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Abstract. This study aims to investigate the stagnation-
ow solidi�cation of vapor
from saturated air. Saturated air with strain rate a impinges on a 
at plate and, thus,
condensation occurs and an icy layer forms on the plate because the plate temperature is
below the freezing temperature of water. The ice surface was modeled as an accelerated 
at
plate that moves toward the impinging 
uid. The unsteady Navier-Stokes equations were
subjected to a similarity transformation to obtain a single ordinary di�erential equation for
velocity distribution. Two methods of solution were used for the energy equation: a �nite-
di�erence numerical technique and a numerical solution of a similarity equation. These two
results were compared to determine the superior accuracy. First, freezing time increases as
the far-�eld temperature decreases from 0�C and, then, rapidly approaches zero as the far-
�eld temperature approaches 0�C. Despite the expectation that condensation would begin
at the substrate in a physical experiment, here, the size of the cell next to the substrate
controls the time at which condensation begins. It was found that the maximum time
before freezing began at an air temperature of about 5�C for 0.1 and 0.2 mm sizes. The
ultimate frozen thickness for two saturated air temperatures was presented.
© 2020 Sharif University of Technology. All rights reserved.

1. Introduction

In the present study, the freezing of water vapor
from saturated air is investigated in two-dimensional
Cartesian stagnation 
ow. Solidi�cation is one of the
most interesting phenomena in natural processes and
industrial applications. This phenomenon comprises
heat transfer accompanied by phase change. Glass,
metal, plastic and oil, food, and other corresponding
industries require good insight into solidi�cation be-
havior as the nature of solid growth. Similarly, studies
relating to phase change in stagnant media can help
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acquire a better understanding of the convection e�ect
upon interface behavior. In the aerospace industry, the
freezing of saturated air vapor and the conditions for
its freezing in front of the aircraft is very important.
This phenomenon may also occur at the tip of a
missile. Investigations in the �eld of heat transfer in
phase change or solidi�cation in stagnation 
ow with
or without similarity solutions and related studies are
presented in the following. The classic problem of ice
formation in polar seas was solved using the analytical
method by Stefan [1]. The one-dimensional heat 
ux
for phase change issues was presented by Goodrich [2].
An experimental study on natural convection in the

uid border between liquid and solid phases was carried
out by Sparrow et al. [3]. Numerical methods for
solving the problems of freezing the 
ow of natural
convection between two isolated plates were presented
by Lacroix [4]. A three-dimensional numerical study
of free convection with phase change in a channel
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with a rectangular cross-section was performed by
Yeoh et al. [5]. An analysis of the combination of
hydrodynamic behavior and behavior of the solid-
liquid boundary layer of 
uids, located between two
freezing isolated plates, was carried out by Hadji and
Schell [6]. A method for calculating time-dependent
heat 
ux caused by natural convection during freezing

uid between two isolated plates was presented by
Hanumanth [7]. An integrated model for continuous
phase change issues was presented and investigated by
Oldenburg and Spera [8]. The problem of freezing
molten liquid drops on a rigid plate model was solved
by Trapaga et al. [9], and a comparison between
numerical modeling and laboratory results of deforma-
tion and solidi�cation of a drop on a cold plate was
made by Watanabe et al. [10]. Model transformation
and freezing adjusted to a drop impinging on the
substrate plate was evaluated by Marchi et al. [11].
The 
ow and heat transfer of viscous 
uid was pro-
duced by the axisymmetric stagnation 
ow on a 
at
plate whose coordinates damped oscillatory motion,
as investigated by Weidman and Mahalingam [12].
Flow and heat transfer in the asymmetric three-
dimensional viscous stagnation 
ow was investigated by
Shokrgozar and Rahimi [13]. Viscous stagnation 
ow
and heat transfer in the asymmetric three-dimensional
system with suction and blowing was considered by
Shokrgozar and Rahimi [14]. The stagnation-point

