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Abstract. It is usually supposed that the training (source domain) and test (target
domain) data follow similar distributions and feature spaces in most pattern recognition
tasks. However, in many real-world applications, particularly in visual recognition, this
hypothesis has frequently been violated. Thus, the trained classi�er for the source domain
performs poorly in the target domain. This problem is known as domain shift problem.
Domain adaptation and transfer learning are promising techniques towards an e�ective and
robust classi�er to tackle the shift problem. In this paper, a novel scheme is proposed for
domain adaptation, named Joint Distribution Adaptation via Feature and Model Matching
(JDAFMM), in which feature transform and model matching are jointly optimized. By
introducing regularization performed between the marginal and conditional distribution
shifts across the domains, data drift can be successfully adapted as much as possible
along with empirical risk minimization and rate of consistency maximization between
manifold and prediction functions. Extensive experiments were conducted to evaluate the
performance of the proposed model against other machine learning and domain adaptation
methods in three types of visual benchmark datasets. Our experiments illustrated that our
JDAFMM signi�cantly outperformed other baseline and state-of-the-art methods.
© 2019 Sharif University of Technology. All rights reserved.

1. Introduction

The main assumption of the machine learning and
pattern recognition tasks is that the training and test
data should be sampled in similar distribution patterns
[1]. However, this assumption has frequently been
violated in many real-world applications. For example,
in computer vision task, imagine that we are to learn
a classi�er in order to recognize objects in images
captured by a mobile phone camera while we have
no labeled images. At �rst, we train a classi�er on
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a related labeled dataset, e.g., icker images. Next,
we evaluate it on the target dataset, i.e., mobile phone
images. A simple review proved that the performance
of the trained model was signi�cantly low since the
icker and mobile phone images, even with similar
objects, had a considerable distribution di�erence as a
result of many factors, including poses, illuminations,
and expressions.

The distribution di�erence between the training
and test sets gives rise to an issue denominated as the
domain shift problem. This problem occurs not only in
image recognition task, but also in other machine learn-
ing tasks [2,3] such as speech and language processing
[4,5], statistics, and computer vision [6,7]. However, in
this work, we are to �nd a solution so as to deal with
the domain shift problem to improve the performance
of the model.

The domain shift problem can be solved by
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Domain Adaptation (DA) and Transfer Learning (TL)
techniques via training a robust classi�er against any
distribution mismatch across the domains. The general
assumption of DA is that the marginal distributions of
source domain (Xs) and target domain (Xt) are dif-
ferent, i.e., P (Xs) 6= P (Xt); however, the conditional
distribution across domains is the same, i.e., P (Ys j
Xs) ' P (Yt j Xt) [8]. Further, in TL, it is assumed
that P (Xs) ' P (Xt) and P (Ys j Xs) 6= P (Yt j Xt) [8].

DA approaches, depending on the available in-
formation in the target domain, are divided into two
general categories: (1) unsupervised domain adapta-
tion approaches in which there are no labeled data
in the target domain [4,9,10], and (2) semi-supervised
domain adaptation approaches, in which a small part
of the target domain is labeled [11,12]. Recent studies
have shown that the unsupervised domain adaptation
tasks are more practical and challenging in real-world
applications [13].

In most available researches, the origin of do-
main shift is investigated only from the marginal or
conditional distribution mismatch perspectives, while,
in some real-world applications (e.g., visual domains),
distribution mismatch across the source and target
domains originates from the di�erence of domains in
both marginal and conditional distributions. Recently,
some researchers provided approaches in which both
the marginal and conditional distributions matched
using kernel density estimation [14], sample selec-
tion [15], or two-stage reweighting [16]; however, the
main drawback to the proposed approaches was the
requirement of labeled data in the target domain.

