Methodology IVPF p-distance measure
Liu et al. [21] d(�1; �3) = d(�2; �3) = 0:40
Proposed method dT (�1; �3) = 0:3542; dT (�2; �3) = 0:4075
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Pythagorean fuzzy information. Consider the following
setup of an MCDM problem in IVPFNs environment.

Consider the set of m possible alternatives, say,
X = fx1; x2; : : : ; xmg, and the set of n-criteria by
which the performance of the alternatives is evaluated,
say, C = fC1; C2; : : : ; Cng. Let ! = f!1; !2; : : : ; !ng
be the weight vector of all criteria such that 0 � !i � 1
and

Pn
i=1 !i = 1. Assume that the performance of

an alternative xi (i = 1; 2; : : : ;m) with respect to the
criteria Cj ; j = 1; 2; : : : ; n is measured by IVPFNs
Cj(xi) = ([�i;j ; �i;j ]; [�i;j ; �i;j ]) ; j = 1; 2; : : : ; n; i =
1; 2: : : : ;m; here, [�i;j ; �i;j ] represents the degree that
alternative xi satis�es the criterion Cj and [�i;j ; �i;j ]
represents the degree that alternative xi does not
satisfy the criterion Cj . Let Dm�n = Cj(xi)m�n be
an interval-valued Pythagorean fuzzy decision matrix.
The procedural steps of the proposed MCDM algo-
rithm are as follows:

Step 1: Compute the accuracy of each IVPFN of
the obtained decision matrix Mm�n = Cj(xi)m�n by
applying the proposed accuracy function (Eq. (7)).
Step 2: Determine the IVPF-Positive Ideal Solution
(PIS):

x+ = fhxi; max
i
T (Cj(xi))ig;

and the IVPF-Negative Ideal Solution (NIS):

x� = fhxi; min
i
T (Cj(xi))ig;

for j = 1; 2; : : : ; n; i = 1; 2; : : : ;m with the help of
the accuracies of IVPFNs obtained in Step 1.
Step 3: Evaluate the distance of each alternative
xi; i = 1; 2; : : : ;m from x+ and x� using the
proposed IVPF p-distance measure (Eq. (15)).
Step 4: Using the values obtained in Step 3 and
rearranging the probability weight, evaluate the new
weights by using:

�i = �iwi + (1� �i)pi or �i =
wipi
nP
i=1

wipi
:

Step 5: Determine the P-GIVPFOWAD or IP-
GIVPFOWAD of the alternative xi by the positive
ideal IVPFN solution x+ and the negative ideal
IVPFN solution x�.
Step 6: Compute the coe�cient of relative closeness
for each alternative xi as follows:

r(xi) =
D(xi; x�)

D(xi; x+) +D(xi; x�)
;

i = 1; 2; : : : ;m; (16)

where D(�) is an IP-GIVPFOWAD or P-
GIVPFOWAD.

Step 7: Rank all the alternatives based on the
coe�cient of relative closeness r(xi) and choose the
optimal alternative.

5.1. Numerical example
In order to illustrate the implementation of the steps of
the proposed algorithm stated above, we consider the
following MCDM problem of the selection of the strat-
egy for an optimal production referring to the related
literature and undertakings completed in [21,24,25].

Suppose that a �rm desires to manufacture a new
product and looks for the optimal target of having the
maximum bene�t. Based upon a survey analysis of
the market, they lay down the following �ve possible
strategies (alternatives):

� x1: Creating a new product aligned with rich
customers;

� x2: Creating a new product aligned with mid-level
customers;

� x3: Creating a new product aligned with low-level
customers;

� x4: Creating a new product suited to all customers;

� x5: No manufacturing of any product.

After a detailed investigation into the information
received from sources, the decision makers go for
the following general criteria for the adaptability of
strategies to production:

� C1: Short-term bene�ts;

� C2: Mid-term bene�ts;

� C3: Long-term bene�ts;

� C4: Production risk;

� C5: Various other factors.

