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Abstract. In this paper, we present a numerical collocation method for nonlinear singular
two-point boundary value problems of second order based on septic B-spline function. This
method depends on different physiological processes such as steady-state oxygen diffusion in
a spherical cell with the kinetics uptake of Michaelis-Menten and heat sources distribution
in human head. The proposed method has uniform convergence for the exact solution.
We will provide some physiological models proving that our method is very effective with

acceptable maximum absolute errors and absolute residual errors.
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1. Introduction

Consider the nonlinear singular boundary value prob-
lems of the following form:

S0+ 1) = g0, tefo, )
under the boundary conditions:
2 (0) =0, (2)
and:
2(1)+ 82 (1) =7, (3)

where « > 0,8 > 0,k > 1, v € R and g¢(¢t, z(t))

is a nonlinear continuous function with the partial

derivative of z; also, % > 0, and it is continuous
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in the domain of [0,1]. In this paper, we introduce
three models arising in physiology. The solutions to
Eqs. (1)—(3) are unique ones in [1-3]. For k¥ = 1 and
g(t, ) = 1e*), where [ is a physical parameter, the
first model arises in electro-hydrodynamics [4] following
Eq. (1) under boundary conditions in Egs. (2) and
(3) with @« = 1, 8 = 0, and v = 0, in thermal

explosions [5-8]. For different values of £ = 0, 1, 2, 3

ad g(t.2) = 270,

Eq. (1), the second model describes the steady-state
oxygen diffusion in a spherical cell with the kinetics
uptake of Michaelis-Menten [9-12]. The existence and
uniqueness of the second model has been proved in [13].
Many authors studied the oxygen diffusion problem
with:

m = 0.76129,

where m > 0, and ¢ > 0 in

and ¢ =0.03119

subject to the boundary conditions in Egs. (2) and
(3) with @« = v = 5, and § = 1 [4-7]. The last
model studies heat sources distribution in human head
[14-16] at k¥ = 2 and g(t, 2) = —de P*) where
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d > 0, and p > 0 in Eq. (1), under boundary
conditions in Egs. (2) and (3) with a = v = 0, while
3 takes three different values between [4-6] and [8,17].
Many authors have introduced methods for solving a
class of linear and nonlinear singular boundary value
problems arising in applied science and engineering [18—
25]. Also, many applications of ordinary and partial
differential equations arising in mechanical engineering,
computer science, and electrical engineering have been
investigated in [26-33].

Eq. (1) has a singular point at ¢ = 0. Thus, we
first use L’Hopital’s rule to modify Eq. (1) at ¢ = 0 and
then, convert the boundary value problems (1)—(3) to:

)+ (t) 2 ()= q(t, 2 (1),
Z(0)=0, az(l)+p2 (1) =7, (4)
where:
0, t=0,
r(t):{lz_’ t0,
q“’z“”:{géfz(tn, 0.

This paper is organized as follows. In Section 2,
we analyze the proposed collocation method. In
Section 3, the uniform convergence of the septic B-
spline collocation method is derived. Section 4 enters
into a discussion of some numerical models. Finally, in
Section 5, conclusions are drawn.

2. Septic B-spline collocation method

Let [0,1] be the domain of the proposed problem,
which is divided into n subintervals |t¢;, t;41], j =
0,1,...,n— 1 with equal step size of h = 717 by the
knots t; = jh,{j=0,1,...,n}, where 0 = t, <

1675

t, < < ty, 1. We find additional knots
t 3, t_o,t_1, tht1,tnyo, and t, 43 outside the domain.
Then, the septic B-spline function, B;(t), is introduced
to find a numerical solution to the nonlinear singular
boundary value problem (4); Eq. (5) is shown in
Box I. Suppose s(t) is the septic B-spline approximate
solution to the exact solution z(¢) to problem (4), given
by:

N+3

(6)

j==3

where 6,’s are constants found by the collocation points
t;, 7 = 0,1, ..., n and the boundary conditions. The
septic B-spline function, B;(¢), and its six derivatives
Bl(t), B! (1), B! (t), B (), B (1), and B\ (¢) at
the knots are summarized in Table 1.

