Numerical study of hydrothermal characteristics in nanofluid using KKL model with Brownian motion

Sh. Rana, M. Nawaz*, and I. Haider Qureshi

Department of Applied Mathematics & Statistics, Institute of Space Technology, Islamabad, 44000, Pakistan.

Received 22 December 2017; received in revised form 10 October 2018; accepted 5 January 2019

Abstract. Finite Element Method (FEM) is used to study hydrothermal characteristics of nanofluid subjected to Brownian motion. For effective thermal conductivity and viscosity, Koo-Kleinstreuer-Li (KKL) model is used. It is observed that the dispersion of nano-particles in Newtonian liquid causes a significant increase in the effective thermal conductivity. The results based on the dispersion of nano-particles help engineers design an efficient thermal system. The significant role of viscous dissipation in diffusion of momentum of the wall into the fluid is observed. Therefore, effects of dissipations cannot be ignored while designing thermal systems. The buoyant force is responsible for the effect of electromagnetic thermal radiations on the fluid velocity. Convectively heated surface enhances the rate of generation of entropy. This study considers nano-fluids as the best coolants, compared to the base fluids. Imposition of magnetic field causes more entropy generation.

© 2019 Sharif University of Technology. All rights reserved.

1. Introduction

The efficiency enhancement of thermal systems has always been a major concern for technologists. Several techniques are used for this purpose. Besides conventional methods, some novel and efficient techniques for enhancing thermal efficiency are preferred for a number of reasons. One of the classical methods for enhancing heat transfer is to extend the surface of cooling fin; to do so, an increase in the size of cooling system, which is not desirable in many cases, is required. Therefore, engineers and scientists have introduced the technique of inclusion of nanosize metallic particles in the pure fluid. This causes the enhancement of thermal conductivity of the constituent fluid so that the thermal system can work in an efficient way. The inclusion of nanosize metallic particles in a pure fluid gives rise to a mixture of fluid and totally different thermo-physical properties, compared to the pure fluid (the base fluid). This concept of dispersion of metallic nanosized particles has addressed many challenges of extension of surface of cooling fins. Invention of such fluids at the industrial level has motivated researchers to introduce imperial/mathematical models for the thermo-physical properties of nanofluids and, theoretically, studied the effects of nano-size metallic particles on the thermal conductivity enhancement of the resulting fluids. Such improvements in the process of heat transfer may cause a great revolution in thermal and cooling systems.

1.1. Comparative analysis of models for effective diffusion coefficients

In order to analyze the effects of dispersion of nano-size metallic particles on the effectiveness of viscosity and thermal conductivity of the pure fluid, different models have been used. Every model has some limitations. However, compared to the thermal performance of
others, some models lead to lower thermal performance. These models include Einstein model [1], Brink model [2], Batchelor model [3], Mori and Ootake model [4], Wang et al. [5] model, Avsec and Oblak model [6], Masoumi et al. [7] model, etc. These models forecast the effectiveness of viscosity of a mixture of nanoparticles and fluid. These models provide correlations between viscosities (viscosity of base fluid, viscosity of nano-particles, and viscosity of nanofluid) and disregard the effective thermal conductivity of the mixture of nano-particles and base fluid. The use of effective viscosity models without considering theoretical models for effective thermal conductivity produces erroneous results. For this reason, theoretical models for effective viscosity and thermal conductivity are used simultaneously. The theoretical correlations for effective thermal conductivity can be found in [8-15]. However, these models predict that effective viscosity is a function of volume fraction. The role of Brownian motion of nano-particles in base fluid puts a bar on the above-mentioned models that do not exhibit the effect of Brownian motion of nanoparticles on effective viscosity. This has motivated researchers to propose new models that are capable of exhibiting the effects of Brownian motion. Some new correlations considering the effects of Brownian motion and effectiveness of viscosity are proposed/used in [16-24].

However, the theoretical models used in [8-15] do not consider Brownian motion. Theoretical models for effective viscosity and thermal conductivity, as well as Brownian motion effect, are discussed in [16-24]. However, the latest model is presented by Koo, Kleinsteuber and Li (KKL) [25] and is given by:

\[\rho_{nf} = (1 - \varphi)\rho_f + \varphi\rho_\varphi, \quad (\rho\varphi)_nf \]

\[= (1 - \varphi)(\rho\varphi)_f + \varphi(\rho\varphi)_\varphi. \quad (1) \]

\[\sigma_{nf} = \sigma_f \left(1 + \frac{3(\sigma - 1)\varphi}{\sigma + 2 - (\sigma - 1)\varphi}\right), \quad \sigma = \frac{\sigma_\varphi}{\sigma_f}. \quad (2) \]