Construct the decision matrix:

D5�5 = Cj(xi)5�5 = ([�i;j ; �i;j ]; [�i;j ; �i;j ]);

j = 1; 2; :::; 5; i = 1; 2; :::; 5;

as shown in Table 4.
Suppose that with reference to the problem under

consideration, the decision makers �nd the probabilis-
tic information p = (0:3; 0:3; 0:2; 0:1; 0:1) and weight
vector w = (0:2; 0:25; 0:15; 0:3; 0:1), which represents
the degree of importance/weightage of each criterion.
Then, to get the most desirable alternative, we apply
the steps of the proposed algorithm. First, we compute
the accuracy of each IVPFN of the decision matrix as
shown in Table 4 by applying the proposed accuracy
function (Eq. (7)). The computed values are tabulated
in Table 5.
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Table 4. Interval-valued Pythagorean fuzzy decision matrix.

C1 C2 C3 C4 C5

x1 ([0.6,0.7], [0.5,0.6]) ([0.4,0.5], [0.5,0.6]) ([0. 2,0.6], [0.3,0.6]) ([0.5,0.6], [0.4,0.5]) ([0.2,0.7], [0.3,0.7])
x2 ([0.5,0.6], [0.6,0.7]) ([0.5,0.6], [0.4,0.5]) ([0.3,0.6], [0.2,0.6]) ([0.4,0.5], [0.5,0.6]) ([0.3,0.7], [0.2,0.7])
x3 ([0.3,0.6], [0.4,0.8]) ([0.6,0.7], [0.4,0.5]) ([0.6,0.8], [0.3,0.4]) ([0.4,0.5], [0.3,0.6]) ([0.3,0.4], [0.7,0.8])
x4 ([0.5,0.7], [0.5,0.6]) ([0.4,0.5], [0.1,0.3]) ([0.1,0.2], [0.4,0.6]) ([0.4,0.5], [0.1,0.2]) ([0.5,0.7], [0.4,0.6])
x5 ([0.3,0.4], [0.1,0.2]) ([0.4,0.6], [0.4,0.5]) ([0.2,0.3], [0.5,0.6]) ([0.4,0.6], [0.5,0.6]) ([0.6,0.8], [0.3,0.4])

Table 5. Results of applying accuracy function.

C1 C2 C3 C4 C5

x1 0.5451 0.4549 0.4773 0.5451 0.4773
x2 0.4549 0.5451 0.5227 0.4549 0.5227
x3 0.4322 0.5905 0.6603 0.5000 0.3162
x4 0.5225 0.6164 0.3357 0.6403 0.5451
x5 0.5925 0.5225 0.3619 0.4774 0.6603

Based on the accuracies obtained in Table 5,
we �nd the IVPF-PIS x+ and the IVPF-NIS x�,
respectively, as follows:

x+ =
�
hC1; ([0:3; 0:4]; [0:1; 0:2])i;

hC2; ([0:4; 0:5]; [0:1; 0:3])i;
hC3; ([0:6; 0:8]; [0:3; 0:4])i;
hC4; ([0:4; 0:5]; [0:1; 0:2])i;

hC5; ([0:6; 0:8]; [0:3; 0:4])i
�
; (17)

and:
x� = fhC1; ([0:3; 0:6]; [0:4; 0:8])i;

hC2; ([0:4; 0:5]; [0:5; 0:6])i;
hC3; ([0:1; 0:2]; [0:4; 0:6])i;
hC4; ([0:4; 0:5]; [0:5; 0:6])i;
hC5; ([0:3; 0:4]; [0:7; 0:8])ig: (18)

Furthermore, we evaluate the P-GIVPFOWAD or IP-
GIVPFOWAD for each alternative xi; i = 1; 2; : : : ;m
from the IVPF-PIS x+ and the IVPF-NIS x�. The
respective results are shown in Tables 6 to 9. Then,
we �nd the relative closeness coe�cient by Eq. (16)
for each alternative xi. The results are given in
Tables 10 and 11 and illustrated in Figures 1 and 2. In
Tables 10 to 12, we observe that for di�erent values of
parameter p, the ranking order of alternatives remains
unchanged by applying either P-GIVPFOWAD or IP-
GIVPFOWAD and all the results show that x5 is the
optimal alternative.

