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derivatives in ethanol: Evaluating antimicrobial activity
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Abstract. Solvent-free ball-milling synthesized porous metal-organic framework
Cu2(BDC)2(DABCO) (BDC: benzene-1,4-dicarboxylic acid, DABCO: 1,4-diazabicyclo
[2.2.2]octane) has been proved to be a practical catalyst for facile and convenient synthesis
of 1,2,3-triazole derivatives via multicomponent reaction of terminal alkynes, benzyl or alkyl
halides, and sodium azide in ethanol. Avoidance of usage and handling of hazardous organic
azides, using ethanol as an easily available solvent, and simple preparation and recycling
of the catalyst make this procedure a truly scale-up-able one. The high loading of copper
ions in the catalyst leads to e�cient catalytic activity and hence, its low-weight usage in
reaction. The catalyst was recycled and reused several times without signi�cant loss of
its activity. Furthermore, novel derivatives were examined to investigate their potential
antimicrobial activity via microdilution method.

© 2019 Sharif University of Technology. All rights reserved.

1. Introduction

1,2,3-triazoles are 5-membered heterocyclic compounds
that are present in many biologically active compounds
such as anti-bacteria [1], anti-fungal [2], anti-cancer [3],
and anti-HIV [4] drugs. They are also used in dyes [5],
corrosion inhibitors [6], and anti-oxidants [7] and ap-
plied as organic synthesis intermediates. The uncat-
alyzed reaction of Alkynes and Azides Cycloaddition
(AAC) (Huisgen cycloaddition) is thermodynamically
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favored and proceeds slowly by producing poor yields
of 1,4- and 1,5-regioisomers [8]. In 2002, Sharpless et
al. �rst discovered the regioselective synthesis of 1,2,3-
triazoles catalyzed by Cu (I). The dramatic changes
in the regioselective synthesis of triazoles, including
short reaction time and high yield of products, marked
the new concept of click chemistry in science [9].
The copper used in AAC reaction can be obtained
from three sources, including Cu (I) salts (along with
bases and/or ligands), Cu (II) salts with a reducing
agent (usually sodium ascorbate), and metallic copper
[10].

In many of the reported click reactions, acetylenic
compound reacts with organic azides [11,12]. From the
point of view of safety, some of these organic azides
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have explosive nature and are not favorable [13]. To
solve this problem, in-situ reaction of organic halides
and sodium azide in the same pot with acetylenic
substrate is strongly recommended. Many reported
click reactions have been performed by employing
homogeneous catalysts involving copper [14-17]. How-
ever, use of homogenous copper complexes brings its
own problems, especially in pharmaceutical industry,
in which removing even trace amounts of heavy metals
from the end products is necessary [18]. To overcome
this di�culty, heterogenizing the homogenous catalyst
is a worthwhile e�ort [19,20]. For this purpose,
many solid materials have been used as solid supports,
including alumina [21], mesoporous silica [22], mag-
netic nanoparticles [23], magnetic starch [24], protein
sca�olds [25], hydroxyapatite [26], etc. In many cases,
tedious preparation procedures, ine�cient copper load-
ing, catalyst leaching, and low thermal stability of cat-
alyst are problematic. On the other hand, along with
the mentioned problems, there are some substantial
disadvantages such as the di�culty of accessibility to
active sites and di�usion of reaction materials into the
pores of the supported backbone, which often lead to
reduction in reaction rate.

Metal-Organic Frameworks (MOFs) are consid-
ered as a multi-purpose supramolecular platform to
develop heterogeneous catalysts [27], especially in or-
ganic reactions. Their high surface area, low den-
sity, and maneuverable designing make them highly
interested catalysts in chemistry reactions [28]. MOFs
can be produced by electrochemical, mechanochemical,
sonochemical, solvothermal, and microwave-assisted
methods [29]. Ball milling technique has several advan-
tages over other methods, such as short reaction time,
being solvent-free, quantitative yields, and high atom
e�ciency. Herein, we wish to report a straightforward
procedure for synthesis of 1,2,3-triazole derivatives
via one-pot multicomponent reaction of an acetylenic
compound, an organic halide, and sodium azide cat-
alyzed by ball-milling prepared Cu2(BDC)2(DABCO)
as a low-leaching, high-loading, clean, and recyclable
catalyst in ethanol.