Correlations for \(k_{nf} \) and \(\mu_{nf} \) in the presence of Brownian motion are given as follows:

\[k_{static} = 1 + \frac{3\varphi}{k_f + \frac{k_\varphi}{(k_f + 2)} - \frac{k_\varphi}{(k_f + 1)}}, \]

\[k_{Brownian} = 5 \times 10^4 g'(\varphi, T, d_p)\varphi \rho_f(c_p)f \sqrt{\frac{k_f T}{d_p \rho_p}}. \]

\[R_f = 4 \times 10^{-8} \text{km}^2/\text{W}; \]

\[R_f = -d_p(1/k_p - 1/k_p, eff). \]

\[g'(\varphi, T, d_p) = \]

\[\ln(T) \left(a_1 + a_3\ln(\varphi) + a_2\ln(d_p) + a_5\ln(d_p)^2 \right) + \frac{a_4\ln(d_p)\ln(\varphi)}{a_6 + a_8\ln(\varphi) + a_7\ln(d_p) + a_10\ln(d_p)^2}, \]

\[k_{Brownian} = 5 \times 10^4 g'(\varphi, T, d_p)\varphi \rho_f(c_p)f \sqrt{\frac{k_f T}{d_p \rho_p}}. \]

\[300K < T < 325K, \]

\[\mu_{nf} = \frac{\mu_f(1 - \varphi)^{\frac{3\alpha}{2}} + \frac{k_{Brownian}}{k_f} \times \frac{\mu_f}{\mu_f}}{1 - \varphi} \times \frac{\mu_f}{\mu_f}. \]

Thermo-physical properties of water and two types of metallic nano-particles, which are used by Li and Sheikhholeslami [26], are given in Table 1, and coefficient values of copper oxide and aluminum oxide nanofluids are shown in Table 2.

This model has been used in some recent studies. For example, Sheikhholeslami et al. [26] studied heat transfer enhancement in turbulent flow caused by twisted-tape turbulators using the KKL model. Sheikhholeslami [27] analyzed the effect of nano-particles and Brownian motion on the transfer of heat in a square closure. In this study, Sheikhholeslami [27] augmented nanofluid characteristics by using the KKL model for effective viscosity and thermal conductivity. Another study was conducted by Sheikhholeslami [28] in order to explore the process of solidification in nanofluid.

Table 1. Thermo-physical properties of water and nanoparticles used in [25-28].

<table>
<thead>
<tr>
<th>Physical property</th>
<th>Water/base fluid</th>
<th>CuO</th>
<th>Al₂O₃</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\rho) (kg.m⁻³)</td>
<td>997.1</td>
<td>6500</td>
<td>3970</td>
</tr>
<tr>
<td>(c_p) (J.kg⁻¹.K⁻¹)</td>
<td>4179</td>
<td>540</td>
<td>765</td>
</tr>
<tr>
<td>(k) (W.m⁻¹.K⁻¹)</td>
<td>0.613</td>
<td>18</td>
<td>25</td>
</tr>
<tr>
<td>(d_p) (nm)</td>
<td>—</td>
<td>47</td>
<td>29</td>
</tr>
<tr>
<td>(\sigma) (s.m⁻¹)</td>
<td>5.5 × 10⁻⁶</td>
<td>1 × 10⁻¹⁰</td>
<td>35 × 10⁶</td>
</tr>
</tbody>
</table>
by considering the KKL method. Sheikhholeslami and Rohani [29] used Control Volume Finite Element Approach (CVFEA) to investigate the effect of Lorentz force on the flow of nanofluid in a porous enclosure using a non-equilibrium model together with the KKL model for effective viscosity and thermal conductivity. Sheikhholeslami et al. [30] studied the effects of Darcy porous medium on the MHD flow in a complex-shaped container containing Al₂O₃-nanofluid while estimating effective viscosity and thermal conductivity through the KKL model. Sheikhholeslami with other contributors used the KKL model for effective viscosity and thermal conductivity. These studies are referenced in [31-38]. Some latest studies on nanofluid flows are mentioned in [39-57].

Minimization of the entropy generation in the thermal system is a major concern as a waste of energy causes a great disorder. Therefore, the control of entropy generation during heat transfer has been investigated extensively over the last few years. Bejan [58] was the first to work on the minimization of entropy generation. After this pioneering work, several studies have been published. However, here, some recent investigations are described as follows. For instance, Bhatti et al. [39] investigated the effects of magnetic field on the entropy generation of nonlinear transport of heat and mass in the boundary layer flow. Numerical investigation of entropy generation during the heat transfer in the cavity flow was carried out by Armaghani et al. [60]. Bianco et al. [61] analyzed the effect of entropy generation due to temperature difference and viscosity/friction losses in the flow.

Literature review reveals that no FEM study on hydro-thermal characteristics in nano-fluid subjected to Lorentz force, thermal radiation, buoyancy force using the KKL model has been investigated so far. A comprehensive literature review is given in Section 1. Modeling of unsteady flow of nanofluid in the presence of buoyancy force and Joule heating is given in Section 2. Galerkin weak formulation and coefficients of stiffness matrix are given in Section 3. Section four is associated with results and discussion. Entropy analysis is also given in Section 4. Key points of this study are listed in Section 5.

