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Abstract. This paper aims to examine 
exural vibrations of fully saturated poroelastic
structures on an elastic bed subjected to moving point loads via an analytical solution.
Using a 
exural beam model in conjunction with Biot's poroelasticity theory, the equations
of motion of the porous structure were derived. By using the assumed mode method
and Laplace transform, the explicit expressions of displacement and pore pressure were
obtained carefully. For a particular case, the predicted results were compared with those
of another work and thus, reasonably good agreement was achieved. The e�ects of the
moving load velocity, permeability ratio, transverse sti�ness of the foundation, viscosity of
the pore 
uid, and porosity on the maximum elasto-dynamic �elds and pore pressure were
conclusively discussed. The velocity pertinent to the maximum possible dynamic response
was graphically determined and the e�ects of in
uential parameters on this crucial factor
were displayed. The present model could be easily extended to multi-layered poroelastic
structures under moving loads.

© 2020 Sharif University of Technology. All rights reserved.

1. Introduction

Based on Terzaghi's consolidation theory [1], Biot [2{5]
initiated the continuum mechanics theory of dynamic
poroelastic bodies. This theory deals with the motion
of both solid and 
uid within its pores and their
interactions [6,7]. In general, the 
uid phase consists
of both liquid and gas matters. A poroelastic body
is characterized by its porosity, permeability, and the
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properties of its constituents, namely solid skeleton
and 
uid. It is implied that all these data should
be appropriately incorporated into the equations of
motion of the porous structure. For many practical
applications, the linear theory of poroelasticity can
be safely applied to stress analysis of porous media.
To date, such a theory has been widely applied to
a large body of problems pertinent to biomechanics
and medical engineering [8{10], geomechanics [11{
13], hydrology [14,15], materials science [16{18], and
physics and geophysics [19{22].

Concerning the mechanical behavior of a poroe-
lastic structure subjected to dynamic load, typical
behavior of time-varying pore pressure was initially re-
ported by Mandel [23]. An analytical solution to three-
dimensional consolidation problems based on Biot's
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theory [2] was proposed, and the non-monotonic pore
water pressure was observed. Afterward, Cryer [24]
predicted similar results for consolidation of the center
of a porous sphere zone acted upon by a hydrostatic
pressure. The in
uence of Poisson's ratio on the pore
pressure was also addressed. Such a non-monotonic re-
sponse of the pore 
uid pressure was then referred to as
the Mandel-Cryer e�ect [25,26]. Abousleiman et al. [27]
generalized Mandel's problem to a poroelastic medium
with compressible 
uid and transverse isotropy. Fur-
ther, a full solution of stresses, displacements, and pore
pressure was obtained to display the Mandel-Cryer
e�ect. Until now, poroelastic beams have been widely
employed as simple models for structural elements,
bone structures, and geological layers. Li et al. [28]
developed the equations of motion for a transversely
isotropic poroelastic beam subjected to longitudinal or
transverse loads when only the longitudinal motion of
the 
uids within the pores was possible. Using series
solutions, the quasi-static problem of the porous beam
was examined in di�erent mechanical and di�usion
boundary conditions. Cederbaum et al. [29,30] found
interesting behavior patterns of poroelastic beams and
columns with only longitudinal di�usion. In this paper,
based on the developed poroelastic model by Li et
al. [28], transverse vibration of a porous beam-like
structure subjected to a moving concentrated load is
selected to be investigated in some detail.

Vibrations of solid beam and plate struc-
tures acted upon by moving loads [31{37], moving
masses [38{54], and moving mass-sprung systems [55{
57] have already been examined. Kiani et al. [58] exam-
ined the e�ect of shear deformation on the vibrational
behavior of poroelastic beams under a moving pointed
load. Most of these studies displayed the in
uence of
the dynamical parameters of the system on the trans-
verse displacement of the elastic beam. On the other
hand, dynamic responses of poroelastic half-space soil
media subjected to moving loads have been extensively
studied [59{66]. In most of these investigations, the
time history plots of transverse displacement and pore
pressure of particular points were demonstrated for
special levels of the velocity. Additionally, the e�ect
of the moving load velocity on the maximum dynamic
response of displacements and pore pressure was not
explained and discussed. Such an important issue
plays a vital role in the optimal design and practical
applications of porous structures. Herein, the porous
medium traversed by a moving load is modeled by a
poroelastic beam of �nite length, and determination of
the e�ects of the foundation sti�ness, permeability, and
velocity of the moving pointed load on the maximum
transverse displacement and maximum pore pressure is
of particular interest.

To date, 
exural vibrations of poroelastic plates
have been examined in some detail [67{71]. Further, in-

plane and torsional vibrations of poroelastic cylinders
have been studied [72,73]. Although there exists
plentiful literature of solutions on di�erent classes of
problems, an analytical solution for the vibration of
poroelastic beams acted upon by a moving load remains
hitherto absent. Thereby, we focus on a class of
poroelastic beam-like structures with only longitudinal
di�usion of 
uid within the pore network. Since only

uid movement in the longitudinal direction is per-
mitted, it is expected that transverse vibration of the
structure could be controlled more e�ectively by not
only the mechanical boundary conditions, but also by
the di�usion conditions at both ends of the poroelastic
beam. The present work deals with an exemplifying
model to explore the vibration of saturated poroelastic
media, con�ned between doubly parallel impermeable
layers, under moving loads. For example, a con�ned
soil layer via geotextile layers subjected to moving
vehicles can be appropriately modeled in this paper.