2. Experimental

2.1. Materials and instruments
For the preparation and characterization of the Cu-
MOF, all the starting materials and the instruments
were used as previously described elsewhere [30].
Acetylenic compounds, aryl/alkyl halides, sodium
azide, sodium ascorbate, and solvents were purchased
from Merck or Aldrich and used as received.

1H NMR and 13C NMR were recorded by a
Bruker Avance DRX-500 instrument using deuterated
dimethyl sulfoxide (d6-DMSO) and tetramethylsilane
(TMS).

2.2. General procedure for preparation of
Cu2(BDC)2(DABCO)

Cu-MOF was prepared based on the previously de-
scribed method [30]. In the 10 mmol scale, a mixture
of Cu(OAc)2.H2O, H2BDC, and DABCO with a molar
ratio of 2:2:1 was used and 2.57 g of the pure catalyst
was obtained, which corresponded to 91% isolated
yield.

2.3. General procedure for reaction of
terminal alkynes, aril/alkyl halide, and
sodium azide

In a 20-mL round-bottom ask, to a mixture of
alkyne (1 mmol), halide (1 mmol), NaN3 (1.2
mmol), 20 mol% Na-ascorbate (0.039 g), and 20 mg
Cu2(BDC)2(DABCO), 2 mL ethanol was added. The
reaction mixture was heated up to 60�C and stirred
for an appropriate time, as indicated in Table 1. The
reaction progress was monitored by TLC or GC. After
reaction completion, the obtained colloidal particles
were �ltered and added to hot ethyl acetate. The
second �ltration removed the catalyst. Then, the
solvent was evaporated under reduced pressure and the
solid crude was recrystallized from n-hexane: EtOAC
to a�ord the pure solid products. The structures of
all products were determined based on their physical
and/or spectral data compared with the data in the
literature.

2.4. Antimicrobial activity
The new synthesized compounds were examined for
their antimicrobial activity against two bacteria,
namely Staphylococcus aureus ATCC 25923 and Es-
cherichia coli ATCC 25922, and C. albicans ATCC
10231 as fungi by microdilution method. Microdilution
susceptibility assay was performed using the NCCLS
method to determine the Minimum Inhibitory Con-
centration (MIC) and Minimum Bactericidal Concen-
tration (MBC). Ce�xime was used as the standard in
order to control antibacterial sensitivity and Nystatin
as antifungal standard agent.

3. Results and discussion

3.1. Catalyst characterization
Ball milling reaction of 1,4-benzenedicarboxylic acid,
DABCO, and copper (II) acetate at room temper-
ature within 2 hours resulted in the formation of
Cu2(BDC)2(DABCO) as a green powder in a solvent-
free manner [30] (Scheme 1). The catalyst was char-
acterized by Powder X-Ray Di�raction (PXRD), SEM,
TEM, BET, ICP, and FT-IR.

In FT-IR spectroscopy, the peak at 1620 cm�1

was assigned to COO asymmetric stretching mode and
the peaks at 1564, 1506, 1151, and 1015 cm�1 were
related to phenyl modes [31]. As it is obvious in Figure
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Table 1. Optimization of reaction conditions in the reaction modela.

Entry Cat.
Cat.

amount

(mg)

Sodium
ascobate
(%mol)

Solvent Temp.
(�C)

Time Yield
(%)b

1 - - - EtOH rt 12 h NR

2 - - - EtOH 60 12 h trace

3 Cu-MOF 20 mg - EtOH 60 1 h 68c

4 Cu-MOF 20 mg 5 EtOH 60 1 h 81

5 Cu-MOF 20 mg 10 EtOH 60 45 min 85

6 Cu-MOF 20 mgd 20 EtOH 60 45 min 98

7 Cu-MOF 10 mg 20 EtOH 60 45 min 88

8 Cu-MOF 30 mg 20 EtOH 60 45 min 98

9 Cu-MOF 20 mg 20 EtOH rt 3 h 83

10 Cu-MOF 20 mg 20 DMF 60 2 h 7

11 Cu-MOF 20 mg 20 CH3CN 60 2 h 20

12 Cu-MOF 20 mg 20 CH2Cl2 reux 2 h trace

13 Cu-MOF 20 mg 20 THF reux 2 h 10

14 Cu-MOF 20 mg 20 neat 60 5 h 10
a Phenylacetylene (1 mmol), sodium azide (1.2 mmol), benzyl bromide (1 mmol), sodium ascorbate

(20 mol%, 0.039 g), solvent (2 mL).
b Isolated yield.
c The homocoupling product has been formed as by-product.
d Corresponds to 7 mmol%.