2. Mathematical models and modeling

2.1. Problem statement

Let us investigate the effects of dispersion of nanoparticles (CuO and Al₂O₃) on the performance of thermal conductivity and viscosity using the KKL model. The flow over the sheet results from the unsteady motion of the sheet moving with velocity \(U_w(x, t) = \alpha x/(1 - ct) \) and is subjected to the magnetic field. Nanofluid is assumed to exhibit thermal radiation and generates heat during thermal changes. Buoyant force is a considerable order of magnitude. Thermophysical properties (viscosity, density, thermal conductivity, specific heat, etc.) are constant. The transport of heat nano-fluid (occupying half space \(y > 0 \)) is due to convection from the hot fluid (occupying half space \(y < 0 \)) of temperature \(T_w(x, t) = T_\infty + ax/(1 - ct) \). The buoyant force under Boussinesq approximation is significant, as shown in Figure 1.

![Figure 1. Physical model and coordinates system.](image-url)
2.2. Diffusion models

Mass, momentum, and thermal diffusion models under boundary layer approximations are as follows [51,52]:

\[
\frac{\partial u}{\partial x} + \frac{\partial u}{\partial y} = 0, \tag{3}
\]

\[
\frac{\partial u}{\partial t} + u \frac{\partial u}{\partial x} + v \frac{\partial u}{\partial y} = \frac{1}{\rho_f} \left(\frac{\partial P}{\partial x} \right) - \frac{\sigma_f B_0^2 u}{\rho_f} + \beta T (T - T_\infty) \tag{4}
\]

\[
\frac{\partial T}{\partial t} + u \frac{\partial T}{\partial x} + v \frac{\partial T}{\partial y} = \frac{1}{\rho f \alpha_f} \left[k_f \frac{\partial T}{\partial y} \right] + Q(T - T_\infty) + \frac{\sigma_f B_0^2}{\rho f \alpha_f} \left(\frac{\partial \mathbf{q}}{\partial y} \right)^2 \tag{5}
\]

Stefan Boltzmann law is defined by:

\[
\mathbf{q} = -T^4 \nabla \left(T^4 - T_\infty^4 \right).
\]

The initial and boundary conditions are obtained by Eqs. (6) and (7) as shown in Box I.

2.3. Normalization of equations

Diffusion Eqs. (3)-(5) and initial, boundary conditions (6) and (7) are made dimensionless by applying the following transformations:

\[
u = \frac{\partial \psi}{\partial y}, \quad \psi(x, y) = \sqrt{\frac{\alpha_f}{\rho_f(1 - \alpha_f)} x f(\eta)} \tag{6}
\]

\[
\theta(\eta) = \frac{T - T_\infty}{T_\infty}, \quad \eta = \sqrt{\frac{\alpha_f}{\rho_f(1 - \alpha_f)} y} \tag{7}
\]

Hence, we get:

\[
f'' + \frac{A_2}{A_3} M^2 f' + \frac{A_1}{A_3} \frac{Gr \theta}{A_1} - \frac{A_1}{A_3} \left[f'' - f f' + \lambda \left(f' + \frac{1}{2} \eta f'' \right) \right] = 0, \tag{8}
\]

\[
f(0) = 0, \quad f'(0) = 1, \quad f' \to 0, \tag{9}
\]

\[
\left(1 + \frac{4}{3 N_r} \right) \theta'' + \frac{Pr}{A_4} \frac{1}{\beta \theta} + \frac{A_3 A_2}{A_4} M^2 Pr Ec \frac{f'^2}{f^2} \tag{10}
\]

\[
+ \frac{A_2}{A_4} \frac{Pr}{A_4} \left[\frac{f'' - f f' - \lambda \left(2 \eta f'' + \frac{1}{2} \theta f'' \right)}{f^2} \right] = 0.
\]

where:

\[
A_1 = \frac{\rho_f}{\rho_f}, \quad A_2 = \frac{(\rho_f \alpha_f)}{(\rho_f \alpha_f)} / \frac{\sigma_f}{\sigma_f}, \quad A_3 = \frac{\mu_f}{\mu_f} / \frac{\mu_f}{\mu_f}, \tag{11}
\]

\[
A_4 = \frac{k_f / k_f}{k_f / k_f}, \quad A_5 = \frac{\sigma_f / \sigma_f}{\sigma_f / \sigma_f}, \tag{12}
\]

and:

\[
M^2 = \frac{\sigma_f B_0^2 (1 - c)}{a^2 \eta}, \tag{13}
\]

\[
Gr = \frac{\beta T (T_w - T_\infty)(1 - c)^2}{a^2}, \tag{14}
\]

\[
\lambda = \frac{c}{a}, \quad N_r = \frac{k_f / k_f}{k_f / k_f}, \tag{15}
\]