ow of Walters-B 
uid induced by a Riga plate was
investigated by Sha�q et al. [15]. The problem of
a steady Magnetohydrodynamics (MHD) boundary
layer 
ow over a semi-in�nite stretching surface with
a power-law velocity was considered by Hammouch
et al. [16]. A hygro-thermo-mechanical multiphase
model that describes the freezing behavior of partially
saturated air-entrained concrete was investigated by
Eriksson et al. [17]. The unsteady stagnation-point
boundary layer 
ow and heat transfer of a particular
third-grade 
uid past a permeable stretching/shrinking
sheet was studied by Naganthran et al. [18]. The
impact of the melting phenomenon in the magneto-
hydrodynamic stagnation-point 
ow of nano
uid on a
nonlinear stretching surface with variable thicknesses
was considered by Farooq et al. [19]. The simultane-
ous characteristics of thermal radiation and melting
heat transfer e�ects in the stagnation-point 
ow of
carbon nanotubes due to a stretching cylinder were
investigated by Hayat et al. [20]. The exact solution
of the unsteady two-dimensional stagnation 
ow and
heat transfer on a heated plate was presented by
Shokrgozar and Rahimi [21]. The two-dimensional
stagnation 
ow and heat transfer on an accelerated 
at
plate was investigated by Shokrgozar and Rahimi [22].
Axisymmetric stagnation 
ow and heat transfer on an
accelerated 
at plate was presented by Shokrgozar et
al. [23]. Stagnation-
ow solidi�cation of an inviscid


uid that freezes at a common border was considered
by Brattkus and Davis [24]. The problem of Stephen's
solidi�cation of inviscid 
uid in stagnation 
ow was
solved by Rangel and Bian [25]. Freezing at the sub-
cooled liquid stagnation point (freezing point) was in-
vestigated in the two-dimensional Cartesian coordinate
system by Lambert and Rangel [26]. Viscous 
uid
phase change in stagnation 
ow was considered by
Joo-Sik [27]. The steady-state, viscous 
ow and heat
transfer of nano-
uid in the vicinity of an axisymmetric
stagnation point of a stationary cylinder with constant
wall heat 
ux was investigated by Mohammadiun et
al. [28]. The unsteady three-dimensional axisymmet-
ric stagnation-point 
ow of a viscous compressible

uid on a 
at plate was investigated by Rahimi and
Mozayyeni [29]. The steady-state viscous 
ow and
heat transfer in the vicinity of a non-axisymmetric
stagnation point of an in�nite stationary cylinder was
investigated by Alizadeh et al. [30]. Solidi�cation of
incompressible 
uid in the two-dimensional stagnation

ow was considered by Shokrgozar and Rahimi [31].
The freezing of incompressible 
uid in unsteady ax-
isymmetric stagnation 
ow was also investigated by
Shokrgozar [32]; however, the solidi�cation of vapor
from saturated gas has not been investigated so far. In
this study, saturated air vapor freezing in stagnation

ow is closely analyzed. Fluid 
ow is assumed to be
incompressible and viscous in the laminar regime and,
also, long in y direction. Due to the 
uid contact with
a plate at a temperature lower than the temperature
of water, the vapor becomes liquid and, then, if the
substrate temperature is low enough, ice will form.
Note that some subcooling is usually required for the
condensation of vapor from gas to occur. The same
applies to the freezing of liquid water to ice. Here, if a
high rate of heat transfer and adequate time to settle
at the lowest node are not provided, distilled water
may turn into frost. This paper assumes that there is
adequate time available for the 
uid to settle so that
the frost formation assumption can be safely neglected;
thus, frost formation requires a separate investigation.
Since considered velocities are low in this study, inertia
and Magnus forces due to their rotation in response to
shear are assumed negligible. The Magnus forces are
assumed negligible in this paper due to their rotation
in response to shear. The e�ects of mass di�usion are
also neglected for the sake of simplicity.