In this paper, we address unsupervised do-
main shift problem where the di�erence between the
marginal and conditional distributions across domains
is too much. We put forward a two-phase framework
named \Joint Distribution Adaptation via Feature
and Model Matching (JDAFMM)" in which the dif-
ference between both the marginal and conditional
distributions in a principal dimensionality reduction
procedure is reduced. In the �rst phase, JDAFMM
projects the source and target domains in a shared low-
dimensional subspace based on Principal Component
Analyses (PCA) [17] and then, employs the nonpara-
metric Maximum Mean Discrepancy (MMD) [18] to
minimize the di�erence between the marginal and
conditional distributions across the domains. In the
second phase, since the source and target domains are
similar in terms of distribution (in a new feature space),
JDAFMM bene�ts from the source domain as labeled
instances and the target domain as unlabeled instances;
then, it learns an adaptive classi�er using both of
them. Speci�cally, unlike the other unsupervised
DA approaches, we not only employ unlabeled target
instances to �nd a uni�ed feature transformation, but
also utilize them to learn an adaptive classi�er. The

learned adaptive classi�er aims at minimizing the em-
pirical risk of prediction function in the source domain
and maximizing the rate of consistency between the
prediction function and the geometric data structure.

The performance of JDAFMM is evaluated with
respect to three types of benchmark domain adaptation
datasets. Our comprehensive experiments demonstrate
that JDAFMM outperforms other state-of-the-art DA
and dimensionality reduction methods in most cases.
In addition, JDAFMM achieves a signi�cant improve-
ment in terms of the average classi�cation accuracy
(10.55%) compared to the best available method.

The rest of the paper is organized as follows.
In Section 2, a short review of the related studies
is presented. The proposed method is introduced in
Section 3. The experimental setup and comparisons are
provided in Sections 4 and 5. Finally, our conclusion
and suggestions for future research are presented in
Section 6.

2. Related work

In recent years, DA has attracted considerable atten-
tion as one of the promising solutions to the domain
shift problem. The focus of DA approaches is on
reducing the distribution mismatch between the source
and target domains via three various frameworks,
namely: (1) instance-based, (2) feature-based, and (3)
model-based methods.

Instance-based methods [16,19,20] reweight the
samples of the source data in order to adapt the source
and target domains. Indeed, the main inspiration
for the instance-based methods is to learn an optimal
model for the reweighted source data to apply to
unlabeled target data. Landmark selection [21] exploits
MMD to discover a subset of labeled samples in the
source domain with the highest similarity to the target
domain in terms of distribution, i.e., landmarks. In-
deed, landmarks are used as a bridge across the source
and target domains. Kernel-based feature Mapping
with Ensemble (KMapEnsemble) [15] is an e�ective
method that bene�ts from both adaptive kernel- and
sample-based methods. KMapEnsemble projects the
marginal distribution of the source and target data in
a common subspace and employs a sample selection
method to reduce the conditional distribution mis-
match between the source and target domains.

Feature-based methods [5,11,22-25] minimize the
distribution mismatch across the source and target
domains, typically by constructing a common feature
space. In fact, the feature-based methods transfer the
source and target data into a common feature space
based on the shared features of the source and target
domains, train a model for the embedded source data,
and apply it to the unlabeled target data. There
are several feature-based approaches, e.g., Maximum
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Mean Discrepancy Embedding (MMDE) [26], Transfer
Component Analysis (TCA) [3], Geodesic Flow Kernel
(GFK) [9], Joint Distribution Adaptation (JDA) [27],
and Visual Domain Adaptation (VDA) [8], integrating
PCA with DA approaches to construct a new feature
representation.

MMDE measures the divergence between the
source and target domains using MMD and discovers
invariant features across them along with variance
preservation of input data. TCA bene�ts from MMD
as a distance measure across domains and projects the
source and target domains in a latent subspace based
on transfer components. GFK considers an in�nite
number of subspaces along the geodesic path on a
Grassmann manifold. GFK adapts the domain shift
problem via integrating an in�nite number of interme-
diate subspaces and then, models statistical properties
of data drift. JDA projects source and target data in
a common feature space, such that the di�erences of
both the marginal and conditional distributions across
domains are minimized. VDA minimizes the mismatch
between joint marginal and conditional distributions
across domains and maximizes the discrimination mar-
gin among various classes.