Based on Eqgs. (5) and (6), the values of s(¢;) at

the nodal points and their six derivatives are:
S (t]‘) =0;_3+1200;_9 +11916,_1 + 2416 ¢;

F1191 6541 + 1208540 + 6543

1
5’ (tj) = E (—7(5]‘3 — 392 (5]',2 — 1715 (5]',1
+1715 (5j+1 + 392 (5j+2 + 75j+3>
" 1
S (tj) = ﬁ (42 (ijg + 1008 (53;2 + 630 (5];1

—3360 8;+630 8.4 1 +1008 §;.4 5 +42 6]-+3)

1
S (t;) = hs( 2106, _5 — 16806;_5 + 39908, 4

((t=t,_0)
(t—tj—a) = 8(t—1t;-3)"
(t—t;_4) —8(t—t;_3)" +28(t — t;_5)"
. (t—tja) —8(t—t;_3)" +28(t—t;_5)" —
Bi(t)= 1= (%+4—t{-—&%+3—ﬂi+2&%+2—t{
(tjra —1)" = 8(tjpz —1)" +28(tj42 — 1)
(g — 1) =8(tjps = 1)
(tiga—t)
0,
(j = —3, -2, -1, N +2, N +3)

t € [tj—a, tj-s],
tE[t]- 3, Lj— 2]
[] 2 7]
5(t_tj l) [J lvt']v
_5(J+1_t) € [tj, tja],
[J+17 J+2]

tG[E+mtﬁ3L

t € [tjes, it
otherwise.

Box I
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Table 1. Nodal values of B} (t), B} (t), B (t), B](.4) (t), B](.5) (t), and B](.G) (t).
ti—a ti-z  tj_o ti—1 t; it tit+2  ti4s  ti4a
B;j(t) 0 1 120 1191 2416 1191 120 1 0
By o 5 == oams o amsowm 1
B o # Be  m  ome moowe g4 g
B 0 e o me o amoamoap
BJ(-4>(t) 0 8}14740 0 —Zzﬁo 114440 —Ziﬁo 0 8}%0 0
5 YT _ ; _ ;
BJ(- >(t) 0 h5520 10h0580 13?00 0 12h6500 1}%380 z:go 0
BJ(.6)(t) 0 5040 =30240 75;?600 =100500 75}?000 =302¢0 5040 0
—3990 6j+1 + 1680 (5j+2 + 210 §j+3> +1715 (5j+1 +392 (5]‘+2+7§j+3> =g (t]‘, z (tj>) 5
1 1 =1,2, .., n. 8b
s () = (840 8; 5 — 75606, 1 + 134406, IE ST (8D)
After simplifying the above two equations, we get:
7560641 + 840 5j+3) 428 _3 41008 _o + 63061 — 3360 69 + 630 6,
+1008 85 + 42683 = h? go, (9a)
1
®)(t;) = —( —25208; 3 + 100808, 5 — 126006,
S ) = 33 ( s iz it & (t5) 83+ &2 (1) 62 + & (¢5) b5
+&4(t5) 6; + t;) bj41 + t;) 6,
+12600 8,41 — 10080645 + 25206]-+3) €a(t) 65+ &5 (£5) 6541 + &6 (£5) 842
+&7 (1)) 85403 = h*t; g5,
1
5(6) (t;) = 76 (5040 0j—3 —302406;_5 i=1,2, .., n, (9b)
where:
+7560006;_1 — 1008006, + 75600 0,41
go = g(t07 Z(tO))
g = 200

—302406;45 + 5040 6j+3>

j=0,1,..,n
Replacing Eq. (7) in Eq. (4), we have:
1
= (42 §; 5+ 10086, 5 +6308; 1 — 33606,

46308, + 1008845 + 42 5j+3>

_ 9, 2(t))
kE+1 7

j=0,
1

= (42 8; 3+ 10086, o +6308; 1 — 33604,

4630841 + 1008545 + 42 5j+3)

k
+—

n (—75j_3 —392 8,5 — 17158;_4

E+1 7

& (t;) =42t —Th, & (t;) = 1008t; — 392 h k,

& (t;) =630t; —1715h, &4 (tj) = —3360t;,
& (t;) =630t; + 1715, & (t;) = 1008t; + 392 h k,
§r(tj) =42t;+Thk, g;=g(t;, z(t))),
1=1,2, .., n,
and the boundary conditions are:
—76_3—3926_o — 17156_1 + 171561 + 392 65
(8a)
+7683 =0, (10)
and:
)\1 (tn) 6n73 + )\2 (tn) 6n72 + A3 (tn) 677,71
+A4 (tn> 5n + AS (tn) 6n+1 + )\6 (tn) 6n+2
+Ar (tn) 6n+3 =hv, (11)

where:
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M () =ha—T8,  As(t,) =120ha — 3923,

A3 (t,) =1191ha — 17153, A4 (t,) = 2416 ha,
A5 (t,) = 1191 ha + 1715 3,
Ao (tn) =120ha 43928,  Ar(t,)=ha+T74.