2. Problem formulation

In this study, the 
ow in y direction is so long that it
is assumed to be two-dimensional. In Figure 1, two-
dimensional Cartesian coordinates with corresponding
velocities (u;w) with respect to (x; z) are shown. Satu-
rated air stagnation 
ow with strain a(t) in z direction
approaches z = 0, perpendicular to the plate. The
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Figure 1. Two-dimensional solidi�cation in stagnation

ow (problem schematic diagram).


ow is assumed to be laminar with constant properties
for air, vapor, and water. If the plate temperature is
su�ciently low, condensation occurs and the resulting
liquid freezes. The ice surface is modeled as an
accelerated 
at plate moving toward an impinging

uid with variable velocity _S(t) and acceleration �S(t),
respectively, by the distance S(t) in each time step. For
more information on the substitution of an imaginary

at plate at the solid-
uid interface, please refer to
Shokrgozar and Rahimi [31].

Due to the temperature change in the air, den-
sities of vapor and air vary. These changes will
be negligible, as the 
ow is assumed incompressible.
However, the change in the volume conversion of vapor
to water, which a�ects cell size in the mesh, has been
taken into account. In this situation, there are particles
of water and vapor together; thus, the 
uid has a multi-
phase state. However, the mass of water particles
is too small to destroy homogeneity. Therefore, the
multiphase e�ects are neglected in equations. However,
the same small mass of condensation is important in the
energy equation. Note that the �ne particles of water
present only in the lowest node have an opportunity
to settle as the lowest velocity and the highest water
weight in this row. Higher water weights in the lowest
node result from the increase and accumulation of
�ne particles on each other. Otherwise, water vapor
in other nodes does have an opportunity to settle
and, then, frost will form in this mode, which is
outside the scope of this article and requires separate
investigations. Mass and Navier{Stokes equations for
Newtonian, laminar, incompressible, unsteady states
with constant density and viscosity properties of the

uid provide the following:

Mass:

@u
@x

+
@w
@z

= 0: (1)

Momentum:

@u
@t

+ u
@u
@x

+ w
@u
@z

= �1
�
@p
@x

+ �
�
@2u
@x2 +

@2u
@z2

�
; (2)

@w
@t

+ u
@w
@x

+ w
@w
@z

= �1
�
@p
@z

+ �
�
@2w
@x2 +

@2w
@z2

�
:
(3)

The Magnus forces due to their rotation in response
to shear are assumed to be negligible. Note that
the small mass of water is indeed a homogeneous
mixture in saturated air, and the continuous formula
of partial derivatives is used with respect to time. In
addition, the e�ects of mass di�usion are neglected for
simplicity. Unsteady energy equation in the 
uid region
(dissipation and radiation heat transfer are neglected
without internal source) gives:

@T
@t

+ u
@T
@x

+ w
@T
@z

= �
�
@2T
@x2 +

@2T
@z2

�
+
@mvl

@t
HvlP3

j=1mjCj
: (4)

Note that conductivity and heat capacity coe�cients
are constant (k and C, respectively). Moreover, du �
cdT is assumed where p, �, �, and � denote the

uid pressure, density, kinematic viscosity, and thermal
di�usivity, respectively.

Energy equation in the solid phase (ice) is as
follows:

mC
@T
@t

= kS
@T
@S

AS � kl @T@N AN : (5)

Moreover, the energy equation (boundary condition)
at the interface before reaching freezing temperature
becomes:

3X
j=1

�jCj8j @T@t = kS
@T
@S

AS � kl @T@N AN

+
�
mn
v �mn+1

v
�t

�
Hvl; (6)

where the term on the left in the equation is energy
moving boundary and those on the right side are
conductive heat transfers and heat source from left to
right, respectively. Furthermore, the energy equation
(boundary condition) at the interface after reaching
freezing temperature becomes:

�sHls
@S
@t

= kS
@T
@S
� kl @T@N : (7)
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Here, the left term is the source and the right ones
are conductive heat transfers from up and down,
respectively.