Model-based methods [28,29] learn an adaptive
classi�er for the target data via joint parameters or
priors derived from the source model. In fact, the
model-based approaches facilitate domain adaptation
in a semi-supervised manner and exploit Support
Vector Machine (SVM) to �nd an adaptive classi�er
[28,30]. Yang et al. [30] proposed the Adaptive Support
Vector Machine (ASVM) to exploit decision boundaries
of the source data in determining boundaries of target
data. Bruzzone and Marconcini [31] proposed a Do-
main Adaptation Support Vector Machine (DASVM)
to learn a classi�er in an iterative manner. In each
iteration, DASVM predicts the labels of unlabeled
target data and removes some labeled source data,
which are not fruitful in obtaining a classi�er for target
label prediction. Long et al. [32] proposed Adaptive
Regularization-based Transfer Learning (ARTL) to
learn an adaptive classi�er in an unsupervised manner.
ARTL tends to optimize the following three objec-
tives: (1) minimizing the structural risk functional,
(2) minimizing the joint distribution mismatch between
domains, and (3) maximizing the manifold consistency
underlying the marginal distribution.

This paper introduces a novel framework for
an unsupervised DA problem, which bene�ts from
both feature- and model-based approaches. JDAFMM
discovers a common feature subspace in which the
mismatch between marginal and conditional distribu-
tions across the source and target domains is reduced.
Next, JDAFMM learns an adaptive classi�er using
labeled source data and unlabeled target data to
build a robust model against data drift across the

source and target domains. Unlike other available
DA methods, JDAFMM utilizes the unlabeled target
data simultaneously to adapt the domains and build
an adaptive classi�er.

3. De�nition

This section introduces the basic notations and de�ni-
tions for the domain adaptation problem.

3.1. Domain
Domain D is composed of two principal elements:
an m-dimensional feature space X and a marginal
probability P (x), i.e., D = fX ; P (x)g, where x 2 X .

The input data include two domains: a source
domain (S) and a target domain (T ). Ds =
f(x1; y1); : : : ; (xns ; yns)g denotes the labeled source
domain with ns samples and Dt = fxns+1; : : : ; xns+ntg
denotes unlabeled target data with nt samples.

Overall, the two domains are di�erent when they
possess either di�erent feature spaces or marginal prob-
ability distributions, i.e., Xs 6= Xt or Ps(xs) 6= Pt(xt)
[32].

3.2. Task
Given a speci�c domain D, task T is comprised of
pairs fY; f(x)g, where Y is a label space and f(x) is
a prediction function. From a probabilistic viewpoint,
f(x) can be interpreted as the conditional probability
distribution, i.e., f(x) = Q(y j x), where y 2 Y.

In general, two tasks are di�erent when they
possess either di�erent label spaces or conditional
probability distributions, i.e., Ys 6= Yt or Qs(ys j xs) 6=
Qt(yt j xt) [32].

For a speci�c labeled source domain Ds and
unlabeled target domain Dt, under the following as-
sumptions: Xs = Xt, Ys = Yt, Ps(xs) 6= Pt(xt) and
Qs(ys j xs) 6= Qt(yt j xt), our problem is to obtain
a low-dimensional feature space in which two major
criteria are satis�ed:

1. Di�erence minimization between Ps(xs) and Pt(xt);
2. Di�erence minimization between Qs(ys j xs) and

Qt(yt j xt).
3.3. PCA
Let X = [x1; : : : ; xn] 2 R(m�n) be the input data
matrix and H = I � 1

n
�!1 �!1 T be the centering matrix

where I 2 R(n�n) is the identity matrix, �!1 is a
n � 1 vector of ones, and n is equal to ns + nt.
XHXT computes the covariance matrix of data. PCA
attempts to learn an orthogonal transformation matrix
A 2 Rm�k besides maximum variance preservation
in an embedded subspace, according to the following
relation:

maxATA=Itr(ATXHXTA); (1)

where tr(:) shows the trace of matrix. The optimization
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Figure 1. Illustration of our Joint Distribution Adaptation via Feature and Model Matching (JDAFMM): (a) In the �rst
phase, JDAFMM projects the source and target samples in a shared feature space that minimizes both the marginal and
conditional distribution mismatches, simultaneously and (b) in the second phase, JDAFMM constructs an adaptive
classi�er to match f with the manifold underlying marginal distributions.

problem can be solved via an eigenvalue decomposition
of XHXT , where matrix A is composed of top k
eigenvectors corresponding to k largest eigenvalues.
Then, the input data are projected in a k -dimensional
representation by Z = [z1; : : : ; zn] = ATX.