\[
Pr = \frac{\mu_f (c_p f)}{k_f}, \quad Ec = \frac{(\frac{\alpha_f}{\rho_f(1 - \alpha_f)} \frac{1}{(c_p f)^2}}{(c_p f)^2 (T_w - T_\infty)}, \tag{16}
\]

\[
B_i = \frac{h_f}{k_f} \sqrt{\frac{(1 - c) v f}{a}}, \quad \beta = \frac{Q_0}{a (\rho f c_p f)}, \tag{17}
\]

are the Hartmann number, the Grashof number, the unsteadiness parameter, the radiation parameter, the Prandtl number, the Eckert number, the Biot number, and heat generation/absorption parameter, respectively. The prescribed wall temperature case can be recovered as \(B_i \to \infty \). Further, note that \(k_{Brownian} = 0 \) and \(\varphi = 0 \) is the case when fluid is pure and nanoparticles are not dispersed (the case of Butt and Ali, 62), and for \(Gr = 0, N_r = 0 \) and \(Ec = 0 \), the problem is reduced to the case of Das et al. [63] with heat generation/absorption. The case of \(M^2 = 0, \lambda = 0, k_{Brownian} = 0, \varphi = 0 \) and \(B_i \to \infty \) is also considered by Abolbashari et al. [64] and Das et al. [63].

3. Numerical method

Galerkin Finite Element Method (GFEM) is implemented to carry out simulations of heat transfer through dimensionless conservation. As a part of the procedure, the following steps will be taken.
3.1. Domain discretization
The physical domain (after dimensional analysis) $[0, \infty]$ is divided into line elements with two nodes per elements.

3.2. Selection of weight and interpolation functions
As there are two nodes per element, weight and shape functions (interpolation functions) are selected in the linear form. Further, as suggested by the Galerkin approach, weight functions are taken equal to the interpolation functions. The following linear interpolation functions are defined as follows:

$$\psi_j = (-1)^{j-1} \left(\frac{\eta_{j+1} - \eta} {\eta_{j+1} - \eta_j} \right), \quad j = 1, 2.$$

3.3. Constructions of residual equations
Residual equations are defined and multiplied by weights. The resulting weighted residuals are integrated over a typical element $[\eta_c, \eta_{c+1}]$.

3.4. Weak form of weighted residuals
The weighted integral residuals are integrated over the line element to convert the strong form of weighted residual into the weak form.

3.5. Derivation of stiffness coefficients
The dependent unknowns are approximated over element $[\eta_c, \eta_{c+1}]$ by the finite element approximations. The unknown nodal values are computed. Considering certain approximations used in weak formulation of weighted residuals, one can obtain the finite element model of the form:

$$[K^e \{\pi\}] [\pi^e] = \{F^e\} + \{Q^e\},$$

where $[K^e \{\pi\}]$ is the stiffness matrix for typical element, π^e represents the unknown nodal values, $\{F^e\}$ is the boundary vector, and $\{Q^e\}$ is the source vector.

3.6. Assembly process
Following the assembly procedure of finite element approach, the system of nonlinear algebraic equations of the form is obtained as follows:

$$[K \{\pi\}] \{\pi\} = \{F\}.$$

where $[K \{\pi\}]$ is the global coefficient matrix. It is important to note that the coefficients of stiffness matrix $[K \{\pi\}]$ are also functions of unknown nodal values. Therefore, systems of algebraic equations (12) are solved numerically by an iterative procedure. Here, in this study, Picard’s linearization procedure is used, which works in the following way:

$$[K \{\pi\}]^{r-1} \{\pi\}^r = \{F\}.$$

where $\{\pi\}^{r-1}$ represents the nodal values computed at the $(r - 1)$th iteration, and $\{\pi\}^r$ represents the nodal values computed at the rth iteration.

3.7. Computer implementation
The linearized system of algebraic equations (15) is solved iteratively by a Gauss-Seidel approach. The computational procedure described above is implemented using Matlab. The developed computer code works with tolerance 10^{-6}; several computational experiments were carried out to search the value of η_0 where asymptotic boundary conditions are satisfied. Simulations carried out in this study reveal that the asymptotic boundary conditions are satisfied when $\eta_0 = 6$. Therefore, $\eta_{\text{max}} = 6$ is taken as infinity, i.e., the computational domain is $[0, \infty]$.

3.8. Convergence and error analysis
The following error in the simulated results is calculated as follows:

$$\text{error} = |\pi^e - \pi^{r-1}|,$$

and convergence criteria are set in the following form:

$$\max |\pi^e - \pi^{r-1}| < \xi,$$

where ξ is the tolerance and is taken equal to 10^{-5} in this coming analysis.