Figure 1. Ranking order based on P-GIVPFOWAD.

Figure 2. Ranking order based on IP-GIVPFOWAD.

6. Remarks on limitations of existing methods

Based on the numerical example and the values ob-
tained in the previous section, we put forward some
remarks on the limitations of the existing methods:

� If we deal with the MCDM problem with the
proposed accuracy function (Eq. (7)) and Liu et
al.'s [21] distance measure (Eq. (8)), Based on
Table 9, we observe that the distances of x1 and x2
from IVPF-PIS x+ for p = 1 are the same. However,
the alternatives x1 and x2 with respect to all criteria
Cj ; j = 1; 2; : : : ; n, take di�erent IVPFNs;
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Table 6. Distances between xi and x+ obtained by P-GIVPFOWAD.

Value of p D(x1; x+) D(x2; x+) D(x3; x+) D(x4; x+) D(x5; x+)

1 0.4934 0.4783 0.4152 0.3468 0.2807

2 0.3924 0.3717 0.3331 0.2635 0.2234

4 0.3681 0.3462 0.3138 0.2421 0.2125

6 0.3690 0.3452 0.3150 0.2405 0.2145

8 0.3728 0.3470 0.3183 0.2417 0.2171

10 0.3766 0.3490 0.3214 0.2434 0.2194

Table 7. Distances between xi and x� obtained by P-GIVPFOWAD

Value of p D(x1; x�) D(x2; x�) D(x3; x�) D(x4; x�) D(x5; x�)

1 0.2320 0.2609 0.2245 0.3103 0.3258

2 0.1912 0.2229 0.1787 0.2519 0.2666

4 0.1902 0.2217 0.1695 0.2385 0.2539

6 0.1965 0.2280 0.1700 0.2398 0.2555

8 0.2017 0.2339 0.1712 0.2423 0.2583

10 0.2057 0.2386 0.1723 0.2444 0.2607

Table 8. Distances between xi and x+ obtained by IP-GIVPFOWAD.

Value of p D(x1; x+) D(x2; x+) D(x3; x+) D(x4; x+) D(x5; x+)

1 0.4715 0.4568 0.3903 0.3662 0.2453
2 0.3815 0.3510 0.3122 0.2750 0.1963
4 0.3619 0.3281 0.2918 0.2501 0.1871
6 0.3647 0.3279 0.2910 0.2475 0.1889
8 0.3694 0.3301 0.2929 0.2483 0.1914
10 0.3738 0.3325 0.2951 0.2499 0.1935

Table 9. Distances between xi and x� obtained by IP-GIVPFOWAD.

Value of p D(x1; x�) D(x2; x�) D(x3; x�) D(x4; x�) D(x5; x�)

1 0.2213 0.2629 0.1995 0.3122 0.2902

2 0.1842 0.2238 0.1561 0.2545 0.2372

4 0.1843 0.2215 0.1466 0.2423 0.2241

6 0.1910 0.2275 0.1466 0.2445 0.2243

8 0.1965 0.2331 0.1475 0.2476 0.2260

10 0.2008 0.2377 0.1483 0.2501 0.2277

Table 10. Relative closeness coe�cients obtained by P-GIVPFOWAD.

Value of p r(x1) r(x2) r(x3) r(x4) r(x5) Ranking order

1 0.3198 0.3529 0.3509 0.4722 0.5372 x5 � x4 � x2 � x3 � x1

2 0.3276 0.3749 0.3492 0.4887 0.5441 x5 � x4 � x2 � x3 � x1

4 0.3407 0.3904 0.3507 0.4963 0.5444 x5 � x4 � x2 � x3 � x1

6 0.3475 0.3978 0.3505 0.4993 0.5436 x5 � x4 � x2 � x3 � x1

8 0.3511 0.4027 0.3497 0.5006 0.5433 x5 � x4 � x2 � x1 � x3

10 0.3533 0.4061 0.3490 0.5010 0.5430 x5 � x4 � x2 � x1 � x3
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Table 11. Relative closeness coe�cients obtained by IP-GIVPFOWAD.