However, still four equations are required. By differen-
tiating Eq. (4) in ¢ fifth times, we get:

200 (@) 4 (8) 2D (8) + 30" (1) 2" () + 3" (t) 2" (t)

+r'" (@) 2 () = aqu (¢, 2 (1)), (12)

dg(t;ij(t)) 2" (t)
3Ll 2O) o1 gy ()
3 = ’
+ GO ), 0.

Q1 (t’ z (t)) =

Putting ¢t = tp in Eq. (12) and using Eq. (7), we have:
—2520 6_3 + 10080 6_o — 12600 6_1 + 12600 6
—10080 &, + 2520 65 = 0, (13)
similarly, when ¢ = ¢,,, we get:
pi1 (tn) 0ng + p2 () Gn—z + pt3 (tn) Ons
+ha (tn) 6n + 5 (tn) Ong1 + s (En) On42

+pr (tn) 6n+3 = hs 1/1717 (14)

p1 (t,) = —2520 4+ 840 h k + 630 h* k + 252 h°% k
+42 bt

po (t,) = 10080 + 5040 h? k + 6048 h* k + 2352 h* k,

ps (t,) = —12600 — 7560 h k — 11970 h* k
+3780 A% k + 10290 h* k,

pa (t,) = 13440 h k — 20160 h® k,

ws (tn) = 12600 — 7560 h k 4+ 11970 h? k
+3780h% k — 10290R* k,

e (t,) = —10080 — 5040 h2k + 6048 13k
—2352 'k,

pr (t,) = 2520 + 840 hk — 630 h% k + 252h° k

—42 bt k,

t=tn

Differentiating Eq. (12) again with ¢, we get:
2O @)+ () 2 (¢) + 20 (8) 2N (1) + 60" (1)

Z) + 40" (t) 2" () + D (1) 2 ()

=q2 (tv z (t)) ) (15)
where:
0 t=0
(4) (t) — { ) )
T PYRA
ZE, 1#0,

Also, we obtain go(t, 2(t)) by the expression shown in

where: Box II, where:
dg(t, z(1)) _(4) d2g(t. 2(1) L 2
dz i (t)+13+k dz? ( (t)) t=20
g2 (t, 2 (1) = dg(t;lj(t)) ~(4) (1) + (lzg((;;;(t)) (4 2(t) 2" (1) +3 (2" (t))2> + 6439(;;35(15)) (' (t))QZ// (t)
4 5
+ L (2 (1) t#0

Box II
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t, 2(t))],—
2" (im0 = —g( . _('_)]3|t_t° and :
dg(t, 2(t)) S (t)| B
2(4) (t) _ dz t:tok t=0 .
t=0 1 + 3

Putting t = ¢p in Eq. (15) and using Eq. (7), we get:
50406_3 — 30240 6_o + 75600 6_1 — 100800 dg

+75600 81 + —30240 65 + 5040 65 = h° o, (16)
where:

dolt2(0) ,(4) (4) 4 3 Lallozt) (o (1))
1+ %

70

Similarly, when ¢t = t,,, we have:
T (t'n,) 677.—3 + 2 (tn) 677.—2 + n3 (tn) 671—1
+774 (tn) 671 + U (tn) 677,—1—1 + Tle (tn> 6n+2

+17 (t) bngs = hb o, (17)

where:

m (tn) = 5040 — 2520 h k — 3360 h? k

—2520 h% k — 1008 h* k — 168 h° k,

Mo (t,) = —30240 + 10080 h k — 20160 h* k

—24192 h* k — 9408 B k,

A.R. Hadhoud et al./Scientia Iranica, Transactions E: Industrial Engineering 27 (2020) 1674-1684