3.4. MMD
There are many criteria to measure the distribution
di�erence of various domains; however, most of them
are parametric (e.g., Kallback-Leibler divergence). The
parametric methods measure an intermediate den-
sity estimation, which may be a nontrivial problem.
Therefore, non-parametric Maximum Mean Discrep-
ancy (MMD) criteria are employed to measure distri-
bution di�erence in Reproducing Kernel Hilbert Space
(RKHS) [33]. According to MMD theory [33] the
distance of mean elements in RKHS is equal to the
distance of source and target domains in the original
space.

4. The proposed method

This section begins with introducing the proposed ap-
proach to addressing unsupervised domain adaptation.
Section 4.1 describes a joint feature- and model-based
framework to learn an unsupervised domain adaptation
model. Then, it presents feature- and model-based
learning is presented in detail in Sections 4.2 and 4.3,
respectively.

4.1. General framework
Most of the current feature-based methods for domain
adaptation are aimed at obtaining a new feature
representation for the source and target domains such
that only the marginal distribution di�erence between

domains is reduced. A standard classi�er (e.g., K-
Nearest Neighbor (KNN)) only on the labeled source
data in the embedded subspace is employed, which
is applied to unlabeled target data. This paper puts
forward JDAFMM as a generic two-phase framework
inspired by both feature- and model-based methods.
Figure 1 demonstrates the main concept of our pro-
posed approach. In the �rst phase, JDAFMM reduces
the divergence between both the marginal and condi-
tional distributions of the source and target domains
via constructing a shared feature representation. The
second phase consists in adaptive classi�er learning via
both labeled source and unlabeled target data. In
this phase, JDAFMM adapts the prediction function
with geometric data structure underlying the marginal
distribution in the new feature space. In the next
section, our feature- and model-based learning methods
are explained in more details.

4.2. Feature matching
In this paper, JDAFMM is proposed as a particular
approach to utilizing Joint Distribution Adaptation
(JDA) [27] in the feature-based learning phase to �nd
a new feature representation of data.

4.2.1. Representation learning via JDA
The main objective of dimensionality reduction meth-
ods is to �nd a transformed feature representation
besides the reconstruction error minimization of the
input data. To �nd a new feature representation, PCA
is employed to extract the principal components.

Unfortunately, PCA is not capable of reducing the
distribution di�erence between the source and target
domains, since it assumes that the source and target
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data are drawn from the same probability distribution.
Thus, the main issue is how to minimize the distribu-
tion di�erence between the source and target domains
in the embedded subspace.

Marginal distribution adaptation
We seek to minimize the marginal distribution dif-
ference to adapt distribution mismatch between the
source and target domains. MMD computes the
distance among the instance means of domains in k -
dimensional embedding:

Mrg(Xs; Xt) =k 1
ns

nsX
i=1

Axi � 1
nt

ns+ntX
j=ns+1

ATxj k2

= tr(ATXM0XTA); (2)

where Mrg computes the distance of marginal distri-
butions across domains and M0 2 R((ns+nt)�(ns+nt)) is
an MMD coe�cient matrix computed as follows:

(M0)ij =

8><>:
1

nsns if xi; xj 2 Ds
1

ntnt if xi; xj 2 Dt
�1
nsnt otherwise

(3)

Conditional distribution adaptation
To learn a model with maximum prediction accuracy,
only the marginal distribution adaptation is not ad-
equate. Thus, we resort to MMD to minimize the
conditional distribution di�erence between domains. In
this way, direct matching of conditional distribution
is impossible, since the target data are completely
unlabeled. That is Qt(yt j xt) cannot be estimated
instantly, because the target data are completely unla-
beled. To solve this problem, pseudo target labels are
determined via some standard classi�ers (e.g., KNN)
and a trained model for the labeled samples in the
source domain is employed. Since the estimation
of the posterior probabilities is fully complex, class-
conditional distribution as an appropriate alternative
is utilized. Hence, MMD is modi�ed to estimate the
class-conditional distributions as follows:

Cnd(Xs; Xt) =k 1
ncs

X
xi2Xcs

Axi � 1
nct

X
xj2Xct

ATxj k2

= tr(ATXMcXTA); (4)

where Cnd computes the distance of class-conditional
distributions across domains, and ncs and nct are ad-
justed as the total numbers of instances belonging to
class c in the source and target domains, respectively.
In addition, Dc

s andDc
t demonstrate the set of instances

that belong to class c in the source and target domains,
respectively. Moreover, Mc is the MMD coe�cient
matrix that contains class labels computed as follows:

(Mc)ij =

8>>>>>><>>>>>>:
1

ncsncs
if xi; xj 2 Dcs

1
nctnct

if xi; xj 2 Dct
�1
ncsnct

if xi 2 Dcs; xj 2 Dct
k xj 2 Dcs; xi 2 Dct

0 otherwise

(5)

It is noteworthy that although target labels may
be imprecise due to the considerable distribution dif-
ference across domains, we suppose that the pseudo
target labels may not be residing far apart from the
true target labels.

