Preventing SQL Injection Attacks by Automatic Parameterizing Raw Queries Using Lexical and Semantic Analysis Methods

Somayeh Dolatnezhad¹, Morteza Amini¹,*

¹Department of Computer Engineering, Sharif University of Technology, Azadi Ave., Tehran, Iran, P.O. Box 11365-8639

Abstract

SQL injection (SQLI) is one of the most important security threats against web applications. Many techniques have been proposed for counteracting SQLI attacks; however, second-order attacks and the injection attacks that are raising data-type mismatch errors have been ignored in most of them. In this paper, we propose a new anomaly-based method (deploying as a proxy between the application server and its database server) for detection and/or prevention of SQLI attacks without requiring any modification to the source code of vulnerable applications. The majority of attacks, which lead to a change in the syntax of application queries, are identified in the detection phase by lexical analysis of the queries. The remained types of attacks, such as second-order attacks and attacks generating data type mismatch errors, are prevented to be executed in the prevention phase, where each query is automatically converted to a parameterized query (before submitting to its database) using a semantic analysis method.

Keywords: Database security, SQL injection, Intrusion detection and prevention, Parameterized query, Semantic analysis

1. Introduction

Nowadays, most organizations use web applications to collect, store, process, and represent their required information using back-end databases. If an application does not preserve its security completely, intrusion to its back-end database can be performed easily. OWASP is a non-commercial organization that has been created to improve the security of applications. This organization reports 10 most common vulnerabilities in web applications, every three years. In its latest report [1], OWASP identified the injection vulnerability as a most common security risk in web applications. One type of injection vulnerabilities in web applications is SQL injection. The main reason for this vulnerability is the use of dynamic queries in applications. A dynamic query is a query that is created during the application execution time by concatenating some inputs (taken from a user) to the rest of the query. An attacker can append SQL codes to the dynamic query and create his/her desirable query and run an SQL injection attack (SQLIA).

SQL injection attacks can be classified from two different perspectives: the order of the attack and how the application responds to a malicious input. From the first perspective, we can classify attacks to the first-order and second-order. In the first-order attacks, user’s inputs are concatenated to the query and when the database executes the query, the attack is completed. Second-order attacks occur when the application stores user’s inputs in the database and uses them in another query to complete the attack, later.

Responses to a malicious input could be different with respect to the attacker’s purpose. The application may do an action (such as user authentication), show some data to the attacker, show an error message, or do nothing. In many cases, an attacker uses error messages returned by the application and extracts some information from these messages. Database error messages could be sorted into three groups [2]: logical...
errors, syntax errors, and data type mismatch errors. Attacks with the purpose of raising the data type mismatch errors cannot be simply detected and would require the query to be executed or have information about the data type of the input fields in the query. In this paper, we focus more on second-order attacks and data type mismatch errors, which are not considered in most of the existing solutions against SQLIAs.

Many techniques and frameworks have been proposed for detecting and preventing SQLIAs in the application level, database level, and proxy level; however, some of them need to change the source code of applications and most of them ignore second-order attacks and injection attacks resulting data-type mismatch errors. One of the best methods that can prevent SQLIAs completely is employing prepared statements (parameterized queries). Some methods used this feature for preventing SQLIAs automatically. Thomas et al. [3], Bisht et al. [4] and Wes et al. [5] proposed a method needs to access the application source code that automatically replaces queries in the application source code with parameterized queries.

The proposed approach in this paper, similar to some other related works, utilizes parameterized queries for completely preventing SQLIAs. The main contribution of the proposed approach in contrast to other related approaches such as [3, 4, 5] is that the parameterized queries are created automatically (by semantic analysis of the queries) in the middle of the application and its database without interfering the functionality of the application or requiring any change in the application source code.

The proposed method is a kind of anomaly-based intrusion detection and prevention approaches. This method consists of three phases: learning, detection, and prevention. In the learning phase, the profiles of legal queries are generated by lexical analysis and syntactic structure of them. These profiles are used to detect attacks in the detection phase and to create parameterized queries in the prevention phase. Executing parameterized queries (instead of the raw ones) prevents completing the attacks that do not directly change the structure of the queries, such as the second-order attacks. In preparing the parameterized queries we can also easily detect the malicious queries resulting data type mismatch errors without needing to execute the queries.

Another advantage of the proposed method is its effect on the performance of the application. This method imposes negligible performance overhead in initial execution of the queries due to the creation of parameterized queries, but in overall, it also improves the performance of the application using the prepared parameterized (or pre-compiled) queries.

In summary, the main contributions of the paper are as follows:

• The proposed approach is a new general approach which is application-independent. It works as a proxy and does not need the source code of the under-protected applications (in fact, existing the binary code is sufficient). It can be used for different applications written in different programming languages.

• The proposed approach can detect and prevent all known SQLI attacks; especially attacks use data type mismatch errors and second-order attacks, before receiving the query to the database server. To the best of our knowledge, the existing mechanisms are vulnerable to these two types of attacks.

• The proposed approach not only does not reduce the performance of the under-protected applications but also improves their performance after a while time.

The rest of this paper is organized as follows. Section 2, surveys the existing detection and prevention methods. We explain our proposed solution in Section 3 and evaluate its accuracy and overhead in Section 4. Finally, Section 5 concludes the paper.

2. Related work

Various defense techniques and frameworks are proposed for preventing SQLIAs in dynamic queries. These techniques can be considered in three different levels [6]:

• application level techniques which are called defense coding.

• database level techniques such as access control and stored procedures.
proxy level techniques such as intrusion detection and filtering tools.

Recently, some methods are introduced for using machine learning on huge amounts of data for learning and detecting SQLIAs [7, 8].

