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Abstract. In this study, the dynamical instabilities of a smart embedded micro-shell
conveying pulsating uid ow are investigated based on nonlocal piezoelasticity theory and
nonlinear cylindrical shell model. The micro-shell is surrounded by an elastic foundation,
which is suitable for both Winkler spring and Pasternak shear modules. The internal
uid ow is considered to be purely harmonic, irrotational, isentropic, Newtonian, and
incompressible and is mathematically modeled using linear potential ow theory, time mean
Navier Stokes equations, and Knudsen number. To bring the micro-scale problem closer
to the reality, the pulsating viscous e�ects and the slip boundary condition are also taken
into account. Employing the modi�ed Lagrange equations of motion for open systems,
the nonlinear coupled governing equations are achieved and, consequently, the instability
boundaries are obtained using Bolotin's method. In the section of numerical results, a
comprehensive discussion about the dynamical instabilities of the system is presented (such
as divergence, utter, and parametric resonance). It was found that the application of the
positive electric potential �eld would improve the stability of the system as an actuator or
as a vibration amplitude controller in the micro electromechanical systems.
© 2020 Sharif University of Technology. All rights reserved.

1. Introduction

Undoubtedly, nanotechnology is and will be the basis
of the future industrial revolution, and the discovery of
nanotubes is one of the major improvements that can
speed up this revolution. Generally, nanotechnology
involves the construction and application of biological,
chemical, and physical systems, ranging from micro
to nanometer. Nowadays, uid-conveying nanotubes
are actively researched and studied due to their exten-
sive possible applications in biological systems (e.g.,
biological separation, biosensing, molecular imaging),
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medicine (e.g., drug delivery), chemistry (e.g., fuel
storing cells, chemical analyses), physics (e.g., optical
structures), and other research areas [1{3].

The dynamic and instability analyses of uid-
conveying pipes are one of the important challenges
in the �eld of uid conveying systems, which basi-
cally started by the Trans-Arabian pipeline project in
1950 [4]. Certainly, the widespread applications of
pipes conveying or containing uids in various indus-
tries such as oil and gas, water and sewage, military
and aerospace, and medicine and chemistry are enough
to attract researchers' attention in this regard. Some
of the valuable pioneering works are as follows.

Paidoussis [5] examined uid and body interac-
tions in slender structures that convey axial ows. He
modeled and analyzed the dynamics and instabilities of
uid-conveying systems. Amabili [6] studied nonlinear
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dynamics and instabilities of circular cylindrical shells
conveying uid and classi�ed uid instabilities for
them. He utilized various nonlinear shell models,
modal expansion analyses, and energy approaches to
present a comprehensive analysis of the problem. Dy-
namical behavior of the uid-conveying pipes based
on various types of beam theories was investigated by
Reddy and Wang [7]. They obtained equation of mo-
tion via energy approaches, in which the �nite element
method was employed to solve the problem. Pellicano
and Amabili [8] studied dynamics and instabilities of
empty and uid-�lled circular cylindrical shells under
external loadings. They used modal analysis approach
to simulate the problem. Sadeghi and Karimi-Dona [9]
employed Finite Element Method (FEM) and the state
space approach besides MATLAB program to model
the dynamical behaviors of uid-conveying pipes with
a moving sprung mass on it. Gu et al. [10] used the
integral transform technique to obtain the dynamical
response of uid-conveying pipes.

In the micro- and nano-scale problems and in
the �eld of biomechanics, the utter phenomenon of
veins conveying blood ow was investigated by Kamm
and Pedley [11]. Paidoussis [12] proposed a model
for the Fluid-Structure Interaction (FSI) between the
blood ow and veins. Moreover, in the �eld of nano
mechanics, Yan et al. [13] studied the stability and
critical ow velocity of multi-walled carbon nanotubes
(CNTs) conveying uid. Nonlinear vibration analysis
of double-walled CNTs conveying uid was carried out
by Kuang et al. [14]. Ghorbanpour Arani et al. [15]
studied the ow-induced vibration and instability of
a smart polymeric micro tube subjected to the axial
electric �eld. They found that the imposition of electric
potential �eld had a signi�cant e�ect on the stability of
the smart micro tube. In another work, Ghorbanpour
Arani et al. [16] studied the nonlinear dynamical
response of embedded uid-conveyed micro-tubes rein-
forced by Boron nitride nanotubes (BNNTs). In other
works, Ghorbanpour Arani et al. [17,18] studied the
dynamic stability of double-walled BNNTs conveying
viscose uid. Atabakhshian et al. [19] studied nonlinear
dynamic and instability of an elastically coupled CNT-
PPB system with internal ow. They proposed an
elastically coupled nano-beam system composed of
CNT conveying uid and Piezoelectric Polymeric Beam
(PPB) polarized in the axial direction. They showed
that this system would improve the stability of CNT
conveying uid by applying positive electric potential
to the coupled PPB.