N3 (tn) = 75600 — 12600 h k + 30240 h* k

+47880 h3 k — 15120 h* k — 41160 h° k,

N4 (tn) = —100800 — 53760 h? k + 80640 h* k,

s (t,) = 75600 + 12600 h k + 30240 h? k

—47880 h3 k — 15120 h* k + 41160 A° k,

N6 (tn) = —30240 — 10080 h k + 20160 h® k

—24192 h* k 4 9408 h° k,
07 (t,) = 5040 + 2520 h k — 3360 h* k

+2520 b3 k — 1008 h* k + 168 h° k,

and ¢, is obtained by the expression shown in Box III.
Then, from Eqs. (9)—(11), (13), (14), (16), and (17), we
get a matrix in the following form:

AT = B, (18)

where A is non-singular square matrix (n + 7) X (n + 7)
(as shown in Box IV), T is dimensional vector (n + 7)
with components é;, and B on the right-hand side is
an (n + 7)-dimensional vector as:

T= (63 0_9 6_1 b0 &1 dn-1

T
671 6n+1 6n+2 6n+3) )

and:
2 _ 3 R .
B dg(t;ij(t)) (4) (t) + d 9(;;;(1‘/)) (4 2(t) 2 (t) + 3 (2" (t))Q) +6¢ gg;:s (t)) (2 (t))Z 2 (t)
In = dhg(t,=() (1 (1))t
+= = (P (1) t=t,
Box II1
A=
—7 —392 —1715 0 1715 392 7 0 0 0 0 0 0 0
—2520 10080 —12600 0 12600 —10080 2520 0 0 0 0 0 0 0
5040 —30240 75600 —100800 75600 —30240 5040 0 0 0 0 0 0 0
42 1008 630 —3360 630 1008 42 0 0 0 0 0 0 0
0 E1(t1) &a(tr) €3(t1) &a(ti) &s(t1) &6 (t1) &7 (t1) 0 0 0 0 0 0
0 0 E1(ta) €2(ta) E&3(t2) Ea(ta)  E5(t2)  Ee(t2) &7 (t2) 0 0 0 0 0
0 0 0 0 0 fl(t'.rLfZ) &2 (t'.n72) 53(t;,,2) 54(t'.n72) &s (tjan) fﬁ(t'.n72) 134 (tjan) 0 0
0 0 0 0 0 0 €1 (tn—1) &2 (tn-1) €3 (tn—1) &1 (tn-1) &5 (tn-1) &6 (tn-1) &7 (tn—1) 0
0 0 0 0 0 0 0 E1(tn)  &2(tn)  E3(tn)  &a(tn) Es5(tn) Eo(tn) &7 (tn)
0 0 0 0 0 0 0 M (tn)  m2(tn)  m3(tn) na(tn) 05 (tn) 76 (tn) 771 (tn)
0 0 0 0 0 0 0 1 (te)  p2(te)  ps(te)  pa(te)  ps(ta)  pe(tn) w71 (te)
0 0 0 0 0 0 0 M (tn)  A2(tn) A3 (tn)  Aa(tn) A5 (tn) s (tn) A7(tn)

Box IV
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T
B:<0 0 o9 go 91 .-+ Gn—-1 Gn On wn 'Y> -

3. Uniform convergence

We estimate the truncation error for the septic B-spline
collocation method in the interval [a,b]. Let z(t) have
continuous derivatives for all ¢ € [a,b]. Using Eq. (7),
we get:

s'(tj—3) + 1205 (tj_2)
+1191s" (t;—1) + 2416 8" (t;) + 1191 8" (¢;41)
+120 8" (tj42) + 8" (tj43) = % (—72 (tj—3)
=392z (tj_o) — 17152 (tj—1) + 17152 (tj11)

+3023 (t12) + 75 (1119) ). (19)

s"(tj—3) + 120" (t;_2) + 1191 5" (t;-1)
+2416 " (¢;) + 1191 5" (¢j41) + 120 5" (tj42)
" 1
+5" (tj43) = 7z <42z (tj—3) + 1008 z (t;_2)
+630z (tj_1) — 3360 2 (t;) + 6302 (t;41)
+1008 z (t42) + 422 (t]—+3)), (20)
s (tj—3) + 120" (tj—2) + 1191 8" (¢,-1)
+2416 8" (t;) + 1191 8" (tj51) + 120" (tj12)
" 1
+5" (tj43) = 7 (—2102 (tj—3) — 1680z (t;—2)
+3990 2 (t;_1) — 3990 2 (tj41) + 1680 z (t;42)