3.9. Validation
To validate the results, the numerical values of $-\theta'(0)$ for special case (for different Pr when $M^2 = \lambda = \varphi_0 = k_{\text{Brue}} = 0$, and $B_i \rightarrow \infty$) are compared with the already published benchmarks by Das et al. [63] and Albashari et al. [64]. This comparison is displayed in Table 3. This table guarantees excellent agreement between the present and already published works.

<table>
<thead>
<tr>
<th>Pr</th>
<th>Albashari et al. [64]</th>
<th>Das et al. [63]</th>
<th>Present study</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.72</td>
<td>0.80863135</td>
<td>0.80876122</td>
<td>0.74454088</td>
</tr>
<tr>
<td>1.00</td>
<td>1.00000000</td>
<td>1.00000000</td>
<td>0.91192939</td>
</tr>
<tr>
<td>3.00</td>
<td>1.92368259</td>
<td>1.92357431</td>
<td>1.81548127</td>
</tr>
<tr>
<td>7.00</td>
<td>3.07220521</td>
<td>3.07314679</td>
<td>2.96744744</td>
</tr>
<tr>
<td>10.0</td>
<td>3.72067390</td>
<td>3.72054366</td>
<td>3.61534147</td>
</tr>
</tbody>
</table>
4. Results and discussion

In order to analyze the physics of the described flow situation, the computed field variables versus the physical parameters are displayed. Figure 2 displays the effect of magnetic field on the flow of CuO nanoliquid (solid curves) and Al₂O₃ nanoliquid (dotted curves). Hartmann number is the ratio of Lorentz force to inertial force, and an increase in Hartmann number corresponds to an increase in magnetic field intensity. Hence, it is observed that flow experiences more retardation when magnetic field intensity increases. It is also noted that Al₂O₃ nanoliquid experiences more Lorentz force than the CuO nanoliquid (see Figure 2). Behavior of the flow of Al₂O₃ and CuO nanoliquids under an increase in the buoyant force is represented by Figure 3. During simulations, it is also observed that flow is assisted by positive buoyant force (Gr > 0), whereas it is opposed by negative buoyant force (Gr < 0). The impact of positive buoyant force on Al₂O₃ nanoliquid flow is more than that of buoyant force on nanoliquid flow, as shown in Figure 3. The velocity field is subject to a decreasing trend by increasing the unsteadiness parameter, λ, as represented in Figure 4. The velocity of steady flow is greater than that of unsteady flow. The boundary layer thickness decreases the function of the unsteadiness parameter, λ. The intensity and heat dissipations due to Joule heating are directly proportional. Therefore, an increase in the intensity of magnetic field enhances the dissipation rate of heat in the liquid regime and, thus, temperature increases. The effect of intensity of magnetic field on the temperature is displayed in Figure 5 for both

![Figure 2](image1.png)

Figure 2. Flow behavior versus M when Gr = 4, Pr = 2.73, Ec = 0.1, Nᵣ = 0.2, Bᵢ = 0.1, ϕ = 0.04, β = 0.9, and λ = 0.6.

![Figure 3](image2.png)

Figure 3. Flow behavior versus Gr when Pr = 2.73, Ec = 0.1, Nᵣ = 0.2, M = 0.8, Bᵢ = 0.1, Nᵣ = 0.2, ϕ = 0.04, β₁ = 0.9, and λ = 0.6.

![Figure 4](image3.png)

Figure 4. Unsteadiness behavior for fluid when Pr = 2.73, Ec = 0.1, Nᵣ = 0.2, M = 0.8, Bᵢ = 0.1, Nᵣ = 0.2, ϕ = 0.04, β = 0.9, and Gr = 4.

![Figure 5](image4.png)

Figure 5. Temperature curves versus M when Gr = 4, Pr = 2.73, Ec = 0.1, Nᵣ = 0.2, ϕ = 0.04, Bᵢ = 0.1, β = 0.9, and λ = 0.6.
Al$_2$O$_3$ nanoliquid and CuO nanoliquid. According to Figure 5, it can also be observed that the dissipation rate of heat to Ohmic heating (heating due to magnetic field) in Al$_2$O$_3$ nanoliquid regime is greater than that in CuO nanoliquid when $Gr = 4$, $Pr = 2.73$, $Ec = 0.1$, $Nu = 0.2$, $\varphi = 0.04$, $Bi = 0.1$, $\beta = 0.9$, and $\lambda = 0.6$. The Eckert number, Ec, appears as a coefficient of Joule heating term in the dimensionless form of energy equation (see Eq. (10)), and an increase in it causes the enhancement rate of Joule heating. Consequently, the temperature increases. This fact is displayed in Figure 6. The comparison of Figures 5 and 6 shows that the temperature of fluids varies in a similar fashion, in a qualitative sense, when Hartmann and Ec are increased. The temperature field for both Al$_2$O$_3$ nanoliquid (dotted curves) and CuO nanoliquid (solid curves) under a variation of unsteadiness parameter, λ, is reflected by Figure 7. This figure shows the declining behavior of temperature with respect to the unsteadiness parameter, λ. Figure 8 displays the temperature curves for CuO and Al$_2$O$_3$. These temperature curves show that Al$_2$O$_3$ nanoparticles are responsible for more heat transfer than nanoparticles. The temperature distribution for both CuO nanoliquid and Al$_2$O$_3$ nanoliquid due to heat generation in the liquid regime is given in Figure 9. A significant increase in temperature due to internal heat generation is observed. The role of convective boundary in enhancing transfer of heat from heated wall to the nanoliquid regime is revealed in Figure 10. Accordingly, the heat transfer process speeds up if the convection parameter (Biot number) is increased. However, this convection is more significant in CuO nanoliquid than that in Al$_2$O$_3$ nanoliquid. Thermal radiation effects of the temperature of Al$_2$O$_3$ nanoliquid and nanoliquid are shown in Figure 11. It can be easily noted that the heat