In all of the above investigations, a constant ow
velocity has been considered inside a structure, which
is not suitable for many empirical problems like those
with pumps or turbines in the pipelines. Amongst the
time-dependent ow regimes inside a circular cylindri-
cal shell, pulsating ow with purely harmonic nature

has attracted much attention amongst researchers due
to its important applications in industries. Practically,
special pumps generate pulsating ow (e.g., beating
pumps in biomechanics) and, arbitrarily, a wide range
of applications are classi�ed as purely harmonic irre-
spective of small velocity perturbations. Moreover, a
general time-dependent ow regime may be decoupled
into harmonic components as a Fourier series and,
in such cases, the analysis may be considered for a
single Fourier component [20]. In this regard, nonlinear
dynamics of pipes conveying pulsating uid with a
combination of parametric and internal resonances was
studied by Panda and Kar [21]. Azrar et al. [22] studied
the dynamic and parametric instabilities of single-
walled CNTs conveying pulsating and viscous uid.
Liang and Su [23] utilized the averaging method for
the stability analysis of single-walled carbon nanotubes
conveying pulsating and viscous uid. Pipes conveying
pulsating uid and exposed to the external vortex were
analyzed by Da et al. [24]. They employed multiple
time-scale method to obtain the parametric resonances
of the system. Nonlinear dynamics of simply supported
pipes with motion constraints and internal pulsating
uid was investigated by Wang [25]. Recently, micro
pulsating uid ow in heat pipes with alternate withes
was examined by Yang et al. [26]. Tubaldi et al. [27]
modeled nonlinear dynamics of shells subjected to
pulsating uid ow. They utilized a special pulsatile
time-dependent function for blood ow velocity based
on the heart beating period. They also recently
examined in another work [28] the e�ects of pulse-wave
propagation on nonlinear dynamics of a shell conveying
pulsatile ow.

The simulation of the small-scale structures is
usually done using two main categories: the Molecular
Dynamics (MD) method and the classical continuum
mechanics. It is clear that the MD method is a
costly and time-consuming method whose applica-
tion is limited to smaller nanostructures with a few
molecules. Contrary to the MD method, the nonlocal
elasticity theory was later developed [29] for larger scale
nano/micro-structures based on classical continuum
mechanics such as classical Euler Bernoulli beam,
Timoshenko beam, and shell theories [30{34].

Based on the above survey, the lack of proper
research on instability prediction and instability smart
control of uid-conveying microtubes can be clearly
felt. Hence, this study investigates the ow-induced
vibrations and instabilities of a smart embedded micro-
shell conveying pulsating uid, as schematically shown
in Figure 1. Parametric excitation due to harmonic
pulsation in the ow velocity, Knudsen number e�ects,
pulsation viscose e�ects, small-scale parameter, Win-
kler and Pasternak modules, and combined electro-
mechanical loadings are taken into account. The
unsteady uid motion and the e�ect of viscosity for
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Figure 1. Schematic of a smart embedded micro-shell
conveying pulsating uid.

turbulent ow are modeled using potential ow theory
and unsteady time-averaged Navier-Stokes equations,
respectively. The governing equations of motion are de-
rived using modal expansion analyses and the modi�ed
Lagrangian approach for open systems. In the results
section, divergence, utter, and parametric resonance
instabilities are examined in detail. It is concluded
that imposing axial electric �eld may be used as a
controlling factor to improve the stability of the system.
The results obtained in this study can be particu-
larly utilized to design and manufacture nano/micro
electromechanical systems in advanced biomechanics
applications with electrical �elds as in hydraulic sensors
and actuators.

2. Constitutive equations

2.1. Piezoelasticity theory
Based on piezoelasticity theory, stresses f�g and strains
f"g, as well as electric displacement fDg and electric
�eld fEg vectors, in piezoelectric materials, may be
combined as follows [35]:�
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�
�� ; (1)

where the coe�cients of thermal expansion, pyroelec-
tric, and temperature change are shown by f�g, fPg,
and ��, respectively. Eq. (1) can be expanded in
Eq. (2) as shown in Box I; the component of the
electric �eld can be written in terms of scalar functions

of electric potential � as follows [36]:

E = �r�; (3)

in which r is the gradient operator.

2.2. Nonlocal piezoelasticity theory
Based on the theory of nonlocal elasticity for piezo-
electric materials, the stress and electric displacement
�elds at a reference point (x) of a body are respectively
functions of the strain and electrical �elds at each
point of the body [37{39]. The nonlocal constitutive
equations for the piezoelectric material are expressed
as follows [40]:

�nlij (x)=
Z
V

� (jx� x0j ; �) �lij (x0) dV (x0) ; 8x 2 V;
(4a)

Dnl
i (x)=

Z
V

� (jx� x0j ; �) Dl
i (x0) dV (x0) 8x 2 V;

(4b)

where �nlij and Dnl
i are the components of nonlocal

stresses and nonlocal electric displacements, respec-
tively. The kernel function � (jx� x0j ; �) is the nonlo-
cal modulus, and jx�x0j is the Euclidean distance. � =
e0a=l is de�ned as the scale coe�cient that incorporates
the small-scale factor, where e0 is a constant appro-
priate for each material and obtained experimentally,
and a and l are the internal and external charac-
teristic lengths (e.g., crack length and wavelength),
respectively. In addition, �lij and Dl

i imply the local
stresses and local (i.e., classical) electric displacements
obtained from Eq. (2), respectively. According to
the axial polarization of the smart micro tube, the
nonlocal constitutive equations may be written as
follows [41,42]:�

1� (e0a)2r2� �nlij = �lij ; (5a)

�
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Box I
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where r2 represents the Laplace operator. The above
implicit relations couple the nonlocal values of stress
and electric displacement to their local values. To
achieve explicit relations, an iterative-based method
can be utilized as follows:�

�nlij
	k+1

= (e0a)2r2 ��lij	k +
�
�lij
	
; k � 0�

Dnl
ij
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ij
	k

+
�
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ij
	
; k � 0�

�nlij
	0

=
�
�lij
	
;�

Dnl
ij
	0

=
�
Dl
ij
	
: (6)

In the above iteration loop, the �rst step is started
by the local results and k is the iteration number.
Clearly, increasing the iteration number improves the
accuracy of the nonlocal results. In addition, the order
of the small-scale parameter shows that just a few
steps of iteration give enough accuracy, as shown in
the numerical results section. From now on, nonlocal
components of stresses and electric displacement are
used without superscripts.

2.3. Kinematic relations
According to nonlinear shallow shell models, the dis-
placement components of an arbitrary point of the
body are expressed as follows:

~U (x; �; z; t) = u (x; �; t)� z @w (x; �; t)
@x

;

~V (x; �; z; t) = v (x; �; t)� z 1
R
@w (x; �; t)

@�
;

~W (x; �; z; t) = w (x; �; t) ; (7)

where u, v and w are the components of the shell
mid-plane displacement along x, �, and z coordinates,
respectively, and t is the time. Based on Donnell's
nonlinear shell theory, the strain-displacement relations
yield the following:8>>>>>><>>>>>>:
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2.4. Mode expansion of displacements and
electric potential

By considering simply supported boundary conditions
at both ends of the cylindrical shell, the following

mode expansion for components of displacement may
be considered [43]:

u =
MX
m=1

NX
n=0

sin
�

(2m� 1)�x
L

��
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��
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�
; (9)
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W c
mn (t) cos (n�)
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mn (t) sin (n�)

�
;

where m and n denote the longitudinal half wave
number and circumferential wave number, respec-
tively, M and N are the maximum values of wave
numbers. U cmn(t), Usmn(t), V cmn(t), V smn(t), W c

mn(t),
and W s

nm(t) are time-dependent Degrees Of Free-
dom (DOF), and fqdg = [U cmn(t); Usmn(t); V cmn(t);
V smn(t);W c

mn(t);W s
mn(t)] is de�ned as the vector of

DOF. The vector dimension of fqdg denotes the number
of DOFs, which may be calculated as:

NDOF = 3� (2M �N +M) :

For electric potential, �, the following mode expansion
can be proposed [44]:

� = �0

�
1� x

L

�
+

MX
m=1

�sm sin
�

(2m� 1)�x
L

�
; (10)

where �sm is the time-independent amplitude compo-
nent of electric potential, fq�g = f�smg is de�ned as
the vector of electric potential amplitudes, and �0 in-
dicates the magnitude of the imposed electric potential.
Because of the unidirectional, longitudinally polarized
electric �eld, the electric potential is expanded as a
function of the longitudinal coordinate x. In the
numerical results section, the accuracy of the results
will be examined with respect to di�erent values of M
and N .

In addition, a vector of unknowns can be intro-
duced as follows:

fqg = ffqdg ; fq�ggT : (11)
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2.5. Energy functions
Based on the theory of piezoelectricity, the total
potential and kinetic energies of the micro tube with
length L, cross-section A, volume 8, and density �s are
obtained as follows [45]:

US =
1
2

Z L

0

Z
A

[� D]
�

"
�E
�
dAdx; (12)

TS =
1
2
�S
y
8
~V :~V d8; (13)

where � and D are the nonlocal components of
stress and electric displacement and obtained through
Eqs. (5). In addition, ~V corresponds to the velocity
vector of the micro tube, which leads to the following
relation:
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1
2
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Z L

0

Z
A

"�
@u
@t
� z

�
@2w
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��2

+
�
@w
@t

�2
#

dAdx: (14)

The external works done by the surrounded elastic
foundation are expressed as follows:

Welastic foundation=
1
2

Z L

0

��KWw+GPr2w
�
wdx;

(15)

where KW and GP are Winkler's spring foundation
modulus and Pasternak's shear foundation modulus,
respectively. Moreover, the energies related to the uid
ow are evaluated separately in the following section.

3. Pulsating uid ow modeling

This study considers visco pulsating micro uid ow in-
side the micro shell, which is one of the most empirical
models. The micro uid ow is assumed to be turbulent
fully developed, Newtonian, irrotational, isentropic,
and incompressible. The unsteady uid motion is
obtained based on potential ow theory and, to bring
the micro scale problem closer to reality, the e�ects
of pulsating viscosity and slip boundary condition are
considered based on unsteady time-averaged Navies-
Stokes equations and Knudsen number theory [6,10].