Employing some of these techniques is not a simple task and is often used during the application development process and needs to change the application source code that is not always possible. Therefore, researchers tried to represent methods to automate these techniques. For example, the proposed method by Hafiz et al. [9] automatically converts the input to a secure input in the application.

In overall, automated methods for detecting and preventing SQLIAs, are based on two different types of analysis: static analysis, and dynamic analysis. By using static analysis methods, such as the ones proposed in [10, 11, 12, 13], we can find and fix errors and SQL injection vulnerabilities of the application, before deploying the application in its operational environment. These methods need to change the source code of applications, while dynamic analysis methods, such as the ones proposed in [14, 15, 16], detect SQLIAs at runtime and in the test phase of the application development process. These methods do not need to modify the application source code and the vulnerabilities that are found using these methods should be fixed manually. Most of the existing methods such as [17, 18, 19, 20] use a combination of these two methods for detecting or preventing SQLIAs at runtime when the application deployed in its operational environment. These methods use static analysis to analyze the source code or equip the code (by making some changes) to detect or prevent SQLIAs at runtime.

Our proposed method in this paper detects and prevents SQLIAs at runtime. For this reason, in this paper, we focus more on the techniques that could be used at runtime and are closely related to our approach. These techniques can be classified into two categories: grammar-based, query skeleton-based and anomaly-based methods.

2.1. Grammar-based methods

In this type of methods, detection or prevention of attacks is performed according to the syntax of SQL statements. The methods that are using the parse tree data structure or models (which are created based on the SQL grammar) can be placed in this category. The parse tree is a suitable data structure for detecting SQLIAs. Because a minimal change in the structure of the query leads to a different parse tree of the query. Su et al. [21] add some metacharacters to the query to specify the beginning and end of the input values and use an augmented grammar to create the parse tree of the query. At runtime, if the augmented query is parsed correctly, it is benign, otherwise, it is malicious. Buehrer et al. [22] and Bandhakavi et al. [23] use similar approaches in their systems. They create a benign sample of each query in the application. At runtime, the parse tree of the generated query and the sample query are compared; if they match, no attack is diagnosed and the query is sent to the database. Halfond and colleagues [19] use a finite state machine to model queries in an application. The change from one state to another state is done with respect to the SQL operators, keywords, and delimiters. At runtime, the dynamic query traverses throughout the model and if it violates the model, it is deleted.

Grammar-based methods can detect all attacks leading to change the syntax of the query, but the second-order attacks and attacks raising the data type mismatch errors cannot be detected. Furthermore, this kind of methods needs an analyzer (such as a parser) to analyze the SQL queries, which have different grammar in different DBMS.

2.2. Query skeleton-based methods

In query skeleton-based methods, a template or a skeleton is generated for each query in an application that is used for detecting attacks. If the template of the query changes at runtime, the attack is detected. The template of the query is a query string where all constant values are labeled or replaced with a placeholder. Lee et al. [24] use a function for removing attribute values from the query string. This function removes values based on the single quotes existed in the query. As we know, numeric values do not need to have single quotes, so their function is not working properly for numerical entries. Kar and Panigrahi [25] create a template of the query according to a conversion table. Their approach computes the hash of the template as a digest of the query and uses it for detecting attacks. The main problem of this approach is its weakness in detecting and preventing the second-order attacks.
2.3. Anomaly-based methods

Anomaly-based intrusion detection systems, create a profile of the normal behavior of users or applications. Anything outside the profile considered as an attack. Valeur et al. [26] in 2005, proposed an anomaly-based intrusion detection system for databases. Their approach is the basis of many studies in this field such as [27, 28, 29]. Their system uses several models to characterize the profile of normal access to the database. This approach can detect all attacks with a low rate of false-positive errors; however, in this method, there is still possible to do some of the SQLIAs. For example, attacks that raise data type mismatch error cannot be identified using this method. Prabakar et al. [30] in 2013, proposed an anomaly-based prevention method that creates profiles for anomaly patterns and checks the received query with them. If the query matches with an anomaly pattern, an attack is detected; otherwise, an anomaly score is calculated for it. If its score is more than the predefined threshold, the query is reported to the administrator.

3. Overview of proposed approach

Our proposed solution is a kind of anomaly-based intrusion detection and prevention methods. In this approach, the normal behavior is defined by a collection of information about the raw (benign) queries of the application. The information is extracted from each raw query of the application in the learning phase and named as the profile of the query. The profile of a query consists of the query identifier as well as other information about the structure of the query such as the number and type of its parameters.

After learning and in the deployment phase, if the received query is a legal query of the application, the corresponding profile is found and other information in the profile is checked. In fact, in this approach, any deviation from the normal behavior is considered as an attack.

The structures of most of the malicious queries differ from the all benign queries of the application. So, by extracting the structures of benign queries in the learning phase and storing them in a collection of normal query profiles, malicious queries could be detected.

After detecting a query as a benign query, the information in its profile is used to convert the query to a parameterized format. Then the parameterized query is sent to the database instead of the main raw query. The purpose of creating the parameterized query, after the process of detection, is preventing attacks that do not change the structure of the queries. These attacks include second-order attacks and attacks that try to create data type mismatch errors to infer some information about the schema of the database.

3.1. Proposed architecture

The architecture of the proposed solution is illustrated in Fig. 1 and contains the following components:

- **Key generator module (Lexical analyzer module):** This module creates a key (a query identifier) for each incoming query. The key is created using the lexical analysis of the query. In the learning phase, generated key is stored in the knowledge base and at runtime, the key is used to detect attacks and extract needed information from the knowledge base for possibly normal queries.
Figure 2: The process of detection and prevention of attacks in the proposed solution.