![Figure 6. Temperature curves versus Ec when $Gr = 4$, $Pr = 2.73$, $Nu = 0.2$, $Bi = 0.1$, $M = 0.8$, $Nu = 0.2$, $\varphi = 0.04$, $\beta = 0.9$, and $\lambda = 0.6$.](image)

![Figure 7. Temperature curves versus λ when $Gr = 4$, $\beta = 0.9$, $Pr = 2.73$, $Ec = 0.1$, $Nu = 0.2$, $\varphi = 0.04$, $M = 0.8$, and $Bi = 0.1$.](image)

![Figure 8. Temperature curves versus φ when $Gr = 4$, $Pr = 2.73$, $Ec = 0.1$, $Nu = 0.2$, $Bi = 0.1$, $M = 0.8$, $\beta = 0.9$, and $\lambda = 0.6$.](image)

![Figure 9. Temperature curves versus β when $Gr = 4$, $Pr = 2.73$, $Ec = 0.1$, $Nu = 0.2$, $Bi = 0.1$, $\varphi = 0.04$, $M = 0.8$, and $\lambda = 0.6$.](image)
5. Entropy generation

5.1. Entropy analysis

The entropy generation due to temperature gradient, viscous dissipation, and Joule heating is defined by

\[
E_G = \frac{k_{eff}}{T_\infty} \left[\left(\frac{\partial T}{\partial x} \right)^2 + \left(\frac{\partial T}{\partial y} \right)^2 \right] + \frac{\mu_f}{\rho_\infty} \left(\frac{\partial u}{\partial x} \right)^2 \\
+ \frac{\sigma_{eff} B^2}{T_\infty} u^2.
\]

Using the similarity transformations given in Eq. (8), one obtains the following dimensionless form of entropy generation.

\[
N_S = \text{Re} \frac{k_{eff} \theta'^2}{k_f} + \frac{Br}{(1 - \varphi)^2 \frac{D_{diffusion}}{k_f} \times \frac{1}{Pr}} \Omega \left[f\eta^2 + \varphi_2 M^2 f'^2 \right],
\]

where:

\[
N_S = \frac{T^2_\infty d^2 E_G}{k_f(T_w - T_\infty)^2}, \quad \text{Re} = \frac{U_w \alpha}{\nu_f x},
\]

\[
Br = \frac{\mu_f U_w^2}{k_f(T_w - T_\infty)^2}, \quad \Omega = \frac{T_w - T_\infty}{T_f}
\]

are called dimensionless entropy generation number, the Reynolds number, the Brinkman number, and the non-dimensionless temperature difference number, respectively.

5.2. Entropy generation profiles

The effect of an increase in magnetic field intensity on the entropy generation is shown in Figure 12. This graphical behavior of entropy generation versus Hartmann number reveals that external magnetic field enhances the entropy generation rate. It is predicted that the imposition of magnetic field to thermal system causes greater energy loss. Thus, it can be concluded that magnetic field should not be imposed if energy losses are to be minimized as is required for industrial processes. Based on Figure 12, entropy generation in Al_{2}O_{3} nanoliquid is greater than that in CuO nanoliquid. An increasing trend in entropy generation is observed when temperature difference parameter is increased (see Figure 13). The entropy production is greatly influenced by an increase in the Reynolds number. An increasing trend in entropy generation due to an increase in Reynolds can be seen in Figure 14.
Figure 13. The effect of Ω on the entropy generation when $Gr = 4$, $Pr = 2.73$, $N_e = 0.2$, $B_i = 0.1$, $\beta = 0.9$, $M = 0.8$, $\lambda = 0.9$, $Re = 1$, $Br = 1$, and $Ec = 0.1$.

Figure 14. The effect of Re on the entropy generation when $Gr = 4$, $Pr = 2.73$, $Ec = 0.1$, $\beta = 0.9$, $M = 0.8$, $N_e = 0.2$, $\lambda = 0.9$, $Br = 1$, and $\Omega = 1$.