Similarly, by applying curve �tting, the humidity
ratio from the psychometric chart can be de�ned as
follows:

!n+1
i;k =b1 + b2Tn+1

i;k + b3
�
Tn+1
i;k

�2
+ b4

�
Tn+1
i;k

�3

+ b5
�
Tn+1
i;k

�4
: (8)

Eq. (8) can be used in the range of 0 to 70 degrees
in Celsius that produces the following equation after
linearizing through the Newton-Raphson method:

!n+1
i;k =!ni;k +

�
b2 + 2b3Tni;k + 3b4

�
Tni;k

�2
+4b5

�
Tni;k

�3��Tn+1
i;k � Tni;k

�
; (9)

where subscripts (i; k) are node numbers in x and z
directions, respectively; superscript (n + 1) is a new
time, !n+1

i;k is the humidity ratio for new temperature,
and b (�C)0 to �4 coe�cients include the following:

b1 = 3:744E� 03 (�C)0;

b2 = 2:820E� 04 (�C)�1;

b3 = 7:360E� 06 (�C)�2;

b4 = 2:200E� 07 (�C)�3;

b5 = 3:270E� 09 (�C)�4:

Note that the curve �tting method is used to �nd the
coe�cients, and Eq. (9) is obtained for linearizing the
numerical solution of the energy equation.

3. Similarity solution

3.1. Fluid 
ow solution
According to [16] and integrating Eqs. (1)-(3) outside
the boundary layer, the classical equations of potential

ow solution are as follows:

U = a(t)x: (10)

Note that the boundary layer is de�ned here as the
edge of the points, where their velocity is 99% of
their corresponding potential velocity. By substituting
Eq. (10) in the continuity equation (Eq. (1)) and
integrating them, we have:

W = �a(t)�; (11)

where � = z � S(t), and S(t) is the amount of plate
displacement in z direction and is assumed to be
positive when the plate moves toward the impinging


ow. Hence, S(t) and � are the functions of time.
The recent Eqs. (10)-(11) are the boundary condition
equations in the viscous layer. The reduction of the
Navier-Stokes equations is achieved by the following
coordinate separation, in which the solution of the
viscous problem inside the boundary layer is obtained
by composing inviscid and viscous parts of the velocity:

u = a(t)xf 0(�); (12)

w = �p�=a0a(t)f(�); (13)

� =
p
�=a0�; (14)

where the terms involving f(�) in Eqs. (12)-(13) denote
the similarity form for unsteady stagnation-point 
ow,
and prime represents di�erentiation with respect to �.
Moreover, a0 is the reference potential 
ow strain rate
at the outset of the speci�ed time period. The insertion
of the transformations (Eqs. (12)-(14)) into Eqs. (2)-
(3) yields an ordinary di�erential equation in terms of
f(�):

f 000+f 00
� ~_S+~af

�
+
�
�~af 0� 1

~a
d~a
d�

�
f 0� 1

~a�
d~p
d�

=0;

where:

� 1
~a�
d~p
d�

=
1
~a
d~a
d�

+ ~a; (15)

with Boundary conditions:

�=0 : f=0; f 0=0; � !1 : f 0=1: (16)

Note that in Eqs. (2) and (3), @u
@t terms are not

taken into account since the 
ow is assumed fully
developed; however, since the parameters ~a, d~a

d� , and
_S are time-dependent, Eq. (15) is also dependent on

time. The ordinary di�erential equation (Eq. (15)) was
solved numerically using a shooting method (trial and
error) based on the Runge-Kutta algorithm. For more
information, refer to Shokrgozar and Rahimi [16].

3.2. Heat transfer solution
Dimensionless temperature is de�ned as follows:

� =
T (�)� Tsub
T1 � Tsub : (17)

By making use of transformations (Eqs. (12)-(14)), the
energy equation (Eq. (4)) may be written as follows:

�00 + Pr�0
h
f + ~_S + ~_SvlEvap

i
= 0; (18)

where:

Evap = � _mairHvlP3
j=1mjCj

�
b2+2b3�+3b4�2+4b5�3� :

(19)
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Here, the dimensionless water vapor condensing veloc-
ity, ~_Svl, is de�ned as follows:

~_Svl = ~_S � �Water

�Vapor
; (20)

with boundary conditions as:

� = 0 : � = 0; � !1 : � = 1; (21)

where � is the dimensionless temperature; subscripts
sub and 1 refer to the conditions at the substrate
and in the free stream, respectively, Pr = �

� is Prandtl
number and prime indicates di�erentiation with respect
to �. Again, the left term in Eq. (4), @T

@t , is not taken
into account, however since u and v velocities are time-
dependent, Eq. (18) is also dependent on time.