- **Detection module**: In the detection stage, this module searches the generated key for each incoming query in the knowledge base. If it does not find the key, the query is considered as a malicious query and is blocked. Otherwise, the query is transmitted to the prevention module.

- **Prevention module**: This module has been included to prevent attacks which are not diagnosed in the detection phase and consists of two sub-modules:
 1. **Semantic analyzer module**: In the learning stage, semantic analysis of each query is performed in order to extract the needed information in creating a parameterized query in the prevention stage.
 2. **Parameterized query generator**: In the prevention stage, according to the information obtained in the learning phase, this module converts the query to a parameterized query. At this stage, we can detect data type mismatch errors too.

- **Knowledge base**: The required information to detect and prevent attacks is stored in the knowledge base. The information consists of the keys of the normal queries and a sequence of required information to create parameterized queries at runtime.

According to the described architecture, our proposed process for detection and prevention of attacks is shown in Fig. 2. As it is shown, this solution consists of three phases: the learning phase, the detection phase, and the prevention phase. Each of these phases is described in more details in the rest of this paper.

3.2 Learning phase

The power of an anomaly based intrusion detection system depends on the accuracy and completeness of the information obtained in the learning phase. Hence, the learning phase is the most important phase in the process of detection and prevention. At this stage, all queries in the application that contain benign
input values are sent to the database in a protected environment. The queries are captured in the middle of the way (from the application server to the database) in order to extract the required information and store it in the knowledge base. The gathered information is used during the process of detection and prevention to reduce the processing overhead at runtime. This approach is applicable to the applications that have queries with predefined structures. For example, consider an application allows its users to enter SQL codes in an input field. In this application, users can create any SQL commands. Hence, the learning phase cannot create a unique set of profiles and this approach cannot be leveraged in such applications.

The information obtained in this stage for a query \(q_i \) of an application contains the following items:

- **key\((q_i) \)**: the key of the query (a query identifier).
- **\(I(q_i) \)**: the number of the constant tokens in the query that may contain user input.
- **\(DT_j(q_i) \)**: the data type of the \(j \)th constant token. The data type is needed for setting the type of the parameters (or arguments) in the template of the parameterized query.
- **\(Qt(q_i) \)**: the template of the query. The template of the query is a query string where the probable input values are replaced with a placeholder.

To calculate the key, the lexical analysis of the query and to obtain the other information, the semantic analysis of the query is required.

3.2.1. Lexical analysis

The process of converting a query into a sequence of tokens is called *lexical analysis* of the query [31]. The proposed detection method detects attacks by using the key of the query created in the lexical analysis process. The key is constructed from the string of the query with empty input fields. In the learning phase, the keys are created for all queries in the application. SQLIAs mainly lead to a change in the string of the query. At runtime, the query with filled inputs are received in the proxy and the key of the received query is created using the lexical analysis process. Then the key is searched among the keys created in the learning phase. If the key is found, the attack is detected.

Consider the following query as a sample query in an application. In this query, a user inputs can determine the name and age columns of a record in the `accounts` table.

```sql
query= SELECT * FROM accounts WHERE name='goodUser' AND age BETWEEN 10 AND 50;
```

Key generation process: For generating a key for the above query, the following steps should be done:

1. Do the lexical analysis on the given query and obtain its tokens. The tokens of the above query are shown in Fig. 3. Constant tokens in this query are highlighted.
2. Replace the constant tokens with the question mark (?).
3. Uppercase the characters of the tokens and concatenate them together to create the new string.
4. Remove all white spaces in the query string.
5. Compute the hash of the key and store it in the knowledge base.

Based on the mentioned steps, the key for the above sample is as follows:

```sql
Plainkey_string: SELECT*FROMACCOUNTSWHERENAME=?ANDAGEBETWEEN?AND?;
```

Key(query) = sha256(Plainkey_string) = 3c27fdaffc69039ff80d3d6f684b6f7f2e8b3b71fecc21?f1097b9e117523ea
3.2.2. Semantic analysis

To automatically create a parameterized query in the prevention phase, we need additional information about the query. This information is derived from the semantic analysis of the query in the learning phase. The semantic analysis is performed using the parse tree structure of the query. Main parts of the SQL statements, which may contain the inputs, are SQL expressions. In the proposed solution, expressions in different parts of the query are obtained with the pre-order traversal of the parse tree. Then the required information is extracted from the expressions. The information extracted for each input (in the output of the semantic analysis process), has the same order as the inputs in the query.

For example, the pre-order traversal of the following expression is shown in Fig. 4.

\[\text{username} = 'good' || 'User' \text{ and age} > 10 \]

The semantic analysis of the expressions varies according to the type of the expression. The process starts by determining the operator and its operands in each expression. If the operands in an expression are constant values, they are examined in the semantic analysis process. We categorize expressions into four groups based on the type of the operator used in them.

1. **Relational expressions**: These expressions consist of two `SELECT` queries and use relational operators such as `UNION`. Semantic analysis of relational expressions is done by semantic analysis of their operands.

2. **Computational expressions**: these expressions contain arithmetic operators (such as `+` or `-`) or concatenation operator (such as `||`). In this type of expressions, the data type of each operand is determined with respect to the operator used in the expression. In the following example, the information obtained for each constant values is specified.

 expression E: `text'||(1 + 2)
 DT1(E) = String
 DT2(E) = Numeric
 DT3(E) = Numeric
 template(E): ? || (? + ?)