Figure 15. The effect of Ec on the entropy generation when $Gr = 4$, $Pr = 2.73$, $N_e = 0.2$, $B_i = 0.1$, $\beta = 0.9$, $M = 0.8$, $\lambda = 0.9$, $Re = 1$, $Br = 1$, and $\omega = 1$.

Figure 15 depicts that entropy generation increases when Ec increases.

6. Conclusion

The effects of effective viscosity and thermal conductivity on the enhancement rate of heat transfer due to the dispersion of nano-sized metallic particles (CuO and Al$_2$O$_3$) were studied by the KKL model for Brownian motion. A significant increase in thermal conductivity was observed. Al$_2$O$_3$ nanoliquid experienced a greater resistive force due to the magnetic field than CuO nanoliquid did. The effects of four types of nanoparticles (Cu, Ag, Al$_2$O$_3$ and TiO$_2$) on the transfer of heat in unsteady two-dimensional boundary layer flow of a radiative fluid on a convectively heated surface in the presence of Joule heating, heat absorption/generation, and buoyant force were investigated. It was observed that dispersion of nano-particles in the pure fluid increased the thermal conductivity of the resulting mixture, which may play a vital role in thermal systems. To ensure favorable buoyant force, the velocity of the mixture (mixture of nanoparticles and radiative fluid) increased, causing an increase in the thermal and momentum boundary layer thicknesses. However, in case of opposing buoyant force, a reverse mechanism regarding momentum and thermal boundary layer thicknesses was observed. The magnetic field intensity and Ohmic dissipation were directly proportional to each other. Hence, an increase in the intensity of magnetic field converts more electrical energy into heat (due to Ohmic dissipation process). It was also observed that an increase in the intensity of the magnetic field retarded the flow and reduced the momentum boundary layer thicknesses. Therefore, it is recommended applying an external magnetic field to control the flow and momentum boundary layer thickness. However, it is noted that an increase in the imposition of external magnetic field has opposite effect on the thermal boundary layer thicknesses due to Joule heating mechanism. It is also important to mention that momentum boundary layer thickness of hydrodynamic flow is higher than that of magnetohydrodynamic flow. However, thermal boundary layer thickness of hydrodynamic flow is less than that of magnetohydrodynamic flow. It was observed that the effective thermal conductivity of Al$_2$O$_3$ nano liquid was greater than that of CuO nanoliquid. Therefore, the application of Al$_2$O$_3$ is recommended if more transportation of heat is required. Convection on the surface plays a notable role in the temperature of nanoliquids (Al$_2$O$_3$-liquid and CuO-liquid). Further, heat generation in CuO liquid was less than that in
Al$_2$O$_3$ in the vicinity of the wall. However, away from the wall, the opposite trend was observed.

A significant rise in the temperature due to an increase in intensity was observed. Therefore, control of Joule heating in the design of the thermal system is necessary. However, heat dissipation may be desirable in some biological fluid flows. Moreover, an increase in the intensity of the magnetic field caused an increase in the entropy generation. The positive buoyancy force enhanced the entropy generation. However, the opposing buoyancy force reduced energy losses. Energy losses in steady flow are higher than those in unsteady flow. The key observations are listed below:

- The buoyant force is responsible for the effect of thermal radiations on nanofluid flow. It is observed that if buoyant force is not considered, then there is no effect of thermal radiations on the flow and, hence, on momentum boundary layer thickness. Since the buoyant force is significant in vertical flows, it is recommended that horizontal arrangement of physical model (sheet) be made if no impact of thermal radiations on the flow of nanofluid is desired.

- The magnetic field decelerates the fluid motion due to hindrance caused by the Lorentz force. Therefore, it is recommended applying the external magnetic field perpendicular to the plane of sheet if momentum boundary layer thickness is to be controlled.

- Convectively heated surface causes greater entropy generation. Therefore, it is recommended not using the convectively heated surface.

- Imposition of external magnetic field increases the entropy generation and is responsible for great energy losses. Therefore, thermal systems work efficiently without losses of energy if external magnetic field is not imposed.

Acknowledgement

Authors Miss Shafia Rana and Dr. M. Nawaz are thankful to the Higher Education Commission (HEC) of Pakistan for the financial support under NRPU-vile No. 5855/Federal/NRPU/R &D/HEC/2016.