4. Solution approaches

The momentum equation (Eq. (15)) is solved numeri-
cally using a shooting method (trial and error) based on
the fourth-order Runge-Kutta algorithm. The velocity
results are used in the energy equation (Eq. (4)) upon
the 
uid region to convert this nonlinear equation into
an ordinary equation (Eq. (18)). The energy equation
solution approach to the 
uid region is divided into two
parts: exact solution and numerical solution. In fact,
the exact solution of the energy equation is the quasi-
steady solution of the heat transfer equation and does
not provide temperature pro�les for all unsteady times;
however, it is used to evaluate the numerical solution.
In a numerical solution, to solve the algebraic system of
equations, TDMA (Three Diagonal Matrix Algorithm)
within ADI (Alternating Direction Implicit) method is
used. The energy equation at the solid-
uid interface is
divided into two situations: a solution before reaching
the freezing point temperature (Eq. (6)) and the one
after Eq. (7). In the �rst situation, the quantities
of energy equation terms are dependent on relative
humidity. However, the relationship between humidity
ratio and temperature (Eq. (8)) is strongly nonlinear.
The Newton-Raphson method for linearization is used
in the case of relative humidity, which transforms
the equation to linear one (Eq. (9)). In the second
situation, the energy required for freezing the water
is very smaller than that for the condensing latent
enthalpy of vapor to water (about 1=7:5 times smaller).
Thus, a large under-relaxation factor is necessary for
the latent enthalpy term in the energy equation to
balance the energy between cells for preventing the
responses from divergence. While the method used
for solving the problem is implicit, trial and error is
required with very small steps due to strong nonlinear-
ity. When the 
uid temperature near the ice reaches
the freezing point, the temperature of the solid-
uid
interface remains constant; as a result, the temperature

changes of the 
uid region are halted and the energy
equation at the solid-
uid interface becomes the same
moving solidi�cation boundary condition (Eq. (7)).
The solution approaches of the solid-
uid interface
equations are numerical. All these equations are solved
in every step, simultaneously. Since variations in the
size of the mesh from 0.2 to 0.1 mm produce a negligible
variation in the curve, Tsub;max, it can be concluded
that the mesh size of 0.2 mm leads to relatively accurate
results.

5. Validation

The exact solution of momentum equations does not
require validation. However, in this section, the
numerical solution results of the energy equation are
compared to the exact solution results of this equation.
In fact, the exact solution of the energy equation is a
quasi-steady solution to the heat transfer equation and
does not provide temperature pro�les at all unsteady
times; however, it is used to evaluate the numerical
solution in the �nal time durations of each step, where
the instantaneous temperature pro�le goes close to the
steady state. For a better comparison, the parameter
introduction in numerical and exact solutions is the
same. Therefore, closing the temperature pro�les
together means validation of the numerical solution.
The results of these comparisons are presented in the
next section.

6. Results

In Figure 2, dimensionless velocity components �u and
�w in x, z directions are shown, respectively; however,
the velocities obtained in the solution of the energy
equation are dimensional.

Figure 2. Dimensionless velocity component �u and �w
pro�les in x and z directions, respectively.
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The transformation of the 
uid temperature pro-
�le to a steady state pro�le is shown in Figure 3 at a
far-�eld air temperature of 20�C. For an in�nity air
temperature to reach the freezing point, the pro�le
changes and, once the temperature arrives at the
freezing point of water (zero degrees), the thermal
pro�le becomes constant and will remain unchanged
until an ice layer forms.

As mentioned earlier, in order to validate the
obtained heat transfer results, the exact solution of
energy equation (Eq. (18)) is used. Nevertheless, the
results of the exact solution are useful only for the
�nal time durations in each step close to the steady-
state condition. In Figure 4, the numerical and exact
solutions of energy equations are compared together at

Figure 3. Temperature changing from unsteady to steady
for Tair1 = 20�C (Tair0 means Tair at the nearest cells
to ice).