Value of p r(x1) r(x2) r(x3) r(x4) r(x5) Ranking order

1 0.3194 0.3653 0.3383 0.4602 0.5419 x5 � x4 � x2 � x3 � x1

2 0.3256 0.3894 0.3333 0.4806 0.5472 x5 � x4 � x2 � x3 � x1

4 0.3374 0.4030 0.3344 0.4921 0.5450 x5 � x4 � x2 � x1 � x3

6 0.3437 0.4096 0.3350 0.4970 0.5428 x5 � x4 � x2 � x1 � x3

8 0.3472 0.4139 0.3349 0.4993 0.5414 x5 � x4 � x2 � x1 � x3

10 0.3495 0.4169 0.3345 0.5002 0.5406 x5 � x4 � x2 � x1 � x3

Table 12. Distances of x1 and x2 from x+.

D(x1; x+) 0.5800 0.2550 0.3000 0.2800 0.3250

D(x2; x+) 0.5800 0.2550 0.3000 0.2800 0.3250

� Also:

P �GIV PFOWAD(x1; x+)

= P �GIV PFOWAD(x2; x+) = 0:3561;

and:

IP �GIV PFOWAD(x1; x+)

= IP �GIV PFOWAD(x2; x+) = 0:33340;

indicate that x1 and x2 are of the same preference.
Hence, in such cases, Liu et al.'s [21] distance mea-
sure (Eq. (8)) is not proper choice for application.

� Scoring of alternatives x1 and x2 with respect to
criteria C3 and C4 by using Peng and Yang's [7]
score and accuracy functions (Eqs. (4) and (5))
is as follows: s(C3(x1)) = s(C3(x2)) = �0:0250.
However, it should be noted that C3(x1) and C3(x2)
are represented by di�erent IVPFNs. Also, while
s(C5(x1)) = s(C5(x2)) = 0:0250, C5(x1) and C5(x2)
are represented by di�erent IVPFNs;

� Regarding accuracies, we have a(C3(x1)) =
s(C5(x1)) = 0:4250 and a(C3(x2)) = s(C5(x2)) =
0:5550, but C3(x1)) 6= C5(x1) and C3(x2)) 6=
C5(x2). Hence, we can not proceed to make
decisions in the right direction through the Liu et
al. [21] approach;

� Representing the performance of alternatives x3
and x4 by IVPFNs C3(x4) = ([0:1; 0:2]; [0:04; 0:37])
and C3(X5) = [(0:2; 0:3]; [0:05; 0:6]), respectively, in
terms of the criterion C4 in the decision matrix as
shown in Table 4 are by using Peng and Yang's [7]
score and accuracy functions (Eqs. (4) and (5)),
we have s(C3(x4)) = �01400; s(C3(x5)) = �0:1400
and a(C3(x4)) = 0:2700; a(C3(x5)) = 0:2700. This
result shows that C3(x4) and C3(x5) are equivalent
while, in fact, they are di�erent;

� The above statement shows that by the Peng and
Yang's [7] score and accuracy functions, we cannot
determine the scoring and accuracy of C3(x4) and
C3(x5), and we may fail to �nd the positive or
negative ideal solution. Hence, we cannot proceed
to make decisions by Liu et al. [21] approach.