Let us assume that no cavitation occurred at
the uid and shell interfaces. An unsteady potential
function ' may be found, which satis�es the Laplace
equation and following boundary condition as [46]:

r2' =
@2'
@x2 +

@2'
@r2 +

1
r
@'
@r

+
1
r2
@2'
@�2 = 0; (16)

@'
@r

���� r=R =
�
@w
@t

+ Uf
@w
@x

�
; (17)

where Uf is the pulsating ow velocity. By employing

the separation of variables method, the general solution
of Eq. (16) may be obtained as follows:

' (x; r; �; t)=
MX
m=1

NX
n=0

�m (x) �m;n(r) cos (n�)fm;n (t):
(18)

By substituting Eq. (18) into (16) besides applying
the regularity condition at r = 0, the unknown
functions will be obtained. By utilizing the boundary
condition (17), Eq. (18) will be evaluated as follows:

� (x; r; �; t) =
MX
m=1

NX
n=0

L
m�

In (m�r=L)
I 0n (m�R=L)�

@wm;n
@t

+ Uf
@wm;n
@x

�
; (19)

where In and I 0n are respectively the modi�ed Bessel
function of the �rst kind of order and its derivative.
Consequently, the perturbation pressure at the inner
wall of the shell is found as follows [6]:

p = ��F
MX
m=1

NX
n=0

L
m�

In (m�r=L)
I 0n (m�R=L)�

@
@t

+ Uf
@
@x

�2

wm;n; (20)

in which �F is the density of uid ow.

3.1. Potential energy of uid ow
Consider the uid ow inside the micro tube with
occupied volume � and surrounded surface �. The
total energy related to the uid-ow ETF is given by:

ETF =
1
2
�f
y

�
~Vf : ~Vf d�: (21)

According to Green's theorem, Eq. (21) is evaluated as
follows:

ETF =
1
2
�f
y

�
r	:r	d� =

1
2
�f
x

�

�
	
@	
@�

�
d�;

(22)

where 	 is the potential function of the uid ow, and
� is the normal vector of boundary surfaces, which is
considered positive outward. Integration of Eq. (22)
gives:
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1
2
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0

Z L

0
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+
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2
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�
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rdrd�

� 1
2
�f
Z 2�

0

Z R

0

�
	
@	
@x

�
x=0

rdrd�; (23)

in which the boundary conditions are:
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@	
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@'
@r
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@	
@x

= Uf +
@'
@x

;

	jx=L = UfL+ 'jx=L;

	jx=0 = 'jx=L: (24)

By using Eq. (24), Eq. (23) may be obtained as follows:
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�fU2

f�R
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where EpF denotes the perturbation velocity potential
of uid and is given by:

EpF =
1
2
�f
Z 2�

0

Z L

0

�
'
@'
@r

�
r=R

dxRd�: (26)

Moreover, other terms in Eq. (25) have no inuence on
the total energy of uid ow. By substituting Eq. (16)
into Eq. (17) and employing Eq. (7), we yield the
following:

EpF =
1
2
�f
Z 2�

0

Z L

0
(')r=R

�
@w
@t

+ Uf
@w
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�
dxRd�:

(27)

Using Eq. (9), Eq. (27) may be obtained as follows:

EpF =
1
2
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(28)

By substituting Eq. (28) into Eq. (25), the total energy
of uid is derived and divided as follows:

ETF = TF � VF + EG; (29)

where TF , EG, and VF are kinetic, gyroscopic, and
potential energies of the uid ow, respectively, and
are expressed as follows [6]:

TF =
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EG=
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�
dxRd�: (32)

The unsteady ow velocity Uf (t) for pulsating uid
ow is expressed by the following time-dependent
function as follows:
Uf (t) = U0 (1 + � cos (
t)) ; (33)

where U0 is the mean value of ow velocity, � is the
amplitude of the harmonic uctuation, and 
 is its
frequency. In addition, it is clear that the expressions
of TF , EG, and VF will be time dependent in this case
and, therefore, this leads to the addition of a new term
in the Lagrange equations of motion in Section 4.

3.2. Viscous e�ects for pulsatile ow
In this section, the pulsating uid viscosity e�ect is
simulated as an external force acting on the inner wall
of the shell. Considering a fully developed turbulent
and incompressible axial ow regime with uctuating
velocities ux, u�, ur in the axial, circumferential,
and radial directions, respectively, the time-averaged
Navier-Stokes equations are given by:

1
�f
@P
@x

= �1
r
d
dr

(r�ux�ur) +
�
r
d
dr

�
r
dUf
dr

�
;

1
�f
@P
@r

= �1
r
d
dr
�
r�u2
r
�

+
�u2
�
r
;

0 =
d
dr

(r�ur�u�) + 2
�ur�u�
r

; (34)

where � is the kinematic viscosity, and the overbar
indicates the time-averaged components. In the fol-
lowing, by using the Computational Fluid Dynamics
(CFD), the pressure distribution will be obtained as
follows [47]:

P (x; r) = �2
�f
R
U2
� x� �f �u2

r + �f
Z r

R

�u2
� � �u2

r
r

dr

+P (0; R); (35)

where the stress velocity, U� , is expressed as follows:

U� =
�
�� dUf

dr

�1=2

r=R
=
�
�w
�f

�1=2

=
�

1
8
fU2

f

�1=2

;
(36)

where f and �w are the friction factor and the uid
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frictional force per unit area of the shell, respectively.
The distribution of pressure on the shell interfaces and
the drop pressure in the axial direction of the shell are
given by:

P (x;R) = �2
�f
R
U2
� x+ P (0; R)