Figure 4. Comparison of the temperature pro�les of
numerical and exact solutions (Tair1 = 20�C).

a far-�eld air temperature of Tair1 = 20�C. Here, good
agreement between these two diagrams is observed.
Note that the numerical solution data are at the end
time of the steady state. Small di�erences between
the values of numerical and exact solutions result from
linearization in the numerical solution in the humidity
ratio term and the accumulation of rounding errors.

Figure 5 shows a comparison between the reduc-
tion of the vapor mass of saturated air versus that
of its temperature and the increase of the water in
the cell at a far-�eld temperature of Tair1 = 20�C.
As expected, the cell vapor mass at temperature zero
approaches zero degree and, thus, does not reach zero;
however, at a temperature point of 20�C, vapor begins
to condensate, which is a sign of saturation. Note that
the amount of vapor in the air never exactly equals
zero. In Figure 6, the humidity ratio with temperature
changes is also shown.

Figure 5. Variations in vapor and water masses in the
cells for far-�eld saturated air Tair1 = 20�C.

Figure 6. Humidity ratio versus air temperature for
far-�eld saturated air at Tair1 = 20�C.
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Figure 7. Maximum temperature of the substrate to
start freezing versus the far-�eld air temperature.

One of the most important results in this paper is
shown in Figure 7, where the substrate temperatures
needed to initiate freezing are provided at di�erent far-
�eld air temperatures. For example, at a far-�eld air
temperature of Tair1 = 5�C, the maximum substrate
temperature should be lower than Tsub;max = �0:32�C
to start freezing and, at a far-�eld air temperature of
Tair1 = 20�C, the substrate temperature should be
lower than Tsub;max = �0:80�C. However, the substrate
temperature approaches zero degree with a decrease in
the far-�eld temperature while decreasing water vapor
mass in the air. This behavior shown in Figure 7 is
generally plausible, as suggested by the simple analysis
that follows. Herein, this study assumes that the
viscous layer thickness is � and y is the distance from
the substrate to the gas. The temperature, T , pro�le
in the viscous layer is simply represented as follows:

T � Tsub;max

T1 � Tsub;max
=

1
f
y
�
; (22)

where f is a variable factor. Since the amount of
vapor in saturated gas roughly doubles for each 15�C
temperature increase, a variable factor, f , between
1=8� 1=3 is plausible. The value of interest, y, can be
taken as a fraction, 1=N , of the thermal viscous layer
thickness; for a location in the middle of the cell next
to the substrate N = 150 where the computational cell
size is 1=75 times the thermal viscous layer thickness.
To reach the freezing point at the computational node
closest to the substrate, Eq. (22) gives:

Tsub;max = [fN=(fN � 1)]T � T1=(fN � 1): (23)

For 0�C subcooling of the vapor (T = 0�C), Eq. (23)
gives:

Tsub;max = �T1=(150f � 1): (24)

Figure 8. Total time needed to initiate vapor freezing in
the nearest cells to the substrate surface versus the
far-�eld air temperature for two di�erent mesh sizes.

If f = 1
8 , then Tsub;max �= �T1=18; this result is in

good agreement with that in Figure 7 for T1 less than
15�C. For larger T1, the e�ect of 1�C subcooling of the
vapor before condensation (T = �1�C) and N = 150
in Eq. (23) results in:

Tsub;max �= �1� T1=(150f): (25)

Thus, vapor subcooling would shift the result of
Eq. (24) downward. Notice that since the variation
in the size of the mesh from 0.2 to 0.1 mm results
in a negligible variation in Tsub;max (Figure 7), it can
be concluded that the mesh size of 0.2 mm produces
relatively accurate results.