7. Conclusions and scope of future work

In order to overcome the existing shortcomings in the
literature, we successfully incorporated four important
parameters of membership, non-membership, strength,
and direction of commitment and introduced a new
accuracy function for interval valued Pythagorean
Fuzzy Sets (PFSs). Furthermore, a new IVPF p-
distance measure for interval-valued Pythagorean fuzzy
numbers was proposed and used along with the existing
weighted averaging operators to deal with an example
of Multi-Criteria Decision Making (MCDM) problem.
In any �eld of model evaluation and assessment of the
quality of prediction, the estimator score and accuracy
functions may be utilized in the future research. Also,
the proposed distance measure may be used in multi-
label ranking metrics, regression metrics, and cluster-
ing metrics.

References

1. Zadeh, L.A. \Fuzzy sets", Information and Control,
8(3), pp. 338{353 (1965).

2. Atanassov, K.T. \Intuitionistic fuzzy sets", Fuzzy Sets
and Systems, 20(1), pp. 87{96 (1986).

3. Garg, H., Agarwal, N., Tripathi, A. \Some improved
interactive aggregation operators under interval-valued
intuitionistic fuzzy environment and its application to
decision making process", Scientia Iranica, 24(5), pp.
2581{2604 (2017).

4. Yager, R.R. \Pythagorean membership grades in
multicriteria decision making", IEEE Transaction on
Fuzzy Systems, 22, pp. 958{965 (2014).

5. Yager, R.R. and Abbasov, A.M. \Pythagorean mem-
bership grades, complex numbers and decision mak-
ing", International Journal of Intelligent Systems, 28,
pp. 436{452 (2013).



2138 T. Kumar et al./Scientia Iranica, Transactions E: Industrial Engineering 27 (2020) 2127{2139

6. Zhang, X.L. and Xu, Z.S. \Extension of TOPSIS
tomulti-criteria decision making with Pythagorean
fuzzy sets", International Journal of Intelligent Sys-
tems, 29, pp. 1061{1078 (2014).

7. Peng, X.D. and Yang, Y. \Fundamental properties of
interval-valued Pythagorean fuzzy aggregation opera-
tors", International Journal of Intelligent Systems, 30,
pp. 1{44 (2015).

8. Peng, X.D. \New operations for interval-valued
Pythagorean fuzzy set", Scientia Iranica, 26(2), pp.
1049{1076 (2019). DOI: 10.24200/sci.2018.5142.1119

9. Zhang, X.L. \Multicriteria Pythagorean fuzzy decision
analysis: a hierarchical QUALIFLEX approach with
the closeness index-based ranking methods", Informa-
tion Sciences, 330, pp. 104{124 (2016).

10. Chen, T.Y. \Multiple criteria decision analysis under
complex uncertainty: A pearson-like correlation -based
Pythagorean fuzzy compromise approach", Interna-
tional Journal of Intelligent Systems, pp. 1{38 (2018).
https://doi.org/10.1002/int.22045

11. Tang, X. and Wei, G. \Some generalized Pythagorean
2-tuple linguistic Bonferroni mean operators in multi-
ple attribute decision making", Journal of Algorithms
and Computational Technology, 12(4), pp. 387{398
(2018). https://doi.org/10.1177/1748301818791506

12. Peng, X.D. and Selvachandran, G. \Pythagorean fuzzy
set: state of the art and future directions", Arti�cial
Intelligence Review, 52(3), pp. 1873{1927 (2019). DOI:
10.1007/s10462-017-9596-9

13. Peng, X.D. and Yang, Y. \Pythagorean fuzzy choquet
integral based MABAC method for multiple attribute
group decision making", International Journal of In-
telligent Systems, 31(10), pp. 989{1020 (2016).

14. Peng, X.D., Yuan, H.Y., and Yang, Y. \Pythagorean
fuzzy information measures and their applications",
International Journal of Intelligent Systems, 32(10),
pp. 991{1029 (2017).

15. Grzegorzewski, P. \Distance between intuitionistic
fuzzy sets and/or interval-valued fuzzy sets based on
the Hausdor� metric", Fuzzy Sets and Systems, 148,
pp. 319{328 (2004).

16. Szmidt, E. and Kacprzyk, J. \Distance between intu-
itionistic fuzzy sets", Fuzzy Sets and Systems, 114, pp.
505{518 (2000).