Scheme 1. Synthesis of Cu2(BDC)2(DABCO) by ball-milling.

1, 2� peaks in XRD pattern have striking resemblance
with the reported values in the literature [32].

The BET technique was adopted to evalu-
ate porosity and surface area of ball-milling pre-
pared Cu2(BDC)2(DABCO). The BET surface area
of 1012 m2/g, obtained by ball-milling method, was
considerably higher than the sonochemically prepared
report by morsali et al. (499 m2/g) [32]. The meso-
porousity of the catalyst was demonstrated by N2
adsorption-desorption diagrams; the hysteric loop

from BJH desorption dV/dlog(D) pore volume dia-
gram is shown in Figure 2 (pore diameter of 3.9
nm).

SEM and TEM images of the prepared
Cu2(BDC)2(DABCO) are represented in Figures 3
and 4, which con�rm nanoscale size and homogenous
distribution of catalyst particles.

Additionally, the Cu content of Cu2(BDC)2
(DABCO) was measured as 23 wt.% by inductively
coupled plasma (ICP) technique.
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Figure 1. XRD pattern of ball-milling prepared nano
Cu2(BDC)2(DABCO).

Figure 2. The N2 adsorption-desorption isotherms of the
nanoporous Cu2(BDC)2(DABCO).

Figure 3. SEM photographs of Cu2(BDC)2(DABCO).

3.2. Optimization of reaction conditions
To �nd the optimized reaction conditions, reaction of
phenyl acetylene, benzyl bromide, and sodium azide
was chosen as the reaction model. As it is shown in
Table 1 (entries 1 and 2), in the absence of the catalyst,
no product was formed after 12 h at room temperature
(entry 1). By warming the reaction content up to 60�C,
only trace amount of the product was formed (entry 2).
By employing Cu2(BDC)2(DABCO) as catalyst in 10,
20, and 30 mg loading at 60�C in ethanol (entries 3-

Figure 4. TEM images of Cu2(BDC)2(DABCO).

8), the desired product was formed in high to excellent
yields, depending on the amount of the used sodium
ascorbate. In the absence of sodium ascorbate (entry
3), homocoupling of phenyl acetylene occurred as side
reaction, but by adding sodium ascorbate in 5, 10 and
20 mol%, only triazole product was formed. The best
result was obtained when using 20 mg (7 mmol%)
of Cu-MOF along with 20 mol% of sodium ascorbate
(entry 6). Further increase in the catalyst did not
change the yield, considerably (entry 6 versus 8). By
comparing entry 6 with 9, we realized the importance
of heating the reaction up to 60�C in contrast to
room temperature. Other solvents were examined in
the reaction model, but as it is apparent in Table 1
(entries 10-13), no other solvents surpassed the ethanol
medium. Furthermore, in neat reaction condition, after
5 h, only 10% of the product was formed (entry 14).

Encouraged by these results, the scope of the re-
action was extended to other substrates. As it is shown
in Table 2, acetylenic compounds bearing electron
withdrawing as well as electron donating groups (e.g.,
phenylacetylene, 4-methoxyphenylacetylene, 3-phenyl-
1-propyne, and 1-nitro-4-(prop-2-yn-1-yloxy)benzene)
led to the formation of triazoles in high to excel-
lent yields with acceptable reaction times. Propar-
gyl alcohol and 1,1-dimethylpropargyl alcohol were
also converted to the corresponding products in good
yields. On the other hand, some benzyl or alkyl
bromide/chloride was chosen as a halide reactant. In
all cases, chloride substrates required longer reaction
times than bromide ones did, which was reasonable due
to better e�ect of living group of bromide ion than that
of chloride (compare, for example Table 2, entries 1 and
2). These results indicate that the catalytic systems
can readily be applied to the three-component click
synthesis of 1,4-disubstituted-1,2,3-triazoles.