The interesting and controversial point here is the
freezing time depicted in Figure 8. According to this
�gure, time increases linearly by moving from the far-
�eld temperature Tair1 = 50�C to Tair1 = 30�C
and, then, the time increment slope declines slowly.
Thus, when the far-�eld temperature passes by about
Tair1 = 5�C, time declines steeply toward zero. But
why? Time condensation and freezing of water vapor
in the air is a function of two variables: far-�eld air
temperature and water vapor content in the air. Of
course, one cannot expect these two phenomena to be
linear since the humidity ratio in the air is nonlinear.
So far, at a far-�eld temperature close to zero degree
in Celsius, vapor and the amount of water available
for freezing are severely reduced. Therefore, the
time required for condensation and freezing suddenly
inclines toward zero. The behavior of the curve in
Figure 8 can be similarly explained. In the start-up
transient, the thickness of the thermal viscous layer
increases as the square root of time elapses as follows:

� = K
p
t: (26)
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Again, assume that the thermal viscous layer thickness
is �, which has the value �ss in the steady state. This is
because a perpendicularly impinging 
ow results in a
viscous layer of constant thickness on the substrate.
Thus, the initial thermal disturbance is similar to
that of the semi-in�nite solid with an initial uni-
form temperature whose surface temperature suddenly
changes [33]. Eq. (26) can be obtained through the
scaling analysis in the energy equation. For the present
problem, this transient ceases when the thermal viscous
layer achieves its steady-state value. The temperature
distribution, which is taken to be linear for simplicity,
in Eq. (22) results in the following by setting y = �ss

N
as before and making use of Eq. (26):

t =
�
�ss
NK

�2� 1
f

�2�T1 � Tsub
T � Tsub

�2

; t < tss;
(27)

where
� �ss
NK

�2 is constant. Given that the condensation
begins at T = 0�C under no subcooling and at
a substrate temperature of Tsub = �1�C, Eq. (27)
becomes:

t =
�
�ss
NK

�2� 1
f

�2

(T1 + 1)2; t < tss: (28)

Eq. (28) presents the parabolic increase of t with
increasing values of T1, similar to the same trend
shown in Figure 8, but with a constant value predicted
after the thermal viscous layer is fully developed with
a constant value of 1

f . Of note, in the �rst region,

Tair1 < 5�C in Figure 8, the factor
�

1
f

�2
is about

64; however, after this region, it tends to 9. The e�ect
of 0.5�C subcooling (T = 0:5�C) of the vapor before
condensation and N = 150 in Eq. (27) can lead to the
following:

t = 4
�
�ss
NK

�2� 1
f

�2

(T1 + 1)2 ; t < tss: (29)

The prediction of Eq. (29) reveals that 0.5�C sub-
cooling of the vapor before condensation increases the
time lapse before condensation begins by a factor of 4.
Since factor f is dependent on the amount of vapor
in saturated gas, after the �rst region, Tair1 > 5�C,�

1
f

�2
decreases faster than the increase of

�
T1�Tsub
T�Tsub

�2
;

therefore, the total time decreases. Of note, in a
physical experiment, condensation should immediately
begin on the substrate surface; however, in numerical
calculations, the size of the cell closest to the substrate
controls the time at which condensation begins because
the low temperature imposed by the substrate reaches
the center of that cell by di�usion. Therefore, to
demonstrate this process, computations are repeated
with cell sizes of 0.01 mm and 0.02 mm since the time

required for initializing condensation should vary as
the inverse square of cell size, according to Eq. (29).
Therefore, the results shown in Figure 8 show the
varying trends at the freezing start time versus the
far-�eld air temperature for two di�erent mesh sizes.
However, what will happen if the temperature of the
substrate (Tsub) is lower than that to start freezing
(Tsub;max)?

In Figure 9(a), the results of substrate tempera-
ture (Tsub) at 10�C lower than the maximum tempera-
ture of the substrate for the start of freezing (Tsub;max)
at a far-�eld temperature of Tair1 = 5�C are shown,
and Figure 9(b) shows the same for Tair1 = 20�C.
As expected, the lower temperature substrate rises the

Figure 9a. Air and ice temperature pro�les by reducing
10�C of the initial freezing temperature (Tair1 = 5�C,
Tsub = �10:32�C, Tsub;max = �0:32�C).