In the present work, transverse vibration of beam-
like poroelastic structures resting on an elastic foun-
dation due to a moving point load is of concern. By
employing Biot's and Euler-Bernoulli beam theories,
coupled equations of motion are developed and ana-
lytically solved. The explicit expressions of dynamic
displacement and pore pressure of a simply supported
poroelastic beam are derived. Through di�erent nu-
merical studies, the e�ects of the in
uential factors on
the maximum values of displacement and pore pressure
are investigated. The obtained results of poroelastic
beams with low and high levels of permeability are
discussed with respect to a wide range of the velocities
of the moving load.

2. Basic assumptions and formulations

Consider a homogeneous poroelastic beam fully satu-
rated by a 
uid that can only move along the longi-
tudinal direction of the beam, as shown in Figure 1.
The density of the fully saturated medium, length,
moment inertia, and cross-sectional area of the beam
are denoted by �, l, I, and A, respectively. The beam

Figure 1. A poroelastic beam-like structure with
simple-permeable ends.
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subjected to a load moves at a constant velocity, v.
The moving load enters the beam from the left side
at time t = 0 and its location on its upper surface is
represented by xm. The poroelastic beam is located
on an elastic medium. To consider the transverse
interaction of the beam and its foundation, the beam
remains continuously attached to an elastic layer with
constant ks (i.e., Winkler spring model). It is assumed
that the height of the beam is fairly negligible in
comparison to its length. Further, after deformation
by the moving point load, each cross-sectional plane
remains plane which is perpendicular to the neutral
axis. Therefore, the beam could be rationally modeled
based on the Euler-Bernoulli beam theory. Based on
Biot's model [2] for transversely isotropic materials, the
constitutive equations are read as follows:8<:�sxx�syy

�szz

9=; =

24c11 c12 c12
c12 c22 c23
c12 c23 c22

358<:�sxx�syy�szz
9=;�

8<:�1
�2
�2

9=; pf ;
(1a)

pf = G
�
� � �1�sxx � �2

�
�syy + �szz

��
; (1b)

where �s�� represents the e�ective normal stress, �s��
the normal strains of the skeleton, cij the material
property matrix, � the pore volume change, and pf
the pore pressure. The parameters �i and G rely on
the properties of both solid and 
uid phases as well as
the morphology of the pores. The two latter ones link
the deformation of the solid phase to the movement
of 
uid inside the pores, and vice versa. Since the
bending behavior of the poroelastic medium subjected
to a moving load is of interest, one can rationally set
�syy = �szz = 0. As a result, the constitutive equations
in Eqs. (1a) and (1b) are reduced to the following
relations:
�sxx = E�sxx � �pf ; (2a)

� = ��sxx + �pf ; (2b)

where E, �, and � are functions of cij , �i, and G.
The parameter E exactly represents the longitudinal
elastic modulus of the poroelastic beam. According
to the hypothesis of the Euler-Bernoulli beam, in the
absence of the longitudinal deformation of the neutral
axis, the longitudinal displacement of the beam is read
as ux = �z @w@x , where @ denotes the partial derivative
sign and w = w(x; t) is the transverse displacement
�eld of the poroelastic beam.

Thereby, �sxx = @ux
@x = �z @2w

@x2 . Now, let's
de�ne bending moment of the solid phase by: M =R
A �sxx dA. By substituting Eq. (2a) as a function

of transverse displacement into the recent relation,
the bending moment within the poroelastic beam is
obtained as follows:

M = �EI @2w
@x2 + �Mp; Mp = �

Z
A
zpfdA; (3)

where Mp is de�ned as the pore pressure moment.
Using Newton's second law for an element of the
poroelastic beam by neglecting the rotary inertia e�ect,
the governing equations could be expressed as follows:

Q =
@M
@x

; (4a)

@Q
@x

= ksw � P�(x� xm)H(l � xm) + �A
@2w
@t2

; (4b)

where t, H, and � represent the time parameter,
Heaviside step function, and Dirac delta function,
respectively. Substituting Eq. (4a) into Eq. (4b) and
then, introducing Eq. (3) to the resulting equation, we
get:

�A
@2w
@t2

+ EI
@4w
@x4 � � @

2Mp

@x2 + ksw

=P�(x� xm)H(l � xm): (5)

Eq. (5) depicts the transverse vibration of a poroelastic
beam with the longitudinal movement of the 
uid
subjected to a moving load. This equation is essentially
constructed on the basis of the Euler-Bernoulli beam
model. It indicates that to obtain the displacement
�eld of the poroelastic beam with good accuracy, the
skeleton phase should satisfy the hypotheses of such a
beam theory with su�cient accuracy. For capturing
the dynamic response of thick enough porous beams
or those with low levels of the slenderness ratio, shear
deformable beam theories should be employed [74{
76]. Additionally, the present equation only covers the
case that the 
uid inside the pores only moves along
the longitudinal direction and its transverse seepage
is prohibited. Otherwise, the interactions between
deformation of the beam and transverse movement
of the 
uid must be also taken into account. The
discussion on such interesting subjects is out of the
scope of the present research and could be considered
as hot topics for future complementary works.