3.3. Hot �ltration test
In order to investigate catalyst leaching, a hot �ltration
test was carried out. For this purpose, the reaction of
phenyl acetylene, benzyl bromide, and sodium azide



H. Tourani et al./Scientia Iranica, Transactions C: Chemistry and ... 26 (2019) 1485{1496 1489

Table 2. Huisgen 1,3-dipolar cycloaddition catalyzed by Cu2(BDC)2(DABCO) in ethanol.a

Entry Substrate 1 Halide 2 Product 3 Time Yield
(%)b

M.p. (�C)
[Ref :]

1 45 min 98 128-130 (128-130) [33]

2 1a 3a 1 h 95 128-130 (128-130) [33]

3 1a 45 min 95 156-158 (156-157) [34]

4 1a 1 h 95 151-152 (151-152) [34]

5 1a 1 h 90 50-52 (56-57) [35]

6 1a 1.5 h 88 98-100 (97-99) [36]

7 1a 1.5 h 90 152-154 (155-157) [37]

8 2a 1 h 92 76-77 (76-77) [38]

9 1b 2b 3g 1.5 h 90 76-77 (76-77) [38]

10 1b 2d 1.5 h 92 115-117 (115-117) [39]

a Reaction condition: Alkyne (1 mmol), alkyl halide (1 mmol), NaN3 (1.2 mmol), sodium ascorbate (20 mol%),

Cu2(BDC)2(DABCO) (20 mg), solvent (EtOH, 2 mL), 60�C.

b Isolated yield.
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Table 2. Huisgen 1,3-dipolar cycloaddition catalyzed by Cu2(BDC)2(DABCO) in ethanola (continued).

Entry Substrate 1 Halide 2 Product 3 Time Yield
(%)b

M.p. (�C)
[Ref :]

11 2a 1.5 h 93 73-75 (74-77) [40]

12 1c 2b 3i 2 h 90 73-75 (74-77) [40]

13 2a 1.5 h 90 100-102 (100-101) [41]

14 1d 2b 3j 1.5 h 87 100-102 (100-101) [41]

15 1d 2c 1 h 90 152-154 [present Work]

16 1d 1 h 92 80-82 [present Work]

17 2a 1.5 h 92 141-143 (142-145) [42]

18 1e 2b 3m 1.5 h 89 141-143 (142-145) [42]
a Reaction condition: Alkyne (1 mmol), alkyl halide (1 mmol), NaN3 (1.2 mmol), sodium ascorbate (20 mol%),
Cu2(BDC)2(DABCO) (20 mg), solvent (EtOH, 2 mL), 60�C.
b Isolated yield.

was chosen in the described optimized reaction condi-
tion. For full investigation, we prepared two reaction
pots at the same condition. After 20 min (half time
of reaction), the catalyst was hot �ltrated from both
solutions. The rest of the mixture was stirred in one
reaction pot (pot no. 1) for another 25 min, while the

other pot (pot no. 2) was worked up, which yielded
45% of the desired triazole. After another 25 min,
the reaction in pot 1 was worked up and no further
triazole production was observed. The same protocol
was applied to the reaction of propargyl alcohol as
acetylenic substrate with benzyl chloride and sodium
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Figure 5. Recycling experiments on the reaction model
and reactions with substrates with EDG and EWG
substituents.

azide. Two reaction pots with the same materials
were prepared and after 1 h, the catalyst was �ltered
from both reactions. One of the reactions (pot no. 1)
was worked up, while the second one was stirred for
further 1 h. The yield of both reactions was 49%, while
the reaction for 2 h in the presence of the catalyst
a�orded 90% of the desired product (Table 2, entry
12). To secure this result, the solution in pot no. 1
was investigated by atomic absorption spectroscopy,
which showed no copper ion in the reaction medium.
The results demonstrated well heterogeneity of the
catalyst.