3. **Comparative expressions**: the comparative expressions contain comparison operators (such as `>`, `=` or `Like`). In some comparative expressions, where one of the operands is a constant value and another is a column of a table, we obtain the data type of the constant value with querying the database. For example, information obtained from the expression `username = 'gooduser'` is as follows.

 expression E: `username = 'gooduser'
 DT1(E) = String
 template(E): username = ?
4. Logical expressions: the expressions containing logical operators (such as AND and OR) are logical expressions. Each operand in these expressions, can be a relational, computational, or comparative expression, so we need to analyze them separately based on their type.

The semantic analysis in different SQL commands varies with respect to the grammar of the queries. In this paper, we explain the semantic analysis of the SELECT, UPDATE, INSERT, and DELETE statements that are commonly utilized in web applications.

Semantic analysis of the SELECT statement. The SELECT statement is typically used in most of the applications. We can use this statement in different parts of the SELECT (such as the SELECT clause, FROM clause, or WHERE clause) and other commands. For semantic analysis of the SELECT query, all expressions in different parts of the query must be extracted and processed in order. The grammar of this command is shown in Fig. 5.

In this figure, the parts which are enclosed in a square may contain expressions. Thus, they must be extracted and analyzed in the semantic analysis process. Thus, they must be extracted and analyzed in the semantic analysis process. Algorithm 1 describes how the semantic analysis of the SELECT statement is done. This algorithm, first checks whether the command is a relational expression or not. If it is a relational expression, each of the queries on the left and right operands must be extracted and analyzed separately. Otherwise, all expressions in the query are extracted and analyzed respectively. For example, consider the following query:

```sql
query= SELECT name||','||lastname FROM (SELECT * FROM accounts, users WHERE username='$user_id' and age BETWEEN 20 AND 50) WHERE name LIKE 'ali%';
```

After the semantic analysis of this query, the information extracted from the SELECT clause will be as follows:

- **SELECT_clause**: `name||','||lastname`
 - **DT1(SELECT_clause)** = String
 - **Template(SELECT_clause)** = `name||?||lastname`

The following information is extracted from the FROM clause:

- **FROM_clause**: `(SELECT * FROM accounts, users WHERE username='$user_id' and age BETWEEN 20 AND 50)`
 - **DT1(FROM_clause)** = String
 - **DT2(FROM_clause)** = Number
 - **DT3(FROM_clause)** = Number
 - **template(FROM_clause)**: `(SELECT * FROM accounts, users WHERE username=? and age BETWEEN ? AND ?)`
Algorithm 1 Semantic analysis of the SELECT statement

1: procedure AnalyzeSelectStmt(SelectStmt)
2: if SelectStmt is relational expression then
3: AnalyzeSelectStmt (left_operand)
4: AnalyzeSelectStmt (right_operand)
5: else
6: for each clause in the SelectStmt do
7: if the clause contains expression then
8: left_operand = expression \rightarrow left_operand
9: right_operand = expression \rightarrow right_operand
10: if left_operand is sub_query then
11: AnalyzeSelectStmt (left_operand)
12: else
13: add the information of the
14: left_operand to the inputs_info
15: end if
16: if right_operand is sub_query then
17: AnalyzeSelectStmt (right_operand)
18: else
19: add the information of
20: the right_operand to the inputs_info
21: end if
22: end if
23: end for
24: end if
25: end procedure
The following information is extracted from the conditional WHERE clause:

WHERE_clause: name LIKE ‘ali%’
DT1(WHERE_clause)= String
template(WHERE_clause): name LIKE ?

Finally, the information obtained for the above query is as follows:

<table>
<thead>
<tr>
<th>I(query)</th>
<th>DT1(query)</th>
<th>DT2(query)</th>
<th>DT3(query)</th>
<th>DT4(query)</th>
<th>DT5(query)</th>
<th>Qt(query)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>String</td>
<td>String</td>
<td>Number</td>
<td>Number</td>
<td>String</td>
<td>(SELECT name</td>
</tr>
</tbody>
</table>

Semantic analysis of the UPDATE statement. The UPDATE statement is used for assigning a new value for a column of a table in a database. The syntax of this command is shown in Fig. 6. In this command, the input can be entered in the SET clause and WHERE conditional clause; so, we need to extract these two clauses and analyze them in order. In a SET clause, the left operand is a column name or a list of column names and the right operand is only a constant value or a list of constant values. Hence, the data type of the constant value of the right operand should be the same as the corresponding column in the left operand and it is obtained by querying the database. The conditional WHERE clause is analyzed similarly to the analyzing WHERE clause in the SELECT statement.

Semantic analysis of the INSERT statement. The INSERT command is used for inserting one or more rows in a table of a database. This command can select some columns of a table and insert the values in them. In Fig. 7, the syntax of this command is illustrated. As it is observed, the input can just appear in the VALUES clause. The VALUES clause can be a SELECT query, a set of constant values, or a set of expressions. The data type of the values is determined according to the data type of the corresponding column in the query. If the names of the columns are not specified in the query, they should be obtained by querying the database.
Semantic analysis of the DELETE statement. The DELETE command is used for deleting one or more rows of a table. The conditional WHERE clause in this command, as illustrated in Fig. 8, is the only part of this command that may contain an input. Hence, in the semantic analysis process, we just need to analyze this part.