Concerning the movement of the 
uid through the
connected pores within the beam, the generalized form
of Darcy's law by Biot [2] could be employed as follows:

@d
@t

= � 1
�f

kprpf ; (6)

where d = �(us � uf ), � is the porosity, us and uf
in order are the displacement vectors of the solid and

uid phases, �f is the 
uid viscosity, kp denotes the
permeability tensor, and r is the gradient sign. Since
� = �r:d and only the movement of the 
uid along
the longitudinal direction of the beam is possible, one
can obtain the following:

@�
@t

=
kp
�f

@2pf
@x2 ; (7)
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where kp is the longitudinal permeability of the porous
medium. By substituting Eq. (2b) into Eq. (7),
premultiplying both sides of the resulting equation by
�z and taking the integral from both sides over the
cross-sectional area of the poroelastic beam yield:

@Mp

@t
� k@2Mp

@x2 + �EI
@3w
@t@x2 = 0; (8)

where k = �Ekp
��f and � = �

�E . Eq. (8) explains longi-
tudinal movement of the 
uid inside the pores of the
poroelastic medium in terms of pore pressure moment.
It can be readily proved that for the poroelastic beam
under study, pf = �Mpz

I . It implies that there exists
a linear relationship between the pore pressure and its
moment at each point of the poroelastic beam.

Eqs. (5) and (8) represent the fundamental cou-
pled equations of a transversely vibrating poroelastic
beam subjected to a moving load. In order to deter-
mine the unknown �elds of the problem, namely w and
Mp, the appropriate initial and boundary conditions
should be imposed. It is assumed that the beam has
simple ends and the seepage can freely occur at its ends.
Therefore, the �elds of our interest should satisfy the
following boundary conditions:

w(0; t) = w(l; t) = 0; M(0; t) = M(l; t) = 0;

Mp(0; t) = Mp(l; t) = 0: (9)

Additionally, the poroelastic beam is assumed to be at
rest at the entrance of the moving load. Thereby, the
following initial conditions should be imposed:

w(x; 0) = 0;
@w
@t

(x; 0) = 0; Mp(x; 0) = 0: (10)

To evaluate the elastic �elds of the porous medium,
Eqs. (5) and (8) with the given conditions in Eqs. (9)
and (10) should be appropriately solved. In the next
part, an analytical solution is developed for dynamic
analysis of the poroelastic beam under excitation of a
moving point load.

3. Development of an analytical solution

To analyze the problem in a more general framework,
the following dimensionless parameters are considered:

x� =
x
l
; x�m =

xm
l
; w� =

w
l
;

� =
t
l2

s
EI
�A

; k�s =
ksl4

EI
; M�p =

Mpl
EI

;

P � =
Pl2

EI
; k� =

1
k

s
EI
�A

: (11)

By introducing Eq. (11) to Eqs. (5) and (8), the

dimensionless governing equations of the problem at
hand take the following form:

@2w�
@�2 +

@4w�
@x�4 � �

@2M�p
@x�2 + k�sw�

=P �� (x� � x�m)H (1� x�m) ; (12a)

k� @M
�
p

@�
� @2M�p

@x�2 + �k� @3w�
@�@x�2 = 0; (12b)

with the following boundary and initial conditions:

w�(0; �) = w�(1; �) = 0;

@2w�
@2x� (0; �) =

@2w�
@2x� (1; �) = 0;

M�p (0; �) = M�p (1; �) = 0; (13a)

w�(x�; 0) = 0;
@w�
@�

(x�; 0) = 0;

M�p (x�; 0) = 0: (13b)

Using the assumed mode method, the dimensionless
transverse displacement and pore pressure moment of
the poroelastic beam can be expressed in terms of
admissible mode shapes as follows:

w�(x�; �) =
1X
n=1

an(�) sin(n�x�); (14a)

M�p (x�; �) =
1X
n=1

bn(�) sin(n�x�); (14b)

where an(�) and bn(�) are the time-dependent param-
eters that should be determined. In the remainder of
this section, at two time intervals, analytical solutions
to the problem based on the Laplace transform are
given:

Phase I: When the moving load is being in contact
with the base beam: 0 < � < �f . By substituting
Eqs. (14a) and (14b) into Eqs. (12a) and (12b) and
using the relation:

�(x� � x�m) = 2
1X
n=1

sin(n�x�m) sin(n�x�); (15)

the following linear Ordinary Di�erential Equations
(ODEs) are obtained:

d2an
d�2 +

�
(n�)4+k�s

�
an+�(n�)2bn=2P � sin(g�n�);

(16a)

k�
(n�)2

dbn
@�
� �k� dan

@�
+ bn = 0; (16b)

with the following initial values:
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an(0) = bn(0) = 0;
dan(0)

d�
=

dbn(0)
d�

=0: (17)

where g�n = n�vl
q

EI
�A . By taking the Laplace

transform of both sides of Eqs. (16a) and (16b):

Lfang =
A1n +A2nsP5
m=0Rmnsm

; (18a)

Lfbng =
B1nsP5

m=0Rmnsm
; (18b)

where:
A1n = 2P �g�n; A2n = 2P �g�n(n�)2=k�;

B1n = 2P �g�n�(n�)2; R5n = 1;

R4n =
(n�)2

k� ; R3n = g�n2+k�s+(n�)4(1+��);

R2n =
(n�)2

k�
�

�2
n + g�n2

�
;

R1n = g�n2 �k�s + (n�)4(1 + ��)
�
;