3.4. Catalyst reusability
The reusability of the catalyst was investigated
in further runs of the reaction model (phenyl
acetylene, benzyl bromide, sodium azide) with 1-
ethynyl-4-methoxybenzene and 1-nitro-4-(prop-2-yn-
1-yloxy)benzene as representatives having electron
donating (EDG) and electron withdrawing (EWG)
groups, respectively. After each run, the recovered
catalyst was washed with hot methanol several times
and then, dried in a vacuum oven. The recovered
catalyst was used for subsequent reaction runs without
signi�cant loss of activity (Figure 5). The XRD pat-
terns after recovery cycles showed structural stability
of catalyst in reaction medium (Figure 6).

3.5. Comparison with other studies
To show the merit of the present work for synthesis
of 1,2,3-triazole derivatives, a comparison with the
related literature using other catalysts was performed,
the results of which are tabulated in Table 3. As it
is shown, in some cases, inert atmosphere was needed
(Table 3, entries 10 and 11), but in our method,
the reaction was carried out in ethanol under normal
atmospheric condition. Furthermore, all the compared
studies required longer reaction times to complete the
reaction model (up to 48 h), while our methodology
needed only 45 minutes.

Figure 6. XRD patterns of fresh catalyst vs. recycled
catalyst.

Scheme 2. Proposed reaction mechanism.

3.6. Proposed reaction mechanism
Based on the previous studies [54], a reasonable
mechanism was proposed engaging two copper atoms
(Scheme 2). As it is shown, the �rst copper atom coor-
dinated the triple bond and afterwards, the acetylenic
hydrogen was replaced with the second copper atom
resulting in the formation of copper acetylide. This
was followed by coordination with the in situ prepared
organic azide. Subsequently, azide-alkyne 1,3-dipolar
cycloaddition was formed to give the desired triazole
product. Release of Cu-MOF ensured the initiation of
another similar mechanism cycle.

3.7. Microbial studies
The new synthesized compounds (3k and 3l) were
screened in vitro for their antibacterial activity
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Table 3. The comparison of Cu2(BDC)2(DABCO) with reported catalysts in the synthesis of 3a.

Entry Catalyst Catalyst
loading

Time
(h)

Temp.
(�C)

Reaction
condition

Yield
(%)

Ref.

1 CuSO4/sodium ascorbate 5 mol% 24 20 water; t-butyl
alcohol

98 [43]

2 LS-Cu/sodium ascorbatea 5 mol% 8 80 Ethanol 96 [44]

3 Cellulose supported Cu(II)
complex/sodium ascorbate

0.05 mol% 3 70 H2O 95 [45]

4 MNP@PIL Cu/sodium
ascorbateb 4 mg 2.5 50 H2O 95 [46]

5 Tris(triazolyl)methanol
-Cu(I)

0.25 mol% 8 40 Water 99 [47]

6 Cu-CPSILc 1.0 mol% 48 20 Water 98 [10]

7 Silica-Immobilized
NHC-Cu(I)d 0.5 mol% Cu 6 80 Water 98 [48]

8 HMS-DP-Cu(II)e 5 mol% 8 80 Ethanol 98 [49]
9 Porous copper 5 mol% 29 55 Water 96 [50]

10 CuI/1-benzyl-3-
picolylbenzimidazole iodide

CuI (0.01 mmol), 24 20 Water, inert
atmosphere

95 [51]

11 CuI-zeolite 20 mg 15 90 Water, inert
atmosphere

90 [52]

12 Cu-TPAf ; triethylamine 10 mol% 8 90 N;N� dimethyl-
formamide

85 [53]

13 Cu2(BDC)2(DABCO) 20 mg 45 min 60 Ethanol 98 This Work
a LS: Lignosulfonate.
b Copper sulfate in layered poly (imidazole-imidazolium) coated magnetic nanoparticles.
c Cross-linked polymeric ionic liquid material-supported copper.
d N-heterocyclic Carbene (NHC) ligands.
e 2-butoxy-3,4-dihydropyrans as dual anchoring reagents.
f Copper-exchanged phosphotungstic acid.

Table 4. Antibacterial and antifungal activities of compounds 3k and 3l.