3.3. Detection phase
After completing the learning phase, the system can be deployed in its operational environment. At this stage, when an application sends a query to the database, the query is captured in the middle of the way and a key is generated for it. Then, the detection module searches the key in the knowledge base. If the key is not found, the query is not a legal or normal query and an attack is detected. Otherwise, the query is transmitted to the prevention module (to prevent the attacks that do not change the syntactic structure of the query). In the detection phase, we can detect the attacks that change the syntax of the learned queries. For example, consider the following query as a legal query of an application.

\[
\text{SELECT * FROM accounts WHERE username='$username' AND password='$password'};
\]

The key of this query (before hashing it) is as follows:

\[
\text{SELECT*FROMACCOUNTSWHEREUSERNAME=?ANDPASSWORD=?};
\]

If the attacker enters `'OR'=` as the username in the above query, the generated key becomes as follows, which differs from the main key, so the attack is detected and the query is blocked.

\[
\text{SELECT*FROMACCOUNTSWHEREUSERNAME=?ANDPASSWORD=?OR=?};
\]

When the attacker’s input does not change the syntax of the query (e.g. in second-order attacks), this module cannot detect the attack. So, we transmit the query to the prevention module. The prevention module converts the raw query to a parameterized query that results in preventing such attacks and other unknown attacks.

3.4. Prevention phase
As mentioned before, in the prevention phase, the query is converted to a parameterized query and is sent to the database. Parameterizing the query or using a prepared statement is a method that can prevent SQLIAs, including second-order attacks and attacks raising data type mismatch errors. Creating the parameterized query from the profile of a query (which is formed in the learning phase) consists of two stages:

- **Extracting input values**: input values are derived by comparing the template of the query (which is obtained from the knowledge base) and the main query. The process of extracting inputs for a sample query is shown in Fig. 9.

- **Creating parameterized query**: after extracting all the inputs, the parameterized query is created by using the information exists in the profile of the query (obtained from the knowledge base). The process of creating a parameterized query is represented in Algorithm 2. In this algorithm, \(Q_T(q) \) is the template of the given query \(q \), \(I(q) \) is the number of inputs in \(q \), \(DT(q) \) is a set contains all data types of inputs, and \(\text{Inputs}_{array} \) is a set of all input values. Each input value is set in the template according to the corresponding data type, so we can detect the attacks raising data type mismatch errors too.

The following example shows how the parameterized query is created for the query shown in Fig. 9.
Figure 9: Extracting input values of a sample query.

\[
\text{Qt} = \text{SELECT * FROM accounts WHERE name=? AND age BETWEEN ? AND ?;}
\]

\[
\text{ps} = \text{prepareStatement(\text{Qt});}
\]

\[
\text{ps} = \text{setStringValue(1,'goodUser');}
\]

\[
\text{ps} = \text{setNumberValue(2,10);}
\]

\[
\text{ps} = \text{setNumberValue(3,50);}
\]

\[
\text{ps} = \text{execute();}
\]

Algorithm 2 Creating of the parameterized query from the query \(q \)

1: procedure createPQ(\(q \), \(\text{InputsArray} \))
2: \(\text{ps} \leftarrow \text{prepareStatement}(\text{Qt}(q)) \);
3: \(\text{last_index} \leftarrow 0 \)
4: for \(i \leftarrow 1 \) to \(I(q) \) do
5: if \(DT_i(q) \) is String then
6: if \(\text{InputsArray}[\text{last_index}] \) is not a String then
7: Data type mismatch is detected.
8: else
9: \(\text{ps} = \text{setStringValue}(\text{last_index} + 1, \text{InputsArray}[\text{last_index}]) \)
10: \(\text{last_index} \leftarrow \text{last_index} + 1 \)
11: end if
12: else if \(DT_i(q) \) is Numeric then
13: if \(\text{InputsArray}[\text{last_index}] \) is not a Number then
14: Data type mismatch is detected.
15: else
16: \(\text{ps} = \text{setNumberValue}(\text{last_index} + 1, \text{InputsArray}[\text{last_index}]) \)
17: \(\text{last_index} \leftarrow \text{last_index} + 1 \)
18: end if
19: end if
20: else
21: [Similarly for other types] ...
22: end if
23: end for
24: \(\text{ps} = \text{execute()} \)
25: end procedure

4. Evaluation and Experimental Results

In order to evaluate our approach, we developed a prototype of the proposed system (which is called APQS –Automatic Parameterizing Query System). We implemented the system in Java and run it on a machine with 4 GB RAM and 2.3 GHz CPU processor and we used PostgreSQL 9.3.2 as a back-end database server. The developed system is somewhat dependent to the DBMS because it needs a parser which varies in different DBMSs. But it can be easily improved to support other databases.

The main features of the proposed method in detection and prevention of SQLIAs in comparison with other methods are presented in Table 1. Our method is a combination of grammar-based, skeleton-based
Table 1: The proposed method in comparison with other SQL injection detection and prevention approaches.

<table>
<thead>
<tr>
<th>Defense mechanism</th>
<th>Detection approach</th>
<th>Detection location</th>
<th>Changing source code</th>
<th>Preventing data type mismatch error</th>
<th>Preventing second-order attacks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Su et al. [21]</td>
<td>detection</td>
<td>grammar-based</td>
<td>proxy</td>
<td>✓</td>
<td>×</td>
</tr>
<tr>
<td>Buehrer et al. [22]</td>
<td>prevention</td>
<td>grammar-based</td>
<td>application</td>
<td>✓</td>
<td>×</td>
</tr>
<tr>
<td>Bandhakavi et al. [23]</td>
<td>prevention</td>
<td>grammar-based</td>
<td>application</td>
<td>✓</td>
<td>×</td>
</tr>
<tr>
<td>Halfond et al. [19]</td>
<td>detection prevention</td>
<td>grammar-based</td>
<td>application</td>
<td>✓</td>
<td>×</td>
</tr>
<tr>
<td>Lee et al. [24]</td>
<td>detection prevention</td>
<td>query skeleton-based</td>
<td>application /proxy</td>
<td>✓ / ×</td>
<td>×</td>
</tr>
<tr>
<td>Kar et al. [25]</td>
<td>detection prevention</td>
<td>query skeleton-based</td>
<td>−</td>
<td>−</td>
<td>×</td>
</tr>
<tr>
<td>Valeur et al. [26]</td>
<td>detection prevention</td>
<td>anomaly-based</td>
<td>proxy</td>
<td>×</td>
<td>×</td>
</tr>
<tr>
<td>proposed Method</td>
<td>detection prevention</td>
<td>anomaly-based</td>
<td>proxy</td>
<td>×</td>
<td>✓</td>
</tr>
</tbody>
</table>

and anomaly-based methods. Because the proposed method creates a profile for each query according to the grammar of the query and the key of the profile is actually the template of the query. But the main mechanism used in its detection engine is based on the profile of the legal queries, so we have considered this method as an anomaly-based method.