R0n =
g�n2(n�)2

k� �2
n; �2

n = (n�)4 + k�s : (19)

Eqs. (18a) and (18b) can be also rewritten in terms
of fractional statements from which inverse Laplace
transform could be evaluated more conveniently.
Hence:

Lfang =
5X
i=1

< �A0in�+ i= �A0in�
s� p0in ; (20a)

Lfbng =
5X
i=1

< �B0in�+ i= �B0in�
s� p0in ; (20b)

where p0in (i = 1; � � � ; 5) are the complex roots of the
�fth-order polynomial of the denominators of Eq. (18)
(which is also called the characteristic relation of the
poroelastic beam), and the procedure of calculating
the complex numbers A0in and B0in has been explained
in some detail in Appendix A1. Thereby, by applying
the inverse Laplace to both Eqs. (20a) and (20b), the
dimensionless dynamic transverse displacement and
pore pressure moment of the poroelastic beam during
the course of excitation are provided by:

w�(x�; �) =
1X
n=1

5X
i=1

�< �A0in�+ i= �A0in��
exp

�
p0in�

�
sin(n�x�); (21a)

M�p (x�; �) =
1X
n=1

5X
i=1

�< �B0in�+ i= �B0in��
exp

�
p0in�

�
sin(n�x�): (21b)

Phase II: When the moving load has left the poroe-
lastic beam: � > �f . In this case, by introducing
Eqs. (14a) and (14b) to Eqs. (12a) and (12b), the
governing equations associated with the free vibration
of the poroelastic beam in terms of time-dependent
parameters are derived as follows:

d2an
d� 02 +

�
(n�)4+k�s

�
an+�(n�)2bn=0; � >�f ;

(22a)

k�
(n�)2

dbn
d� 0 � �k�

dan
d� 0 + bn = 0; (22b)

where an = an(� 0), bn = bn(� 0), and � 0 = � � �f .
Additionally, the requirement of continuity of the
transverse displacement and pore pressure moment
as well as their velocities at the end of the excitation
phase (i.e., � = �f ) leads to the following initial
conditions:

an (� 0 = 0) = an(�f )

=
5X
i=1

�<(A0in) + i= �A0in�� exp
�
p0in�f

�
;

bn (� 0 = 0) = bn(�f )

=
5X
i=1

�< �B0in�+ i= �B0in�� exp
�
p0in�f

�
;

@an
@�

(� 0 = 0) =
@an
@�

(� = �f )

=
5X
i=1

p0in
�< �A0in�+ i= �A0in�� exp

�
p0in�f

�
;

@bn
@�

(� 0 = 0) =
@bn
@�

(� = �f )

=
5X
i=1

p0in
�< �B0in�+i= �B0in�� exp

�
p0in�f

�
: (23)

By employing Laplace transform to solve the set of
ODEs in Eqs. (22a) and (22b) with the given initial
values in Eq. (23), one may arrive at:

Lfang =
2X

m=0

A0mnsm
,

3X
m=0

rmns
m; (24a)

Lfbng =
3X

m=0

B0mnsm
,

4X
m=0

r0mnsm; (24b)

where:

A02n = an(0); B03n = bn(0);



A. Nikkhoo et al./Scientia Iranica, Transactions A: Civil Engineering 27 (2020) 2326{2341 2331

A01n =
(n�)2

k� an(0) +
dan
d� 0 (0);

B02n = (n�)2
�
�

dan
d� 0 (0) +

bn(0)
k�

�
;

A00n=
dan
d� 0 (0)

(n�)2

k� +��(n�)4an(0)��(n�)2bn(0);

B01n=�(n�)2
�

(n�)2

k�
dan
d� 0 (0)�an(0)�2

n

�
+bn(0)�2

n;

B00n =
(n��n)2

k�
�
bn(0)� �(n�)2an(0)

�
;

r3n = 1; r04n = 1; r2n =
(n�)2

k� ;

r03n =
2(n�)2

k� ; r1n = �2
n + ��(n�)4;

r02n =�2
n+ ��(n�)4+

(n�)4

k�2
; r0n =

(n��n)2

k� ;

r01n =
2(n�)2�2

n + ��(n�)6

k� ; r00n =
�2
n(n�)4

k�2
:

(25)

Now, by decomposing Eqs. (24a) and (24b) into sim-
pler ratios and taking the inverse Laplace transform
of the resulting expressions, the dynamic transverse
displacement and pore pressure moment of the poroe-
lastic beam during the course of free vibration are
evaluated as follows:

w� (x�; � 0) =
1X
n=1

3X
i=1

�< �A00in�+ i= �A00in��
exp

�
p00in� 0

�
sin(n�x�); (26a)

M�p (x�; � 0) =
1X
n=1

4X
i=1

�< �B00in�+ i= �B00in��
exp

�
q00in� 0

�
sin (n�x�) ; (26b)

where the values of A00in , B00in , p00in and q00in are given in
Appendix A2.

4. Results and discussion

4.1. Some comparative studies in particular
cases

To check the validity of the conducted calculations, the
results obtained by the proposed model are compared
with those of other works in some particular cases.