+210 2 (tj+3)>7 (21)

s@W (tj_3) + 120 ™) (t;_5) + 1191 5 (¢,_)

+2416 s (t;) + 1191 @ (t;41)

1
+120 5(4) (tj_|_2) + 8(4) (t]‘+3) = ﬁ (8402 (tj_3)

—7560 z (t]‘_l) + 13440 z (t]‘) — 7560 2 (tj_|_1)

+840Z(t]‘+3)>, (22)

5 (t53) + 1208 (t;_5) + 119156 (¢;_1)
+2416 s (¢;) + 11915 (¢,,1)
+120 5% (t42) + s (t;43)

1

—12600 2 (t;_1) + 12600 = (£;41) — 10080 z (t, 1)
+2520z(tj+3))7 (23)

5 (t;_3) + 12059 (¢;_9) + 11915 (¢; )

+2416 ) (¢;) + 119159 (¢,,1)
190 5(6) () _ 1
+12057 (t42) + 8 (t43) = 55| 50402 (tj—3)

—30240 z (t;_2) + 75600 z (t;_1) — 1008002 (t;)

+75600 z (t;41) — 30240 z (t,45)

+5040 = (tj+3)). (24)

Using the operator notation E (z (t;)) = 2z (tj+1) [34],
Eqs. (19)—(24) are expressed by Eqgs. (25)—(30) as
shown in Box V. 1In Egs. (25)-(30), putting the
operator notation F = e
power of hD, we have:

hD as the expansion to the

h8 th

Ty — o (4.) — 9) (4. (11) (4.
s'(t;) = 2" (t)) 1512003 (t;) + 3991682 (t;)
+0 (r'), (31)
s"(t;)=2"(;) — e 28 (1) + —— 210 ()
J J 30240 J 60480 J
h'? (12) 11
- ; 2
s3ap01 0 (1) T O (R, (32)
Ko h8
Mop N — My 9) rp.y _ 10 (A1) (4,
h'0 (13) 11
h4 h6
(4) (4.y — (1) (4. ) py L (10) (4
SO (1) = 29 (1) 2 (1) = o200 1)
17 h8 . plo
L L(2) gy (14) (4.
coas00° ) " ggrep0 ¢ ()
+0 (h''), (34)
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,@)__1 —TE™3 —392E"2 — 1715 B~ + 1715 E + 392 E? 4 T E® () (25)
T Ry \E P T 120E 2 4 1191E ' + 2461 + 1191 E + 120 B2 1 B3 ) ~ '/
1 (422E*+1008E %+ 630E "' — 3360 + 630 E + 1008 E* + 42 E® (t) (26)
E-3 +120E-2 41191 E—! + 2461 + 1191 E + 120 E2 4 E3 7
o ( _Al, —210E~3 — 1680 E~2 + 3990 E—! — 3990 E + 1680 E? + 210 E* o(t) (27)
() h3 E-34+120E-241191E-! +2461 + 1191 E + 120E2 + E3 70
S0 ( 1 840 B3 — 7560 E~ 1 + 13440 — 7560 E + 840 E* (t:) (28)
T p B " VA i)y
() T \E31120E 2+ 1191 E-* + 2461 + 1191 E + 120 E2 + E° 77
$6) (¢ —2520 E~3 + 10080 E—2 — 12600 E~! + 12600 E — 10080 E? + 2520 E° 2 (t5) (20)
E-34+120E-2+1191 E-1 42461 + 1191 £ + 120 B2 + E3 70
‘ _375M0E3—3mﬂﬂﬂ + 75600 E—1 — 100800 4 75600 F — 3%%E*+W%E3/dt) (30)
(;) h6 E-3+120E-24 1191 E-! +2461 + 1191 E 4+ 120 E? 4 E3 70

Box V

4

SO (1) = 20 1) = 10 (1) 4 a0 1)

240 3024
—%Z(m) (t;) + %};1;)2(15) (t;)
+0 (h''), (35)
O (1) = 2 (1) = 1 (1) 4 200 1)
—& 212 () % A (t5)
4’1;%23%;%6 219 () + 0 (h). (36)

By defining the truncation error e (t) = z (t) — s (¢) and
replacing Eqs. (31)—(36) in the Taylor series expansion
of e(t; + wh), we find:

w? (2—T7w? + 14 w?)