17. Xu, Z.S. and Chen, J. \An overview of distance
and similarity measures of intuitionistic fuzzy sets",
International Journal of Uncertainty, Fuzziness and
Knowledge-Based Systems, 16, pp. 529{555 (2008).

18. Dubois, D. and Prade, H., Fuzzy Sets and Systems:
Theory and Applications, New York: Academic Press
(1980).

19. Zeng, W.Y. and Guo, P. \Normalized distance, similar-
ity measure, inclusion measure and entropy of interval-
valued fuzzy sets and their relationships", Information

Sciences, 178, pp. 1334{1342 (2008).

20. Deqing, L. and Wenyi, Z. \Distance measure of
Pythagorean fuzzy sets", International Journal of
Intelligent Systems, 33, pp. 348{361 (2018).

21. Liu, Y., Qin, Y., and Han, Y. \Multiple criteria
decision making with probabilities in interval-valued
Pythagorean fuzzy setting", International Journal of
Fuzzy Systems, 20(2), pp. 558{571 (2018).

22. Peng, X.D. and Yang, Y. \Some results for
Pythagorean fuzzy sets", International Journal of
Intelligent Systems, 30, pp. 1133{1160 (2015).

23. Garg, H. \A novel improved accuracy function for
interval valued Pythagorean fuzzy sets and its appli-
cations in the decision-making process", International
Journal of Intelligent Systems, 32(12), pp. 1247{1260
(2017).

24. Yager, R.R., Engemann, K.J., and Filev, D.P. \On
the concept of immediate probabilities", International
Journal of Intelligent Systems, 10, pp. 373{397 (1995).

25. Wei, G.W. and Merigo, J.M. \Methods for strategic
decision-making problems with immediate probabili-
ties in intuitionistic fuzzy setting", Scientia Iranica,
19(6), pp. 1936{1946 (2012).

Biographies

Tanuj Kumar, PhD, is currently working as an
Assistant Professor in the Department of Mathematics,
SRM Institute of Science and Technology, Delhi NCR
Campus, Ghaziabad, India. He received his MSc degree
from Choudhary Charan Singh University, Meerut,
India, in 2006 and MTech in Applied & Computational
Mathematics from Jaypee Institute of Information
Technology, Noida, India, in 2011. Also, he received
PhD degree in Mathematics from Jaypee University
of Information Technology, Waknaghat, Solan, India,
in 2015. His areas of research interest are fuzzy
Information measures, decision making, and pattern
recognition and applications.

Rakesh Kumar Bajaj, PhD, received his BSc de-
gree with honors in Mathematics from Banaras Hindu
University, Varanasi, and MSc degree from the Indian
Institute of Technology, Kanpur, in 2000 and 2002,
respectively. Also, he received his PhD in Mathematics
from Jaypee University of Information Technology
(JUIT), Waknaghat, in 2009. He is now an Associate
Professor and has been working in the Department
of Mathematics at Jaypee University of Information
Technology, since 2003. His research interests include
fuzzy information measures, pattern recognition, fuzzy
clustering, fuzzy statistics, and fuzzy mathematics in
image processing.

Mohd Dilshad Ansari, PhD, is currently working as
an Assistant Professor in the Department of Computer



T. Kumar et al./Scientia Iranica, Transactions E: Industrial Engineering 27 (2020) 2127{2139 2139

Science & Engineering at CMR College of Engineering
& Technology, Hyderabad, India. He received his
MTech in Computer Science and Engineering in 2011
and his PhD from Jaypee University of Information
Technology, Waknaghat, Solan, HP, India, in 2018. He
has published more than 25 papers in international
journals and conferences. He is a member of various

technical/professional societies such as IEEE, UACEE,
and IACSIT. Also, he is currently a guest editor
and editorial/reviewer board member of some Scopus-
index journals and a technical programme committee
member of various reputed journals/conferences. His
research interest includes digital and fuzzy image pro-
cessing, IoT, and cloud computing.