Lee [77] studied the dynamic response of a Tim-
oshenko beam on an elastic foundation due to moving
mass. The e�ects of the velocity of the moving mass
as well as the transverse sti�ness of the foundation
on the dynamic response were examined. In the �rst
comparative study, consider an elastic beam with the
following properties:

E = 207� 109 N/m2;

� = 7700 kg/m3;

�0 = 0:03;

l = 1 m:

Further, we de�ne:

�0 =
�r0

l
;

Vcr =
�
l

s
EI
�A

;

UN (xm; t) =
u(xm; t)

�
;

where r0 and � respectively denote the gyration radius
of the beam's cross-section and the static de
ection of
the beam's midspan point due to the statically applied
load at that point. Figure 2 shows the plot of the
transverse displacement at the location of the moving
load at two levels of foundation sti�ness and moving
load velocity. The predicted results by the proposed
model as well as those of Lee [77] are demonstrated
with dashed and solid lines, respectively. According to
Figure 2, there is reasonably good agreement between
the obtained results by the proposed model and those
of Lee [77]. In the case of v = 0:5Vcr and ks =
106, the discrepancies between the predicted results of
the present work and those of Lee [77] are somehow
more obvious with respect to other cases, because
both inertial e�ects of the moving load and shear
deformation of the beam were taken into account in
the proposed model by Lee [77], whereas such e�ects
were not considered in the present study. Thereby,
the maximum transverse displacement in the study of
Lee [77] is somewhat greater than that predicted by the
present model.

In another comparative work, the obtained results
by the proposed model are checked against those of Lou
et al. [78]. Using �nite element method, Lou et al. [78]
investigated the transverse vibration of a Timoshenko
beam subjected to a moving mass. Consider an elastic
beam with the properties given by Lou et al. [78] and
de�ne Dd = maxfu(l=2;t)g

� and S = v=Vcr, where the
de�nition of � and Vcr is given in the previous part. In
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Figure 2. Normalized transverse displacement at the location of the moving load in terms of its normalized location: (a)
v = 0:11Vcr and ks = 0, (b) v = 0:11Vcr and ks = 106, (c) v = 0:5Vcr and ks = 0, (d) v = 0:5Vcr and ks = 106.

Figure 3. The plotted results of Dd as a function of S.

Figure 3, the plots ofDd in terms of S are demonstrated
based on the proposed model and the model of Lou et
al. [78]. In a wide range of velocities of the moving
mass, the present model can obtain the results of Lou
et al. [78] with good accuracy, as illustrated in Fig-
ure 3. Accordingly, the maximum de
ection commonly
increases with the velocity of the moving load up to
v = 0:6Vcr. For velocities greater than this value, both
of the above-mentioned models predict a reduction in
the maximum transverse displacement of the beam
as the velocity of the moving load increases. In the
following section, the poroelastic beam is analyzed to
explore how variations in the moving load velocity can

a�ect the maximum elastic �eld of the skeleton as well
as the maximum pore pressure of the 
uid phase.

4.2. Parametric studies
By using the proposed model, the e�ects of moving
velocity, permeability of the porous medium, sti�ness
of the foundation, and viscosity of the pore 
uid on
dynamic displacement and pore pressure moment as
well as their maximum values are to be examined.
In all calculations, P = 1000 N , A = 0:5 m2, and
l = 5 m were considered for two porous structures with
low and high permeability coe�cients. The mechanical
properties of these two porous media are given in
Table 1. In this table, ks, kf , e, and � represent the
solid bulk modulus, 
uid bulk modulus, void ratio, and
Poisson's ratio, respectively, and we have � = 1 � km

ks

and � = ���
ks + �

kf where km = E
3(1�2�) and � = e

1+e .
The permeability coe�cients of the considered less and
more permeable media in order are related to the void
ratio by:

k = 10
e

0:45�10
�cm

s

�
;

and:

k = 2:4622
�

0:01e3

1 + e

�0:7825 �cm
s

�
:

Table 1. The mechanical properties of two poroelastic structures.

Porous medium

E
� N

m2

�
ks
� N

m2

�
kf
� N

m2

�
ks
� N

m2

�
�f (Pa.s) �

� kg
m3

�
e �

Low permeable 2� 107 20:9� 109 2:29� 109 27� 106 10�3 1750 0.6 0.4

High permeable 5� 107 20� 109 2:3� 109 37� 106 10�3 1950 0.45 0.3
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4.2.1. Dynamic responses at di�erent velocity levels of
the moving load

In Figurs 4 and 5, the time history plots of the
normalized displacement and pore pressure moment of
the poroelastic beam's midspan point, namely WN and
MpN , are provided at di�erent velocity levels of the
moving load. These normalized values are de�ned by:

WN =
w(l=2; t)
wst;max

and MpN =
Mp(l=2; t)
Mst;max

;

where wst;max and Mst;max are the maximum values
of de
ection and bending moment of the drained
poroelastic beam, respectively, subjected to the stat-
ically pointed load at its midspan point. The results
associated with the less and more permeable structures
are speci�ed by (a) and (b), respectively. In these
plots, the graphs which are demonstrated by the solid,
dashed, dashed-dotted, and dotted lines are pertinent
to the velocities 50, 70, 100, and 120 m

s , respectively.
Figures 4(a) and 5(a) display that the maximum
values of both displacement and pore pressure moment
increase as the moving load velocity generally increases
from 50 to 70 m

s ; however, in the velocity range
of 100{120 m

s , these parameters would experience a
reduction. It is implied that for the less permeable
medium, the variations of displacement as well as pore
pressure moment as a function of velocity follow an
identical trend. For the more permeable medium (see

Figure 4. Time history plots of the normalized transverse
displacement of the midspan point of the poroelastic beam
at various levels of the moving load velocity: (a) Less
permeable structure and (b) more permeable structure.