Techniques have been proposed to detect and prevent SQLIAs, usually are evaluated from two aspects: accuracy rate of the detection and prevention, and the performance overhead that the approach imposes to the applications.

4.1. Accuracy

For measuring the accuracy of APQS in detection and prevention of SQL injection attacks, we considered a vulnerable web-based application written in PHP and extracted all the normal queries (140 queries) employed in the application. The application does not validate any inputs; hence all the inputs are vulnerable to SQLIAs. We first trained the system with these 140 normal queries and created a profile for each normal query and stored them in a hash table.

Then, we generated a complete set of test cases and measured the accuracy of the system with them. The generated test cases were categorized into 10 classes, which are shown in Table 2. For measuring FPR (detecting benign queries as malicious), we generated 140 benign queries with benign inputs (different from the queries generated in the training phase). For measuring FNR (detecting malicious queries as benign), we generated 1072 malicious queries.

Since there is no standard source for the test cases, we collected all attacks reported in the related articles, books, and websites. We also used two automated SQL Injection tools named Havij [32] and SQLMAP [33] to analyze our vulnerable Web-based application. We intercepted the URLs generated by these tools and extracted malicious inputs from them for reconstructing successful attacks driven by these tools. In overall, we generated 1072 malicious queries where 300 of them were generated by employing the inputs extracted from successful attacks run by these tools.

After completing the process of learning, we sent back the benign and malicious queries in the test set to the database. The evaluation results are shown in Table 3. As it is observed, the system was able to distinguish between benign queries and all other attacks leading to change the structure of the query.

The second-order attack does not change the structure of the query. Thus, the detection component of APQS could not detect it. However, this attack was prevented completely in the prevention phase. In the set of Illegal/logically incorrect queries, seven queries caused data type mismatch errors. As previously mentioned, this type of attack does not change the structure of the query, but in the prevention phase, this attack was detected and prevented completely. The overall accuracy of the detection component, using formula (1) is equal to 98.3% and the remained 1.7% of attacks were prevented to have any negative side effect on the database (in the prevention phase), although they were not detected by the detection component.

Table 2: Different types of SQL injection attacks.

<table>
<thead>
<tr>
<th>Attack Type</th>
<th>Attacker's input</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tautology</td>
<td>' OR 'some thing'='some thing' --</td>
<td>SELECT * FROM accounts WHERE username=' ' OR 'some thing'='something' -- '</td>
</tr>
<tr>
<td>Attack using comment</td>
<td>admin''--</td>
<td>SELECT * FROM accounts WHERE username='admin' '' AND password='123'</td>
</tr>
<tr>
<td>Union Attack</td>
<td>' UNION SELECT 1,2,3 ; --</td>
<td>SELECT * FROM accounts WHERE username='' UNION SELECT 1,2,3 ; '' AND password='123'</td>
</tr>
<tr>
<td>Piggy-Backed queries</td>
<td>';DROP TABLE tables; --</td>
<td>SELECT * FROM accounts WHERE username=''DROP TABLE tables; -- '' AND password='123'</td>
</tr>
<tr>
<td>Attacks using groupby, orderby, having clause</td>
<td>GROUP BY 1,2,3 --</td>
<td>SELECT * FROM accounts WHERE username=''GROUP BY 1,2,3 -- '' AND password='123'</td>
</tr>
<tr>
<td>Alternate encodings</td>
<td>'[</td>
<td>chr(65)</td>
</tr>
<tr>
<td>Inference Attack</td>
<td>input1= ' OR 1 = 1 -- and input2= ' OR 1 = 0 --</td>
<td>SELECT * FROM accounts WHERE username='' OR 1 = 1 -- '' AND password='123'</td>
</tr>
<tr>
<td>Second-order attacks</td>
<td>Alice'' or username '' admin</td>
<td>INSERT INTO accounts(username, password) VALUES('Alice'' or username ''admin', 'pass');</td>
</tr>
<tr>
<td>Illegal/Incorrect queries</td>
<td>some strings</td>
<td>INSERT INTO accounts(username, password) VALUES('ali','pass','some strings');</td>
</tr>
</tbody>
</table>

Table 3: Accuracy of detection of attacks by APQS.