= ��f
�
f

4R
U2
f +

dUf
dt

�
x+ P (0; R); (37)

�Pw=P (0; R)�P (L;R)=�f
�
f

4R
U2
f +

dUf
dt

�
L:
(38)

By ignoring the e�ects of ow acceleration, the con-
stant friction traction force in the axial direction is
given by:

�w = f�fU2
f
�

8: (39)

Based on the classical uid mechanic, the friction factor
(f) of the micro tube is a function of the Reynolds
number (Re) and the mean roughness (�) of the inner
wall of the shell. The friction factor is estimated
through empirical Colebrook equation as follows:

1p
f

+ 2 log
�
�=2R
3:7

+
2:51

Re
p
f

�
= 0; (40)

in which Re = 2RUf=�.
Lastly, the total work associated with the uid

viscosity is given by:

WFluid Viscosity =
Z 2�

0

Z L

0
(�PW + �Wu)dxRd�:

(41)

3.3. E�ect of slip boundary conditions
Often, the FSI problems are assumed with no-slip
boundary conditions in the uid and shell interfaces.
However, this assumption will not be valid for the
micro-scale problems due to the nonlocality and Knud-
sen number e�ects [48]. In other words, based on Kn
theory, the value of Kn in the micro-scale problems will
exceed 0.01 and, therefore, an average uid Velocity
Correction Factor (VCF) should be applied to all of
the following equations as follows [49]:

V CF =
Vavg; slip

Vavg; no�slip
=
�

4
�

2���
��

��
Kn

1+Kn

�
+1
�
;
(42)

where �v is the tangential momentum accommodation
coe�cient and is measured to be 0.7 for most practical
purposes [50].

4. Method of solution

This study utilized the modi�ed Lagrange equations
of motion for open systems with a control volume

consisting of the micro shell and the uid ow passing
through it [27,51]:

d
dt

�
@ (TS + TF + EG)

@ _qk

�
� @ (TS + TF + EG)

@qk

+
@ (US + VF )

@qk
= Qk; k = 1; ::::; 3N; (43)

in which qk is the element of vector fqg previously
introduced in Section 2.5, the terms @TS

@qk and @TF
@qk

are zero, and Qk is the generalized force obtained
by di�erentiation of the virtual work done through
external forces:

Qk =
@W
@qk

: (44)

By employing mode expansions (9) and (10), Eq. (43)
is evaluated as follows:

[M ] f�qg+ [C(t)] f _qg+ [K(t)] fqg = fQg ; (45)

where [M ] and [C(t)] are the mass and damping
matrices, respectively, and [K(t)] is the sti�ness matrix
composed of linear and nonlinear terms as follows:

[K(t)] = [KL(t) +KNL(t)] : (46)

Because of static coupling between mechanical and
electric displacement, Eq. (45) may be rearranged
based on Eq. (11) as follows:�

Mdd 0
0 0

��
�qd
�q�

�
+
�
Cdd 0
0 0

��
_qd
_q�

�
+
�
Kdd Kd�
K�d K��

��
qd
q�

�
=
�
Qd
Q�

�
: (47)

According to the lack of external electrical load, the
second sets of Eq. (47) lead to the following:

fq�g = � hK�1
��K�d

i fqdg : (48)

Through Eq. (48), q� in the �rst sets of Eq. (47) is
eliminated and yields a set of modi�ed equations of
motion as:

[Mdd] f�qdg+ [Cdd(t)] f _qdg+ [KM (t)] fqdg = fQMg ;
(49)

where:
KM = Kdd �Kd�K�1

�� K�d;

QM = Qd �Kd�K�1
��Q�: (50)

Of note, the nonlinear modi�ed sti�ness matrix
[KM (t)] and the damping matrix [Cdd(t)] in Eq. (49)
are harmonically time dependent by considering the
pulsatile ow regime according to Eq. (34) as follows:

KM (t) = f1(sin 
t; cos 
t);

Cdd(t) = f2(sin 
t; cos 
t): (51)



V. Atabakhshian and A. Shooshtari/Scientia Iranica, Transactions B: Mechanical Engineering 27 (2020) 730{744 737

4.1. Dynamic instability formulation
For static uid velocity condition (� = 0), the following
general solution can be expressed for Eq. (49) as
follows:

fqdg = fq̂dg exp (! t) ; (52)

in which fq̂dg is the amplitude of the displacements
vector, and ! is a complex circular frequency composed
of real and imaginary parts that represent damping and
natural frequencies, respectively.

By introducing the secondary vector fSg =
!fqdg, Eq. (49) is converted to the following state space
problem:

[	] fXg = ! fXg ; (53)

where:

[	] =
�

0 I
�M�1

dd KM �M�1
dd Cdd

�
;

fXg = [fqdg ; fSg]T : (54)

Eq. (53) is an eigenvalue problem with nonlinear
sti�ness terms that can be solved according to the
following iterative procedure [52]:

Step 1: Calculating linear eigenvalues and eigen-
vectors by ignoring all of the nonlinear terms in the
sti�ness matrix;
Step 2: Scaling up the eigenvectors and estimating
nonlinear terms in the sti�ness matrix;
Step 3: Considering nonlinear and linear compo-
nents of the sti�ness matrix together and evaluating
eigenvectors and eigenvalues of the updated eigen-
value problem;
Step 4: Comparing new and previous eigenvectors
until reaching the convergence conditions; otherwise,
Steps 2 to 4 must be repeated.