Nomenclature

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>u, v</td>
<td>Velocity components</td>
</tr>
<tr>
<td>Gr</td>
<td>Grashof number</td>
</tr>
<tr>
<td>Ha</td>
<td>Hartmann number</td>
</tr>
<tr>
<td>Ec</td>
<td>Eckert number</td>
</tr>
<tr>
<td>Bi</td>
<td>Biot number</td>
</tr>
<tr>
<td>N_r</td>
<td>Radiation parameter</td>
</tr>
<tr>
<td>Pr</td>
<td>Prandtl number</td>
</tr>
<tr>
<td>Re</td>
<td>Reynolds number</td>
</tr>
<tr>
<td>Br</td>
<td>Brinkman number</td>
</tr>
<tr>
<td>N_s</td>
<td>Entropy generation number</td>
</tr>
<tr>
<td>$\vec q$</td>
<td>Radiative heat flux</td>
</tr>
<tr>
<td>T</td>
<td>Fluid temperature</td>
</tr>
<tr>
<td>k</td>
<td>Thermal conductivity</td>
</tr>
<tr>
<td>β_T</td>
<td>Volumetric expansion coefficient</td>
</tr>
<tr>
<td>κ_b</td>
<td>Boltzmann constant</td>
</tr>
<tr>
<td>k^*</td>
<td>Absorption coefficient</td>
</tr>
<tr>
<td>σ^*</td>
<td>Stefan-Boltzmann constant</td>
</tr>
<tr>
<td>c_p</td>
<td>Specific heat</td>
</tr>
<tr>
<td>B_0</td>
<td>Magnetic field</td>
</tr>
<tr>
<td>Q</td>
<td>Heat generation/absorption coefficient</td>
</tr>
</tbody>
</table>

Greek Symbols

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ρ</td>
<td>Density</td>
</tr>
<tr>
<td>σ</td>
<td>Electrical conductivity</td>
</tr>
<tr>
<td>ϕ</td>
<td>Volume fraction</td>
</tr>
<tr>
<td>μ</td>
<td>Dynamic viscosity</td>
</tr>
<tr>
<td>η</td>
<td>Independent similarity function</td>
</tr>
<tr>
<td>λ</td>
<td>Unsteadiness parameter</td>
</tr>
<tr>
<td>Ω</td>
<td>Temperature difference number</td>
</tr>
</tbody>
</table>

Subscripts

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>f</td>
<td>Fluid</td>
</tr>
<tr>
<td>nf</td>
<td>Nanofluid</td>
</tr>
<tr>
<td>eff</td>
<td>Effective</td>
</tr>
<tr>
<td>p</td>
<td>Particles</td>
</tr>
<tr>
<td>s</td>
<td>Solid particles</td>
</tr>
<tr>
<td>w</td>
<td>Wall</td>
</tr>
</tbody>
</table>

References

6. Averse, J. and Oblak, M. “The calculation of thermal conductivity, viscosity and thermodynamic properties

52. Ghadikolaei, S.S., Hosseinzadeh, Kh., and Ganji, D.D. “Investigation on three dimensional squeezing flow of mixture base fluid (ethylene glycol-water) suspended by hybrid nanoparticle (Fe3O4 - Ag) dependent on shape factor”, *Journal of Molecular Liquids*, 262, pp. 376-388 (2018).

Biographies

Shafia Rana is an MS student and is working as a Graduate Research Assistant (GRA) at Applied Mathematics & Statistics, Institute of Space Technology, Islamabad, Pakistan. She did BS (Hons) in Mathematics (in 2016) at Government College and University (GCU), Lahore, Pakistan. His area of specialization is Computational Fluid Dynamics (CFD). She is working on HEC-funded project titled “Hall and ion slip effects on transport phenomena in the flows of nano-fluids” and has published more than 4 research articles on contents of this project. She is good in computer programming. She has used FEM and FDM methods as computing tools for the simulation of nano-fluids.

Muhammad Nawaz is working as an Associate Professor in Applied Mathematics at Institute of Space Technology Islamabad, Pakistan. He did PhD in Applied Mathematics (in 2012) from Quaid-e-Azam University (QAU), Islamabad, Pakistan. He earned his Master of Philosophy (MPhil) degree in Applied Mathematics in 2000 from Quaid-e-Azam University, Islamabad, Pakistan. Before this, he earned MSc degree from Bahauddin Zakariya University (BZU), Multan, Pakistan. His area of specialization is Computational Fluid Dynamics (CFD) and, till now, he has published 45 research articles in international journals of very good repute. These published articles are on heat and mass transfer in Newtonian and non-Newtonian fluid flows using FEM, FVM, and analytical approximate methods. Recently, he has been working on the role of nano-fluids in heat transfer enhancement. He has supervised 15 MPhil students, and 3 PhD students are working under his supervision. He has completed three R&D projects and has won research productivity award 2012. His name is in the directory of productive scientists of the country.

Imran Haider Qureshi is a PhD scholar at Applied Mathematics & Statistics, Institute of Space Technology, Islamabad, Pakistan. He did Master of Philosophy (MPhil) in Mathematics (in 2011) from Quaid-e-Azam University (QAU), Islamabad, Pakistan. He also earned the degree of Master of Science (MSc) in Mathematics from University of Gujrat, Gujrat, Pakistan. His area of interest is Computational Fluid Dynamics (CFD). He has published several research articles in international journals of very good repute. Using Finite Element Method (FEM), he is engaged in investigating thermo-physical properties of the Newtonian and non-Newtonian fluids.