Figure 5. Time history plots of the normalized pore
pressure moment of the midspan point of the poroelastic
beam at di�erent velocity levels of the moving load: (a)
Less permeable structure and (b) more permeable
structure.

Figures 4(b) and 5(b)), the maximum values of both
displacement and pore pressure moment increase as the
velocity of the moving load increases up to 100 m

s . For
velocity levels greater than this value, the maximum
displacement and pore pressure moment decrease as
the moving load velocity increases. Both Figures 4
and 5 show that the peaks of the plots of both dynamic
displacement and pore pressure moment move from
the �rst phase of excitation to the second one as the
moving load velocity increases. Additionally, at higher
velocity levels of the moving load, dissipation of the
amplitudes of both dynamic displacement and pore
pressure moment takes a longer amount of time.

4.2.2. In
uence of the moving load velocity on the
maximum dynamic responses

Another interesting aim of this study is to investigate
the e�ect of moving load velocity on the maximum
values of transverse displacement and pore pressure
moment. In di�erent conditions, analysis was carried
out at di�erent levels of permeability coe�cient and
foundation sti�ness of the poroelastic beam. Fig-
ure 6(a) and (b) show variations in the maximum
dynamic displacement as a function of the velocity of
the moving load for two considered media and at three
levels of the foundation sti�ness (i.e., ks, 1:5ks, and
2ks). According to the sti�ness of the foundation, the
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Figure 6. Maximum normalized transverse displacement
of the midspan point of the poroelastic beam in terms of
the moving load velocity for di�erent values of the
foundation sti�ness: (a) Less permeable structure and (b)
more permeable structure.

maximum transverse displacement commonly increases
up to a certain level as the moving load velocity grows.
Increase in the foundation sti�ness would lead to an
increase in velocity. However, for velocities greater
than the de�ned value, the maximum transverse dis-
placement is generally reduced due to the moving load
velocity. For instance, the corresponding velocities of
the peak points for ks, 1:5ks, and 2ks in order are
73, 85, and 90 m

s for the low permeable medium, and
71, 73, and 84 m

s for the more permeable structure.
Based on these data, in the case of the less permeable
structure, the in
uence of the foundation sti�ness on
the variation of the above-mentioned velocity becomes
clear, as compared to the more permeable medium. For
both less and more permeable structures, the maximum
dynamic displacement and pore pressure moment are
generally reduced as the foundation sti�ness increases
(see Figure 6(a) and (b)). For the less permeable
poroelastic beam, the peak of the plot is reduced by
about 23 and 16% considering the transition from
ks to 1:5ks and then from 1:5ks to 2ks, respectively.
Considering the increased foundation sti�ness in the
case of a more permeable structure, the amounts of
reduction in order are approximately equal to 28 and
18%. Further, at high levels of foundation sti�ness,
the in
uence of foundation sti�ness on the maximum
dynamic displacement is reduced.

4.2.3. In
uence of the permeability coe�cient on the
maximum displacement

The variations in the maximum dynamic displacement
of the poroelastic beam in terms of moving load velocity
are plotted in Figure 7(a) and (b) for di�erent values
of the permeability coe�cient. The plotted results
are given for both less and more permeable media
at three levels of the permeability coe�cient for each
structure. According to the given results, irrespective
of the permeability coe�cient, the maximum dynamic
displacement experiences an increase up to a certain
level as the velocity of the moving load decreases for
both poroelastic structures. Thereafter, the maximum
dynamic displacement is attenuated as the moving load
velocity increases. According to Figure 7(a), increasing
the permeability coe�cient of the less permeable struc-
ture leads to an increase in the maximum transverse
displacement at all velocity levels of the moving load.
This phenomenon becomes more obvious for velocity
levels greater than 60 m

s . However, Figure 7(b) displays
that the increase of the permeability coe�cient of the
more permeable structure has fairly no e�ect on the
maximum transverse displacement.

The e�ect of the permeability coe�cient of the
poroelastic medium on the maximum pore pressure
moment is of particular interest. For this purpose, the
plots of maximum pore pressure moment as a function
of moving load velocity at three levels of permeability

Figure 7. In
uence of the moving load velocity on the
maximum normalized transverse displacement of the
poroelastic beam for di�erent permeability coe�cients: (a)
Less permeable structure and (b) more permeable
structure.
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coe�cient are given in Figure 8(a) and (b). These
plots show that the maximum pore pressure moment
increases with the moving load velocity up to a certain
level. For a velocity rate of the moving load greater
than that certain value, the maximum value of the
pore pressure moment is reduced with the velocity of
the moving load. A scrutiny of the depicted results
reveals that the variation of the permeability coe�cient
has insigni�cant e�ect on variations in the velocity
of the moving load. Additionally, the maximum
pore pressure moment is reduced as the permeability
coe�cient increases. This phenomenon holds at all
considered velocity levels of the moving load. For
instance, for the less permeable structure, with an
increase in the permeability coe�cient from 5:2� 10�9

to 1:4�10�8 and then from 1:4�10�8 to 5:2�10�8 m
s ,

the peak of the plot of the maximum pore pressure
moment is reduced by about 60 and 56%, respectively.
Additionally, for the poroelastic beam made of more
permeable materials, by increasing the permeability
coe�cient from 0:7 � 10�2 to 1:1 � 10�2 and then
from 1:1 � 10�2 to 1:6 � 10�2 m

s , the peak of the
plot of the maximum pore pressure moment in order
decreases by about 37 and 31%. Such results also
indicate that variations in the maximum pore pressure
in terms of permeability would follow at a lower rate

Figure 8. In
uence of the moving load velocity on the
maximum dimensionless pore pressure moment of the
poroelastic beam for di�erent permeability coe�cients: (a)
Less permeable structure (b) more permeable structure.

as the permeability coe�cient of the poroelastic beam
increases.