In this study, the above procedure is performed
until the maximum relative error between the two
successive iterations becomes less than 0.1%.

4.2. Parametric instability formulation
In order to study the parametric instability of the
system, it is usual to study the e�ects of amplitude (�)
and frequency (
) of the pulsating ow on the system
stability at various static uid velocity U0 levels. The
boundaries of the regions of parametric resonance may
be obtained usually via the Bolotin's [53] or Floquet
methods. Based on Bolotin's method, the generalized
coordinate is assumed to be periodic and is expressed
in the following form:

qd(t) =
�NX

k=0

�
ak sin

�
k
t

2

�
+ bk cos

�
k
t

2

��
: (55)

By substituting Eq. (55) into Eq. (49) and setting the
coe�cients of harmonics to zero, the following algebraic
equation is obtained:

[C] fY g = f0g ; (56)

where fY g = fb0; a1; b1; ::::; a �N ; b �NgT is the am-
plitude vector. The characteristic equation of this
problem is expressed as follows:

f(C) = det(C) = 0: (57)

This equation is a nonlinear algebraic equation on

, which is solved numerically by the mathematical
software to detect the system's parametric resonance
instability boundaries.

5. Numerical results

In this section, the dynamical instabilities of a smart
micro tube surrounded by an elastic foundation and
under internal pulsating micro ow and axial electric
�eld are examined, as shown in Figure 1. To this
end, divergence and utter instabilities, which occur by
increasing the mean ow velocity (U0), and parametric
resonance instability in the case of increasing dimen-
sionless pulsation amplitude (�) are studied. The micro
tube is considered to be made of piezoelectric materials
as PZT4 and its structural properties are presented in
Table 1. A comprehensive parametric study has been
made based on the e�ects of uid ow components
(mean ow velocity and the frequency and pulsating
magnitudes), small-scale parameter, elastic foundation
modules, Knudsen number, uid viscosity, geometric
nonlinearity, and applied electric voltage.

5.1. Accuracy of the results
The accuracy of the results is examined in Table 2 for
di�erent magnitudes of M and N and for both linear
and nonlinear approaches. From this table, it can be

Table 1. Properties of PZT4.

Properties of PZT4 Ref. [45]

C11 (GPa) 139
C22 (GPa) 115
C12 (GPa) 77.8
e11 (C/m2) 15.1
e12 (C/m2) {5.2
�11 (C2/Nm2) 6:46� 10�9

p11 (C/m2K) �2:5� 10�5
�1 (1/K) 7:41� 10�6

�2 (1/K) 2:11� 10�6

� (kg/m3) 7500
L=R 20
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Table 2. Accuracy of the results for various mode expansions.
N(U�0 = 0:0001; � = 0) N(U�0 = 0:001; � = 0)

M 1 2 3 1 2 3

1
NDOF = 9
Im(!�)NL=0:00934
Im(!�)L=0:00925

NDOF = 15
Im(!�)NL=0:00942
Im(!�)L=0:00925

NDOF = 21
Im(!�)NL=0:00947
Im(!�)L=0:00925

NDOF = 9
Im(!�)NL=0:00498
Im(!�)L=0:00460

NDOF = 15
Im(!�)NL=0:00523
Im(!�)L=0:00460

NDOF = 21
Im(!�)NL=0:00537
Im(!�)L=0:00460

2
NDOF = 18
Im(!�)NL=0:00943
Im(!�)L=0:00925

NDOF = 30
Im(!�)NL=0:00946
Im(!�)L=0:00925

NDOF = 42
Im(!�)NL=0:00950
Im(!�)L=0:00925

NDOF = 18
Im(!�)NL=0:00531
Im(!�)L=0:00460

NDOF = 30
Im(!�)NL=0:00542
Im(!�)L=0:00460

NDOF = 42
Im(!�)NL=0:00548
Im(!�)L=0:00460

3
NDOF = 27
Im(!�)NL=0:00950
Im(!�)L=0:00925

NDOF = 45
Im(!�)NL=0:00950
Im(!�)L=0:00925

NDOF = 63
Im(!�)NL=0:00950
Im(!�)L=0:00925

NDOF = 27
Im(!�)NL=0:00550
Im(!�)L=0:00460

NDOF = 45
Im(!�)NL=0:00552
Im(!�)L=0:00460

NDOF = 63
Im(!�)NL=0:00552
Im(!�)L=0:00460

concluded that the accuracy of the results is su�ciently
enough for linear analyses if (M;N) = (1; 1) (i.e., DOF
= 9) and for nonlinear analyses if (M;N) = (3; 1) (i.e.,
DOF = 27).

5.2. Validation of the results
In order to validate the present results, at �rst, the
piezoelectric properties of the structure, small-scale
parameters, and elastic medium are neglected, and
the uid ow velocity is assumed constant. The shell
speci�cations used in this simulation include:

R = 0:041275 m; L = 0:1206 m;

h = 0:127 mm; E = 70� 109 Pa;

�=2700 kg=m3; �F =1000 kg=m3; �=0:33:

However, the results are compared with the �ndings of
Amabili and Graziera [54], as shown in Figure 2, for
vibration and stability of the shell conveying uid. It
can be seen that the obtained results are close to those
reported by Amabili and Graziera [54], demonstrating
the validity of this work.