, - 8 (8) (4.
e(tj +wh) 130060 h® 2\ (t5)
2 4
w(ﬁ—ﬁOw-+%w)h%wM%)
1814400
2 (30— 50 w? + 21 w*) |,

(10) (4.
3628300 BT ()
+0 (h'), (37)

where 0 < w < 1.

Theorem 1. Let the nonlinear singular two-point
boundary value problems of the second order have the
form of Eqs. (1)—(3) with the exact solution, z(t), and
approximate solution, s(t). Then, the septic B-spline
collocation method has a truncation error of O(h®) and
the convergence of this method is O(h®) for sufficiently
small.

4, Numerical problems and discussion

We introduce some physiological applications related to
nonlinear singular two-point boundary value problems
of the second order. The results are generated with
Mathematica using FindRoot function. The absolute
value of the difference between the exact solution and
the numerical solution is calculated and the absolute
residual errors for the problems with no exact solutions
are found.

Problem 1. Consider the following nonlinear singular
boundary value problem [5]:

Z(0)=0, z(1)=0, (38)

where the exact solution to Model (38) takes the form

z(t) = 2log (AAT"jl) , with A = 3—2y/2. Table 2 shows
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Table 2. Values of the maximum absolute errors for Problem 1.

n  Method in [6]

3

Method in [5] n

Method in [7] n

Method in [8] n

Present method

4.00 x 107* 20
2.53 x 107° 40
2.10 x 107 90

20 3.16 x 107° 6
90 1.55 x 107 ]
161 4.90 x 1077 10

5.03 x 10710 16
4.11 x 10712 32
2.54 x 10714 64

3.11 x 107¢ 10 1.08 x 1071
2.35 x 1077 20 7.10 x 10712
1.50 x 1078 40 6.05 x 107 1°

Table 3. Numerical results for Problem 2.

Method in [6] Method in [7]
n = 60 n =260, j, =5

Present method
n = 20

Present method
n = 60

0.0 0.82848327295802 —

0.1 0.82970607521884  0.829706075229
0.2 0.83337471691089  0.833374716949
0.3 0.83948989814383  0.839489898181
0.4 0.84805277036165  0.848052770408
0.5 0.85906491397434  0.859064914012
0.6 0.87252830841853  0.872528308451
0.7 0.88844529589927  0.888445295928
0.8 0.90681854026297  0.906818540286
0.9 0.92765098252660  0.927650982542
1.0 0.95094579461056  0.950945794637

0.828483290367166
0.829706092441288
0.8333757335984896
0.8394899139611924
0.8480527850035551
0.8590649271767254
0.8725283199657823
0.8884453056306942
0.9068185480743092
0.9276509883730854
0.9509457985037988

0.8284832903611578
0.8297060924352763
0.8333747335924774
0.8394899139551798
0.8480527849975414
0.8590649271707098
0.872528319959764
0.8884453056246733
0.9068185480682849
0.9276509883970594
0.9509457984979333

that the maximum absolute errors of the septic B-spline
collocation method are acceptable in comparison with
other methods [5-8].

Problem 2. Consider another nonlinear singular
boundary value problem [5] as follows:

0.76129 = (t)
" (¢ 2y = — 22
SO+37 0= o039

52(1)+ 2 (1) =5, (39)

Table 3 and Figure 1 show the numerical solutions
of the present method in comparison with those of
other methods [6,7]. Also, Figure 2 illustrates the

absolute residual errors R, (t) = |2/ () + 22/ (t) —
0.76129 2(t) _

W ,0 <t S ]., at n = 60 for Model (39),
which does not have any exact solution.

Problem 3. Consider the following nonlinear singular
boundary value problem [5]:

2
Z” (t) + 72:/ (t) — _efz(t)v

: (10)

subject to boundary conditions in three cases:

(i) 2'(0)=0,
(ii) 2'(0) =0,
(iii) 2'(0) =0,

01z(1)+2(1)=0,
z(1)+2(1)=0,
22(1)+ 2 (1) =0.