4.2.4. In
uence of the foundation sti�ness and pore

uid viscosity on the maximum displacement

An attempt was made to �nd out how sti�ness of the
poroelastic foundation and pore 
uid viscosity could
a�ect the maximum dynamic response of the poroe-
lastic beam. To this end, the maximum transverse
displacement predicted by the proposed model as a
function of the foundation sti�ness ratio, kf = ks=ks0,
is plotted in Figure 9(a) and (b) (note: ks0 is the
initially considered value of the foundation sti�ness
as stated in Table 1). These �gures respectively
correspond to the less and more permeable structures.
According to Figure 9(a) and (b), the maximum
dynamic displacement is reduced as the foundation
sti�ness increases. Such a reduction is more apparent
at lower levels of the foundation sti�ness. Interestingly,
by increasing the pore 
uid viscosity, the maximum
transverse displacement decreases. Such a behavior
is more apparent for the less permeable beam with
respect to the more permeable one, because at lower
levels of the permeability coe�cient, by increasing
the viscosity, the 
uid movement inside the pores
slows down. Such an interesting behavior could be
interpreted through Eq. (8) using the de�nition of the
factor, k.

Figure 9. In
uence of the foundation's sti�ness on the
maximum normalized transverse displacement of the
poroelastic beam for di�erent values of the viscosity of the
pore 
uid: (a) Less permeable structure and (b) more
permeable structure.
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4.2.5. In
uence of the void ratio on the maximum
pore pressure moment

The e�ect of the porosity on the generated maximum
displacement of the poroelastic beam due to the moving
load is the subject of another crucial study that should
be explored.

For this purpose, the plots of maximum dynamic
displacement as a function of void ratio for both
less and more permeable structures are given in Fig-
ure 10(a) and (b). The plotted results are provided
for three levels of the pore 
uid viscosity (i.e., �f =
3 � 10�4; 10�3, and 2 � 10�3 Pa.s). According to
the demonstrated results in Figure 10(a) and (b), the
maximum dynamic displacement is reduced as the void
ratio of the poroelastic beam increases. The main
reason why this phenomenon occurs is rooted in the
given relations of the permeability coe�cient in the less
and more permeable media. Based on these relations,
as the void ratio increases from 0.6 to 0.95 for the
less permeable medium and from 0.4 to 0.6 for the
more permeable medium, the permeability coe�cient
of these structures increases from 5:2 � 10�9 to 5:2 �
10�8 and from 0:7 � 10�2 to 1:6 � 10�2, respectively.
As explained in an earlier part, the maximum dynamic
responses are generally reduced as the permeability
coe�cient of the porous medium increases. Moreover,
the e�ect of the pore 
uid viscosity on the poroelastic
beam at lower levels of void ratio becomes clearer.

Figure 10. In
uence of the void ratio on the maximum
normalized pore pressure moment of the poroelastic beam
for di�erent values of the viscosity of the pore 
uid: (a)
Less permeable structure and (b) more permeable
structure.

5. Conclusions

This study investigated lateral vibrations of an elasti-
cally rested isotropic poroelastic beam with the longi-
tudinal movement of pore 
uid under the pressure of
a moving pointed load. To this end, the beam was
simulated in accordance with the hypotheses of the
continuum-based Euler-Bernoulli beam theory and the
interaction of the beam structure and its underlying
medium was modeled by the Winkler foundation. By
implementing Biot's poroelastic theory, the governing
equations were extracted carefully and then solved
by using the assumed mode method in the case of
simply supported boundary conditions. The explicit
expressions of the dynamic transverse displacement
and the pore pressure were derived using Laplace
transform technique. The in
uences of the moving load
velocity, permeability coe�cient, foundation sti�ness,
pore 
uid viscosity, and porosity on the maximum
dynamic displacement as well as the pore pressure were
addressed in some detail.