For another comparison, the piezoelectric proper-
ties of the structure and elastic medium are neglected.
In other words, the vibration of a cylindrical shell
considering size e�ects is studied considering:

h = 0:34 mm; E = 1:6T Pa;

D = 0:678 nm; � = 0:19:

Table 3 shows the frequency of the structure for
di�erent length-to-diameter ratios. It is found that the

Figure 2. Comparison of the dimensionless natural
frequency and dimensionless ow velocity for the
simpli�ed analyses of the present work and Amabili and
Graziera [54].

results of this paper are in good agreement with the
data of Mohammadi et al. [55].

Now, let us introduce the dimensionless parame-
ters used in this study as follows:

U�0 = U0

q
�f=C11; 
� = 
L

q
�=C11;

!� = !L
q
�=C11; � =

e0a
L
; �� =

�Afp
EI mf

;

K�w = Kw=C11; G�P = GP =C11Rh; �W =
w
L
;

�X =
x
L
: (60)

The results will be presented in the dimensionless form.

Table 3. Comparison of the natural frequencies (THz) obtained by the nonlocal elasticity theory.

L=D Mohammadi et al. [55] Present work Error (%)
4.86 0.776 0.768 1.03
7.47 0.346 0.341 1.44
13.89 0.161 0.158 1.86
17.47 0.114 0.111 2.63
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5.3. Modal analyses and critical ow velocities
for static uid ow (� = 0)

E�ects of increasing U�0 on the natural and damping
frequencies of the smart micro tube for the �rst three
vibrational modes are studied in Figures 3(a) and
3(b). As can be seen from these �gures, by increasing
U�0 , the imaginary part of natural frequencies will
decrease until reaching the value zero at U�0 = 0:0012,
0.0023, and 0.0048 (for the �rst, second, and third
modes, respectively), which are introduced as the
critical ow velocities. It is clear from Figure 3(b)
that, at these points, the real part of frequencies
becomes nonzero and divergence instability will occur.
For more clarity, let us consider the increasing ow
velocity for the �rst mode (fundamental mode). In
this mode, at �rst, the imaginary part of frequency
decreases by increasing ow velocity, which implies less
stable conditions. The critical ow velocity will be
U�0 = 0:0012, and the divergence instability occurs
via a pitchfork bifurcation point, as shown in Fig-
ure 3(b). In addition, by increasing ow velocities to
a greater extent, it becomes clear that in the range

Figure 3(a). Dimensionless natural frequencies versus
dimensionless ow velocity for the 1st to 3rd modes.

Figure 3(b). Dimensionless damping frequencies versus
dimensionless uid velocity for the 1st to 3rd modes.

of 0:0012 < U�0 < 0:0048, the �rst and second modes
will merge, which is another kind of instability known
as utter instability. Flutter instability occurs more
often at higher ow velocities. Figure 4. depicts the
e�ects of the small-scale parameter on the fundamental
frequency and the critical ow velocity. It is clear that
the small-scale parameter should be considered in the
order of structural characteristic length of the system.
Therefore, in this study, a maximum value of about
120 nm on a small scale is considered. According to this
�gure, by increasing ow velocity, the frequency and
the critical ow velocity will decrease at an increasing
rate. The variation of uid viscosity magnitude is
demonstrated in Figure 5. It can be observed that
the inuence of viscosity becomes more remarkable
when the uid velocity increases. Additionally, the
fundamental frequency and the critical ow velocity
of the system will increase when the viscosity of uid
increases, which means that the stability of the system
has improved. E�ects of externally applied voltage on
the fundamental frequency are shown in Figure 6. It

Figure 4. Dimensionless ow velocity versus
dimensionless natural frequency for various small-scale
parameters for � = 0.

Figure 5. Dimensionless ow velocity versus
dimensionless natural frequency for various magnitude of
uid viscosity for � = 0.
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is concluded that, at a constant ow velocity, applying
positive (direct) electric potential increases the funda-
mental frequency and the critical ow velocity, which
means that the stability of the system has increased. It
is also found that imposing negative (indirect) electric
potential decreases the fundamental frequency of the
system. This statement means that the application
of external electric �eld is an e�ective controlling
parameter for the smart uid-conveying systems. To
compare the magnitudes of linear and nonlinear natural
frequencies, Figure 7 shows the variations of frequency
ratio versus mean ow velocity for di�erent small-scale
parameters. As can be seen from this �gure, when
the mean ow velocity is lower than U�0 < 0:0004, the
di�erence between nonlinear and linear frequencies is
lower than 3% for static uid ow (� = 0) and is lower
than 5% for dynamic uid ow (� = 0:02). It can be
concluded that the e�ects of geometric nonlinearity will
increase in case of an increase in the velocity of uid
ow, and this is more remarkable when the uid ow is
dynamic. E�ects of the small-scale parameter are also

Figure 6. Dimensionless ow velocity versus
dimensionless natural frequency for various applied
voltages for � = 0.