<table>
<thead>
<tr>
<th>Attack Type</th>
<th>No of queries</th>
<th>Correct detection</th>
<th>FPR</th>
<th>FNR</th>
<th>Preventing attacks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Benign queries</td>
<td>140</td>
<td>140/140</td>
<td>%0</td>
<td>%0</td>
<td>✓</td>
</tr>
<tr>
<td>Tautologies</td>
<td>173</td>
<td>173/173</td>
<td>%0</td>
<td>%0</td>
<td>✓</td>
</tr>
<tr>
<td>Attack using comment</td>
<td>120</td>
<td>120/120</td>
<td>%0</td>
<td>%0</td>
<td>✓</td>
</tr>
<tr>
<td>Union Attack</td>
<td>430</td>
<td>430/430</td>
<td>%0</td>
<td>%0</td>
<td>✓</td>
</tr>
<tr>
<td>Piggy-Backed queries</td>
<td>30</td>
<td>30/30</td>
<td>%0</td>
<td>%0</td>
<td>✓</td>
</tr>
<tr>
<td>Attacks using groupby, orderby, having clause</td>
<td>20</td>
<td>20/20</td>
<td>%0</td>
<td>%0</td>
<td>✓</td>
</tr>
<tr>
<td>Alternate encodings</td>
<td>20</td>
<td>20/20</td>
<td>%0</td>
<td>%0</td>
<td>✓</td>
</tr>
<tr>
<td>Inference Attack</td>
<td>199</td>
<td>199/199</td>
<td>%0</td>
<td>%0</td>
<td>✓</td>
</tr>
<tr>
<td>Second-order attacks</td>
<td>20</td>
<td>0/20</td>
<td>%0</td>
<td>%100</td>
<td>✓</td>
</tr>
<tr>
<td>Illegal/Incorrect queries</td>
<td>60</td>
<td>60/60</td>
<td>%0</td>
<td>%0</td>
<td>✓</td>
</tr>
</tbody>
</table>

\[
AC = \frac{TP + TN}{TP + TN + FP + FN}
\]

In the previous section, we described the process of calculating the key of a query in detail. The key is computed according to the grammar of SQL statements and is used for detecting attacks. To compare the detection accuracy of our method with methods using the grammar of SQL statements, we tested and compared our proposed method with the method proposed by Buehrer et al. [22] using the same train and test queries. Their method compares parse tree of each query before and after entering user inputs at runtime. If they match, no attack is detected. The results of this test are shown in Table 4. The results confirm that the method by Buehrer et al. cannot detect or prevent the second-order attacks and the attacks raising data type mismatch errors. Also, its precision is 97.1%, which is less than the accuracy of our proposed method.

4.2 Performance overhead

The performance overhead which is imposed by the proposed method to an application can be measured in terms of different parameters in the detection and prevention stages. Actually, we evaluated the system
Table 4: The detection accuracy of the method proposed by Buehrer et al [22].

<table>
<thead>
<tr>
<th>Attack Type</th>
<th>No. of queries</th>
<th>Correct detection</th>
<th>FPR</th>
<th>FNR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Benign queries</td>
<td>140</td>
<td>140/140</td>
<td>%0</td>
<td>%0</td>
</tr>
<tr>
<td>Tautologies</td>
<td>173</td>
<td>173/173</td>
<td>%0</td>
<td>%0</td>
</tr>
<tr>
<td>Attack using comment</td>
<td>120</td>
<td>120/120</td>
<td>%0</td>
<td>%0</td>
</tr>
<tr>
<td>Union queries</td>
<td>430</td>
<td>430/430</td>
<td>%0</td>
<td>%0</td>
</tr>
<tr>
<td>Piggy-Backed queries</td>
<td>30</td>
<td>30/30</td>
<td>%0</td>
<td>%0</td>
</tr>
<tr>
<td>Attacks using groupby, orderby, having clause</td>
<td>20</td>
<td>20/20</td>
<td>%0</td>
<td>%0</td>
</tr>
<tr>
<td>Alternate encodings</td>
<td>20</td>
<td>20/20</td>
<td>%0</td>
<td>%0</td>
</tr>
<tr>
<td>Inference</td>
<td>199</td>
<td>199/199</td>
<td>%0</td>
<td>%0</td>
</tr>
<tr>
<td>Second-order attacks</td>
<td>20</td>
<td>0/20</td>
<td>%0</td>
<td>%100</td>
</tr>
<tr>
<td>Illegal/Incorrect queries</td>
<td>60</td>
<td>46/60</td>
<td>%0</td>
<td>%23</td>
</tr>
</tbody>
</table>

using two different scenarios. The measures considered for evaluating the system in these two scenarios are as follows:

- d_{detect}: delay of detection stage
- d_{prevent}: delay of prevention stage
- d_{pexec}: parameterized query execution time
- d_{exec}: normal query execution time

To measure the performance overhead, we need to send a set of benign or malicious queries to the database. The execution time of an SQL command varies in different runs and depends on several factors such as the speed of the processor, the complexity of the command, the number of rows processed by the command, database load at the command execution time, the plan which is selected by the optimizer. So, in some circumstances, we need to run a command multiple times and consider the average time as the query execution time. The query execution time also depends on the size of the value stored in the database. Thus, we created tables similar to the tables in our test application and inserted 1000 records in each of them.

4.2.1. First scenario: sending a query containing malicious input to the database

By sending a malicious query to the database, if the system can detect the attack, the time overhead (or delay) added to the application is shown as d_{detect}. For detecting an attack, the system just needs to calculate the key and search it in the hash table; so the detection time is much less than the query execution time.

$$\text{delay} = d_{\text{detect}} \ll d_{\text{exec}}$$

To obtain the detection time, we sent 1,000 randomly selected malicious queries to the database and computed the average detection time for each of them (each query is sent to the database 100 times). The average detection time for each query and the total average detection time is shown in Fig. 10. As it is shown, the average detection time is trivial and is equal to 0.667 milliseconds.

It seems that the detection time depends on the number of tokens exist in the query. To evaluate this hypothesis, we measured the detection time based on the number of tokens in the query. We sorted the queries based on the number of tokens in them (from 7 to 72 tokens) and calculated the average detection time for each of them. The detection time with respect to the number of the tokens in the query is shown in Fig. 11.
As it is observed, the detection time is somewhat ascending, although some cases do not follow the above rule. The reason could depend on the mechanisms used for lexical analysis of the query. Typically, lexical analyzer uses regular expressions to tokenize the SQL statements. The time of matching a token varies with another token. Thus, the detection time of a query is not only a function of the number of the tokens but it also depends on the type of the tokens used in the query.