The suggested methodology in the present work
used for obtaining vibrations of poroelastic beam-
like structures provides a solid base to perform the
dynamic analysis of more complex structures including
poroelastic media subjected to moving loads allowing

uid movement in bi-direction, multiple-poroelastic-
systems under the action of moving loads, and so
on. These critical subjects are regarded as hot topics
for future works that could be followed by interested
investigators.
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Appendix A. Evaluation of A0in, B0in, A00in, and
B00in
Appendix A1. When the moving load is in
contact with the base poroelastic beam
In this case, Eq. (20a) can be rewritten as follows:

Lfang =

5P
i=1

�<�A0in�+i=�A0in���s4�F 0ins3+G0ins2�H 0ins+L0in
�Q5

i=1
�
s� p0in

� ;
(A.1)

where:

F 0in =
5X

j=1;j 6=i
p0jn ; G0in =

5X
j=1;j 6=i

5X
k=j+1;k 6=i

p0jnp0kn ;

H 0in =
5X

j=1;j 6=i

5X
k=j+1;k 6=i

5X
l=k+1;l 6=i

p0jnp0knp0ln ;

L0in =
5Y

j=1;j 6=i
p0jn ; i = 1; 2; � � � ; 5: (A.2)



2340 A. Nikkhoo et al./Scientia Iranica, Transactions A: Civil Engineering 27 (2020) 2326{2341

2666666666666664

1 1 1 1 1 0 0 0 0 0
0 0 0 0 0 1 1 1 1 1

�<(F 01n) �<(F 02n) �<(F 03n) �<(F 04n) �<(F 05n) =(F 01n) =(F 02n) =(F 03n) =(F 04n) =(F 05n)
=(F 01n) =(F 02n) =(F 03n) =(F 04n) =(F 05n) <(F 01n) <(F 02n) <(F 03n) <(F 04n) <(F 05n)
�<(G01n) �<(G02n) �<(G03n) �<(G04n) �<(G05n) =(G01n) =(G02n) =(G03n) =(G04n) =(G05n)
=(G01n) =(G02n) =(G03n) =(G04n) =(G05n) <(G01n) <(G02n) <(G03n) <(G04n) <(G05n)
�<(H 01n) �<(H 02n) �<(H 03n) �<(H 04n) �<(H 05n) =(H 01n) =(H 02n) =(H 03n) =(H 04n) =(H 05n)
=(H 01n) =(H 02n) =(H 03n) =(H 04n) =(H 05n) <(H 01n) <(H 02n) <(H 03n) <(H 04n) <(H 05n)
<(L01n) <(L02n) <(L03n) <(L04n) <(L05n) �=(L01n) �=(L02n) �=(L03n) �=(L04n) �=(L05n)
=(L01n) =(L02n) =(L03n) =(L04n) =(L05n) <(L01n) <(L02n) <(L03n) <(L04n) <(L05n)

3777777777777775

�
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0
0
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0
0
A1n

0
A2n

0

9>>>>>>>>>>>>>>=>>>>>>>>>>>>>>;
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Box A.I
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37777775�

8>>>>>><>>>>>>:
< �A001n�< �A002n�< �A003n�= �A001n�= �A002n�= �A003n�

9>>>>>>=>>>>>>;
=

8>>>>>><>>>>>>:
< �A01n�= �A01n�< �A02n�= �A02n�< �A03n�= �A03n�

9>>>>>>=>>>>>>;
: (A.7)

Box A.II

By comparing Eq. (A.1) with Eq. (18), Eq. (A.3), as
shown in Box A.I, is obtained. By solving the set of
linear algebraic equations in Eq. (A.3), the magnitudes
of A0in would be readily determined. By taking the
inverse Laplace transform of both sides of Eq. (A.1),
one can arrive at:

an(�) =
5X
i=1

�< �A0in�+ i=(A0in)
�

exp
�
p0in�

�
: (A.4)

In order to calculate the unknown coe�cients B0in , a
procedure identical to that used for evaluating A0in is
followed.

Appendix A2. When the moving load has left
the poroelastic beam
During the course of free vibration, Eq. (24a) can be
rewritten as:

Lfan (� 0)g

=
P3
i=1
�< �A00in�+i= �A00in�� �s2�F 00ins+G00in

�Q3
i=1
�
s� p00in

� ;
(A.5)

where:

F 001n = p002n + p003n ; F 002n = p001n + p003n ;

F 003n = p001n + p002n ; G001n = p002np003n ;

G002n = p001np003n ; G003n = p001np002n ; (A.6)

where p00in represents the roots of the third-order
polynomial in the denominator of Eq. (24a). Since
Eq. (A.5) is equivalent to Eq. (24a), Eq. (A.7), as shown
in Box A.II, is obtained. By solving the set of algebraic
equations in Eq. (A.7), the unknown parameters A00in
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Box A.III

could be determined. Finally, by taking the inverse
Laplace transform of Eq. (A.5), the values of an(� 0)
during the course of free vibration are calculated as
follows:

an (� 0)=
3X
i=1

�< �A00in�+ i= �A00in�� exp
�
p00in� 0

�
: (A.8)

In order to evaluate bn(� 0), we follow the same proce-
dure mentioned in the previous part. Therefore:

bn (� 0)=
4X
i=1

�< �B00in�+ i= �B00in�� exp
�
q00in� 0

�
; (A.9)

where q00in represents the poles of the denominator of
Eq. (24b), and the magnitudes of B00in can be deter-
mined by solving Eq. (A.10) as shown in Box A.III,
where:

F 001n = q001n + q003n + q004n ; F 002n = q002n + q003n + q004n ;

F 003n = q001n + q002n + q003n ; F 004n = q001n + q002n + q004n ;
(A.11a)

G001n = q002nq003n + q002nq004n + q003nq004n;

G002n = q001nq003n + q001nq004n + q003nq004n;

G003n = q001nq002n + q002nq004n + q001nq004n;

G004n = q002nq003n + q001nq002n + q001nq003n; (A.11b)

H 00in =
4X

j=1;j 6=i
q00jn ; i = 1; 2; : : : ; 4: (A.11c)
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