Figure 9b. Air and ice temperature pro�les by reducing
10�C of the initial freezing temperature (Tair1 = 20�C,
Tsub = �10:81�C, Tsub;max = �0:81�C).
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thickness of the ice. Moreover, a comparison between
Figures 9(a) and 9(b) shows that the same reduction
of substrate temperature (10�C) at the lower far-�eld
temperature (Tair1 = 5�C) exhibits a higher increase
in the ultimate ice thickness (about 50 mm) than the
higher far-�eld temperature (Tair1 = 20�C), which is
about 12 mm.

7. Conclusions

The present paper investigated the saturated air water
freezing in the two-dimensional stagnation 
ow on a

at plate. The air with a relative humidity of 100%
vertically approached the cooled 
at plate. At �rst,
water vapor condenses and, then, if the substrate is cold
enough, solidi�cation occurs. The �rst important re-
sult is the highest substrate temperature (Tsub;max), at
which the saturated vapor turns into water and starts
to freeze. These substrate temperatures were provided
for di�erent far-�eld air temperatures (Tair1). In
addition, the time required for freezing the �rst row of
cells was presented. According to the obtained results,
by increasing the far-�eld air temperature (Tair1)
from 0�C to about 5�C, the solidifying time increased;
then, by increasing it further (Tair1), the solidifying
time decreased. The temperature pro�les, velocities in
both directions, and water quantity changes in the cells
were presented. Fluid temperature distribution and,
most importantly, the ultimate frozen thickness for two
di�erent temperatures of far-�eld air and temperatures
of the substrate were also presented. The charts
with a substrate temperature below the freezing start
temperature indicated that a 10�C drop in substrate
temperature caused a large increase in the ultimate
thickness of the ice for far-�eld air at Tair1 = 5�C,
while a drop of the same degree slightly increased the
ultimate thickness of the ice for the air at Tair1 =
20�C.

Nomenclature

a(t) Time-dependent 
ow strain rate
~a Dimensionless time-dependent strain

rate
a0 Reference potential 
ow strain rate at

the start of time
A Area
b1 to 5 Coe�cient (�C)0 to -4

C Heat capacity coe�cient
Evap Auxiliary variable
H Latent enthalpy of water
Hls 333.4 kJ/kg (liquid to solid)
Hvl 2501.0 kJ/kg (vapor to liquid)
k Thermal conductivity

K Constant
m Mass of any participants
_m Mass 
ow rate
N Number of nodes
p Pressure
~p Dimensionless pressure
Pr Prandtl number
S; _S; �S Thickness, velocity, and acceleration

of ice evolution, respectively, in z
direction

~S; ~_S Dimensionless thickness and velocity
of ice evolution, respectively, in z
direction

t Time
T Temperature
Tair Temperature of air
Tsub;max The temperature of substrate for start

of freezing
8 Volume
u;w Velocity components near the plate in

x and z directions
~u; ~w Dimensionless velocity components

near the plate in x and z directions
U;W Potential region velocity components

in x and z directions
x; y; z Cartesian coordinates

Greek

� Viscous layer thickness
�� Displacement viscous layer thickness
� Variable (z � S(t))
� Similarity variable
� Dimensionless temperature
� Kinematic viscosity
� Dimensionless x-axis
� Density
� Dimensionless time

 Humidity ratio = mvapor= _mair

Subscripts

0 At the nearest cells of mesh to the ice
(or �rst row of cells in 
uid region)

1 Free stream (far-�eld)
i; k Node (or cell) row and column numbers

in x and z directions, respectively
j 1 to 3 numbers (air, vapor, and water)
l Liquid phase (water)
ls Liquid to solid (phase change)
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max The maximum substrate temperature
that the �rst row of cells (or nearest
cells to ice) can freeze

N North
S South
ss Steady state
sub Substrate plate
total Total time of freezing the �rst row of

cells
vl Vapor to liquid (phase change)
v Vapor

Superscripts

~ Dimensionless
n Timing step (old)
n+ 1 Timing step (new)
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