4.2.2. Second scenario: sending a query containing apparently benign inputs to the database

In this scenario, the query is converted into a parameterized query. The overhead (or delay) imposed by this system is computed as follows:

\[delay = d_{detect} + d_{prevent} + d_{pexec} \]

If the query is sent to the database for the first time (during a session), the parameterized query execution time becomes greater than the normal query execution time i.e., \(delay > d_{exec} \). If the query is sent to the database for the second or more, the value of \(d_{pexec} \) is usually much less than \(d_{exec} \). Since execution time of parameterized queries decreases significantly after building the parse tree and query plan (in the first time), and also the overhead of detecting and preventing attacks in the proposed approach is very low,
it is expected that the overhead added by the system be less than the query execution time \((d_{exec}) \) i.e., \(delay < d_{exec} \) in this situation. In this condition, the system not only does not add any overhead to the application but has a positive impact on the application performance.

To evaluate the impact of the system on the application performance, we sent a legal query to the database five times and measured the query execution time in APQS and without using it. The query execution time in these two cases is shown in Fig. 12. As it is observed, when the query is sent to the database for the first time, the query execution time is more than the normal query execution time. By sending the query for the second time or more, the overhead becomes less than the normal query execution time and 34.7% improvement could be seen in this case.

To measure the average prevention time, we measured the average time for executing 100 legal queries. Table 5 represents the average time required to execute the query (for the first time) using APQS and without using it. The overhead of using our system is equal to 2.442 ms. Note that if we run the queries for the second time or more, the execution time would be less than the values represented in this table in case of using APQS (similar to the one depicted in Fig. 12).

<table>
<thead>
<tr>
<th>Table 5: Overall query execution time using APQS and without using it.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Average attack detection time using APQS</td>
</tr>
<tr>
<td>Average query execution time using APQS</td>
</tr>
<tr>
<td>Average query execution time without using APQS</td>
</tr>
</tbody>
</table>

In the prevention phase, one of the main factors affecting the attack prevention time (in creating and executing the parameterized queries) is the number of input values in the query. To determine the variation of the query execution time with respect to the number of inputs in the template of the query, we considered a simple query and then increased the number of entries in it from 1 to 10. Each of these queries was sent to the database 100 times and the average execution time was calculated for each of them. The obtained results are shown in Fig. 13. As it is expected, by increasing the number of inputs in the query, the execution time of the parameterized query increases too.

In order to compare the performance of our method with similar methods, there is a trade-off between the performance and accuracy of the method in detecting attacks and using the opportunity of preventing unknown attacks. As shown in Table 1 and to the best of our knowledge, existing methods cannot detect attacks raising data-type mismatch errors and prevent the second-order attacks. In order to provide these improvements, the overhead of the proposed method is somewhat higher than the other similar methods.
Nevertheless, as observed in Table 5, the performance overhead of the method is insignificant and in the prevention phase, in some conditions (when a query executed more than one time), it assists to improve the overall performance of the system. In addition, it should be noted that our code has not been implemented in the most efficient mode. Certainly, the efficient implementation will reduce this overhead.

5. Conclusion

Most of the existing methods for detection or prevention of SQL injection attacks are not able to counteract all types of SQL injection attacks (attacks described in Table 2) such as second-order attacks, and the attacks that try to raise data type mismatch errors.

In this paper, we proposed a method for detecting and preventing SQL injection attacks. In fact, SQL injection attacks can be classified into the attacks that change the structure of normal queries and the attacks that do not change the structure (like second-order and type mismatch error attacks). Our proposed method can detect all attacks changing the syntactical structure of the queries. For this purpose in the learning phase (in which just the benign inputs are used in the application), the structure of normal queries and auxiliary information (such as the data type of the input) are extracted and profiled in the system. In the detection phase, the malicious queries with different structures are identified by comparing to the existing profiles of normal queries. For the second category of SQL injection attacks where the malicious inputs do not modify the structure of the parse tree of a normal query, the described solution is not efficient. For this type of attacks, we proposed a prevention method (without the need to detect the attack). To this aim, each query is automatically converted to a parameterized query using the information exists in the profile of the corresponding normal query. In this situation, the malicious inputs cannot affect the normal behavior of the application, due to the fact that in executing the parameterized queries, the parse tree of the query is constructed without considering the values of its parameters.

The main contribution of this paper is proposing an automated method to create parameterized queries dynamically by semantically analyzing the raw queries sent from a vulnerable application. By creating parameterized queries, we could prevent second-order and unknown attacks and also detect/prevent attacks causing data type mismatch errors without needing to execute the query. In the proposed method, we do not need to change the application source code. The evaluation of the proposed approach in practice showed that the performance overhead imposed by this method is minimal and in some cases, it even leads to improve the performance of the application by parameterizing the queries.

Automatic SQL Injection and Database Takeover Tool, http://sqlmap.org/

Somayeh Dolatnezhad received her M.Sc. degree in IT Engineering from Sharif University of Technology. Currently she is PhD candidate in Department of Computer Engineering at Sharif University of Technology and doing research on computational integrity of outsourced computations. Her research interests are Database Security, Cloud computing security, Secure Delegation of computation and cryptography.

Morteza Amini received his Ph.D. in Software Engineering (Data Security field) from Sharif University of Technology. He is currently an assistant professor at Department of Computer Engineering, Sharif University of Technology, Tehran, Iran. He is one of the leaders of Data & Network Security Lab (DNSL) at this department. His research interests include Database Security, Access an Information Flow Control, Intrusion Detection and Alert Correlation, and Mobile Devices Security.