0.84

T S Y I S S R |
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0.4 0.6 0.8 1.0

t

Figure 1. Numerical solutions to Problem 2 by the

present method for n = 40.
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Figure 2. Absolute residual errors for Problem 2 at

n = 60.
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Table 4. Numerical results for Problem 3.
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Method in [6]
a=01,38=1,
~v=0,n =60

Present method
a=0.1,8=1,
~v=0,n =40

Method in [17]
a=1p=1,
~v=0,n =40

Present method
a=1,p8=1,
~v=0,n=40

0.0 1.14703993670271  1.147039019329926 0.3675181074 0.3675168151351779
0.1 1.14651055946170 1.1465096424107886 0.3663637561 0.36636232924657036
0.2 1.14492141825538  1.1449205020922848 0.3628959378 0.362894066125307
0.3  1.14226947822689  1.1422685635712044 0.3570991429 0.3570975457273243
0.4 1.13854966085306  1.1385487483652494 0.3489499903 0.3489484206280108
0.5 1.13375481292594  1.1337539033259227 0.3384136581 0.3384121487566203
0.6 1.12787566262296  1.1278747567071357 0.3254450019 0.3254435224405896
0.7 1.12090076206338  1.120899860725792 0.3099878567 0.309986040238538
0.8 1.11281641561478  1.112815519868545 0.2919789654 0.29197110306288504
0.9 1.10360659299888  1.103605704000184 0.2713185637 0.2713170101649496
1.0 1.09325282603337  1.0932519451088027 0.2479292837 0.24792772332382068
Table 5. Absolute residual errors and numerical results for Problem 3.
Method in [5] Method in [8] Present method Present method
t a=2,8=1, a=2,8=1, a=2,08=1, a=2,08=1,
y=0n=10 ~=0,n=10 ~¥y=0,n=10 ~v=0,n =40
0.0 — — — 0.27002964789651424
0.1 8.2261E-04 1.17552E-05 1.4627 x 10712 0.26875690062949353
0.2 7.7TT89E-04 5.59474E-06 1.37901 x 10~ 2 0.2649328175381816
0.3 7.2546E-04 1.77891E-06 1.26776 x 10712 0.258539789381345
0.4 6.5808E—-04 7.15070E-07 1.11477 x 10712 0.2495481802537009
0.5 5.8074E-04 4.01100E-07 9.49685 x 10713 0.23791588758927304
0.6 4.9869E-04 1.37600E—-06 7.78599 x 1013 0.22358770718136314
0.7 4.167T6E-04 2.70372E-06 6.17506 x 10~ 13 0.20649448302373294
0.8 3.3896E-04 6.88321E-06 4.69846 x 1073 0.18655201416659845
0.9 2.6816E-04 1.83404E-05 3.44058 x 10~ 13 0.16365968158038072
1.0 2.0607E-04 2.53189E-05 2.41918 x 10~ 13 0.137698746613583

Table 4 and Figure 3 show the numerical solutions
of the present method with different values of a in
comparison with other methods [6,17]. Furthermore,
Table 5 shows the absolute residual errors R, (t) =
|27 () + 22/ () +e D], 0<t <1 at a=2,n=10
and indicates that numerical solutions of Model (40) at
a = 2, n = 40 do not have any exact solution.

5. Conclusion

We presented a septic B-spline collocation method for
finding numerical solutions to the nonlinear singular
two-point boundary value problems of the second order.
At different values of n, the numerical results showed
that the proposed method had efficient solutions for the
studied models. Three applications were investigated,
which played a vital role in physiological models. We

0000vQ00o004000¢'00.00*oét’ooogq,,‘..“"
“ 1.0
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£ 0.8 +a=1.0
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Figure 3. Numerical solutions to Problem 3 at different
values of a.

observed that numerical accuracy of the proposed
method for the thermal explosions problem was better
than the results obtained by [5-8] and for the problems
of oxygen diffusion in a spherical cell with the kinetics
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uptake of Michaelis-Menten and heat sources distribu-
tion in human head, numerical solutions were similar to
the results obtained by [5-8] and [17]. Nevertheless, it
should be noted that these problems do not have exact

solutions.

Accordingly, we calculated the absolute

residual errors and presented the results.
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