Novel compound

Bacterial strains Fungal strain
S. aureus

ATCC 25923
E. coli

ATCC 25922
C. albicans

ATCC 10231
MICa

(�g/mL)
MBCb

(�g/mL)
MIC

(�g/mL)
MBC

(�g/mL)
MIC

(�g/mL)
MBC

(�g/mL)
3k c 128 > 128 256 > 256 64 64
3l d 256 > 256 256 > 256 128 128

Ce�xime 0.5 2 0.12 0.5 { {
Nystatin { { { { 16 64

a Minimum inhibitory concentrations; b Minimum bactericidal concentrations;
c 1-(4-Nitrobenzyl)-4-((4-nitrophenoxy)methyl)-1H-1,2,3-triazole; d 1-Allyl-4-((4-nitrophenoxy)methyl)-1H-1,2,3-triazole.

against gram-positive (Staphylococcus aureus) and
gram-negative (Escherichia coli) bacteria, and Candida
albicans as fungi. The results were compared with
standard drugs Ce�xime and Nystatin that are given in
the Table 4. Both of the compounds showed moderate
activity against bacteria and relatively good activity
against C. albicans. Meanwhile, from the biological
viewpoint, 3 k was better than 3 l.

4. Conclusion

A mild, e�cient, and recoverable catalytic system
was developed for three-component reaction of ter-
minal alkynes, benzyl or aryl halides, and sodium
azide in ethanol. We found that various starting
materials could exclusively produce 1,4-disubstituted-
1,2,3-triazole regioisomers in high to excellent yields.
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Negligible catalyst leaching approved by hot-�ltration
test, its reusability, and the straightforward ball-milling
procedure for the formation of Cu2(BDC)2(DABCO)
are some exceptional advantages of the explained
methodology. Also, the new compounds showed mod-
erate to good biological activity.

Spectral data of the new compounds

1-(4-Nitrobenzyl)-4-((4-nitrophenoxy)methyl)-
1H-1,2,3-triazole (3k)
White solid; yield 90%, mp: 152-154. IR (KBr):
634 (m), 729 (m), 844 (m), 1000 (m), 1107 (s), 1259
(s), 1330 (s), 1346 (s), 1498 (s), 1517 (m), 1595 (s),
3110 (w). 1H NMR (500 MHz, DMSO): � = 5.34
(s, 2H), 5.82 (s, 2H), 7.27 (J = 9:5 Hz, d, 2H), 7.55
(J = 8:5 Hz, d, 2H), 8.22 (J = 9:5 Hz, d, 2H), 8.25
(J = 8:5 Hz, d, 2H), 8.42 (s, 1H). 13C NMR (125 MHz,
DMSO): � = 51:7, 61.5, 115.0, 123.6, 125.2, 125.5,
128.8, 140.7, 141.9, 143.0, 146.9, 162.9. Anal. Calcd
for C16H13N5O5 (355.30): C, 54.09; H, 3.69; N, 19.71.
Found: C, 53.92; H, 3.65; N, 19.57. [M+H]+: Calc.:
356.0982, Meas.: 356.0982.

1-Allyl-4-((4-nitrophenoxy)methyl)-1H-1,2,3-
triazole (3l)
Pale yellow solid; yield 92%, mp: 80-82. IR (KBr):
638 (m), 750 (m), 850 (m), 1010 (m), 1110 (m), 1263
(s), 1340 (s), 1512 (s), 1593 (s), 3132 (w). 1H NMR
(500 MHz, DMSO): � = 5.04 (J = 6 Hz, d, 2H), 5.24
(m, 4H), 6.06 (m, 1H), 7.27 (J = 9:5 Hz, d, 2H),
8.22 (s, 1H), 8.25 (J = 9:5 Hz, d, 2H). 13C NMR
(125 MHz, DMSO): � = 52.6, 62.7, 116.2, 119.7, 125.8,
126.7, 133.5, 141.9, 142.7, 164.1. Anal. Calcd for
C12H12N4O3 (260.25): C, 55.38; H, 4.65; N, 21.53.
Found: C, 55.53; H, 4.61; N, 20.97. [M+H]+: Calc.:
261.0989, Meas.: 261.0982.
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