Figure 7. Frequency ratio versus dimensionless ow
velocity for di�erent values of the small-scale parameter.

considered in this �gure. It is shown that considering
the small-scale parameter increases the frequency ratio
of the system for both dynamic and static uid ows.

5.4. Parametric instability of dynamic uid
ow (� 6= 0)

By enhancing the dimensionless pulsation amplitude
of uid ow (�), the parametric resonance instability
occurs, and its boundary curves are achieved through
Eq. (57). According to previous literatures, the results
of this analysis will be commonly examined in the
frequency, 
, amplitude, �, plane at various �xed levels
of all other inuencing parameters such as mean ow
velocity, viscosity, small-scale parameter, etc. Figures 8
to 12 show the instability boundary curves for the
system. From all of these �gures, the regions outside
and inside the curves are related to the stable and
unstable conditions, respectively. According to these
�gures, by increasing the mean ow velocity, the
instability boundaries move to the down and left sides
and will expand beyond the previous ones. This means
that a smaller pulsating amplitude and a wider range
of pulsating frequencies lead to instability.

E�ects of the small-scale parameter are particu-
larly studied in Figure 8. As can be seen from this
�gure, the e�ects of nonlocality are more signi�cant
at higher ow velocities. It is shown that, given
the nonlocality a�ects, the resonance regions move
from higher frequencies to lower ones (towards left
and slightly down). This means that the natural
frequencies of the system have decreased. In addition,
at a constant (�), the resonance region will be narrower
than previous one, which means also a more stable
condition in this case. Figure 9 shows the instability
boundaries of the viscous-uid conveying beam. It
is observed that the e�ects of uid viscosity strongly
depend on the mean ow velocity. As the mean ow
velocity increases, the inuences of the uid viscosity
become more signi�cant. Additionally, with an increase

Figure 8. Instability region of a smart micro shell for
U�0 = 0:0001 (right side) and U�0 = 0:001 (left side) and
various dimensionless small-scale parameters.
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Figure 9. Instability boundaries of a smart micro shell
for U�0 = 0:0001 (right side) and U�0 = 0:001 (left side) and
various dimensionless uid viscosities.

Figure 10. E�ects of applied electric �eld on instability
boundaries of a smart micro shell for U�0 = 0:0001 (right
side) and U�0 = 0:001 (left side).

in uid viscosity, the area of the instability region
reduces and the instability boundaries slightly shift to
the right. This is because of the increasing natural
frequencies of the system, as observed in Figure 6. To
evaluate the e�ects of the piezoelectric properties of the
smart shell, the instability response of the system is
obtained by applying direct and indirect external volt-
ages. Figure 10 illustrates the instability boundaries of
the system under di�erent magnitudes of the applied
voltage. It is found that by applying direct voltage, the
instability curves move to the right, which means that
the resonance frequencies of the system have increased.
In other words, direct voltage increases the stability
of the system and indirect voltage does the opposite.
Figure 11 illustrates the e�ects of both Winkler and
Pasternak elastic foundations on the instability bound-
aries of the system for U�0 = 0:001. It is shown that the
unstable areas of the system shift to the left when the
elastic foundation exists, because the sti�ness of the
elastic foundation absorbs the vibrating energy of the
system and makes a sti�er and more stable structure.

Figure 11. E�ects of elastic medium on instability
boundaries of a smart micro shell for U�0 = 0:001.

Figure 12. E�ects of Kn on instability boundaries of a
smart micro shell for U�0 = 0:001.

Figure 11 depicts a more stable condition from the
Pasternak foundation (considering both normal and
shear e�ects) than the Winkler foundation with only
normal loads. For a micro uid ow, the value of Kn is
in the range of 10�2 < Kn < 10�1 and, therefore, the
slippery regime occurs. It can be seen from Figure 12
that the enhancement of Kn value moves the instability
area to the right and down, which means a less stable
condition. In fact, increasing Kn means increasing the
mean free path of uid and results in the lower sti�ness
of the system.

6. Conclusion

Instability prediction of a uid-conveying pipe (as a
historical challenge for the engineers) on a micro scale
with an internal pulsating ow regime was investigated
in this study. To obtain the stability active control of
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the system (sensing and actuating), the piezoelectric
material was employed for the body, and e�ects of
applying external electric �eld on the stability of the
system were investigated. Nonlocal piezoelasticity
theory, nonlinear cylindrical shell model, and energy
approaches were employed to obtain the nonlinear
electro statically coupled equations of motion. By
applying mode expansion analyses, the equations of
motion were discretized and solved via the state space
problem. Consequently, the boundaries of the para-
metric resonance instability were achieved via Bolitin's
method. In the numerical results, e�ects of various
parameters such as mean ow velocity, small-scale
parameter, applied voltage, uid viscosity, Knudsen
number, and elastic foundation constants on dynamical
instabilities of the system were studied. It was shown
that the imposed positive electric potential �eld along
the micro shell increased natural frequency, critical
ow velocity, and the stability of the structure and
vice versa. In addition, it was observed that the uid
viscosity and small-scale parameter had major e�ects
on the critical ow velocity and the stability of the
system. This work was presented to extend or complete
the application of hydraulic sensors or actuators in
advanced nano/micro electro-mechanical systems.
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