Optimization problem
JDA jointly attempts to minimize di�erences between
the marginal and conditional distributions across the
source and target domains in order to learn an e�cient
and robust model. Thus, Eqs. (2) and (4) are inte-
grated into Eq. (1) to form the optimization problem
of JDA:

min
ATXHXTA=I

CX
c=0

tr(ATXMcXTA)+� k A k2F ; (6)

where � denotes the regularization parameter, and
jj:jjF is the Frobenius norm to ensure that the optimiza-
tion problem is well de�ned. According to Rayleigh
quotient, minimizing Eqs. (2) and (4) together with
Eq. (1) is equivalent to Eqs. (2) and (4) minimized
when Eq. (1) is supposed to be �xed.

Kernelization
For solving nonlinear problems, mapping function
� is denoted by X ! �(X) when �(X) =
f�(x1); : : : ; �(xn)g, and kernel matrix K is considered
as K = �(X)T�(X) 2 R(n�n). Moreover, V is de�ned
as A = V T� where V 2 R((ns+nt)�k). Thus, according
to the representation theorem, the optimization prob-
lem is rede�ned as follows:

min
V TXHXT V=I

CX
c=0

tr(V TXMcXTV )+�(k V k2F ); (7)

where V is the transformation matrix for Kernel-JDA.

Learning algorithm
The Lagrange function for Eq. (6) is derived as in the
following relation:

L =tr(AT (X
CX
c=0

McXT + �I)A)

+ tr((I �ATXHXTA)�); (8)

where � = diag(�1; : : : ; �k) 2 Rk�k is the Lagrange
multiplier. Regulating dL

dA = 0, the generalized form of
eigen decomposition is attained as follows:
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X

CX
c=0

McXT + �I

!
A = XHXTA�: (9)

Finally, by solving Eq. (9), k eigenvectors cor-
responding to k smallest eigenvalues are chosen as
transformation matrix A. JDA bene�ts from pseudo
target labeling in an iterative manner to minimize
conditional distribution mismatch. Our experiments
demonstrate that the accuracy of pseudo labels in each
iteration increases until convergence is reached. The
re�nement of target labels is done in an Expectation
Maximization-like (EM) procedure.

4.3. Model matching
In the second phase, we are to learn an adaptive
classi�er to optimize the following two supplementary
objectives: (1) structural risk minimization of predic-
tion function in the source labeled data and (2) mani-
fold consistency maximization underlying the marginal
distributions. In the rest, the adaptive classi�er and
its objectives are presented in more details.

� Learning based on structural risk minimiza-
tion. The �rst goal of an adaptive classi�er is to �nd
the prediction function with minimum empirical risk
in the labeled source data. To achieve this goal, the
empirical risk/loss function is de�ned as follows:

l(f(g(xi)); yi) =
ns+ntX
i=1

Rii(yi � f(g(xi)))2; (10)

where l is considered as the squared loss and each
instance of the source domain is demonstrated as
a feature vector x. Moreover, g(:) indicates the
mapping function to map source domain data onto
the embedded feature space, f is the prediction
function to determine the labels of the source data
in the shared subspace, and R is a diagonal matrix
computed as:

Rii =

(
1 if xi 2 Xs

0 otherwise
:

Indeed, by employing l, the sum squared error of the
actual and predicted labels in the source domain is
minimized.

� Learning based on manifold consistency max-
imization. The second goal of our adaptive classi-
�er is to �nd a prediction function with maximum
consistency with geometric data structure. To
realize this goal, manifold assumption is utilized,
which supposes that the conditional distributions
of two data points xs and xt are similar if they
are close together in the underlying geometry of
the marginal distributions [34]. Thus, a prediction
function is built with good performance for the
target data according to the obtained knowledge
from the marginal distribution.

Generally, the nearest neighbor graph is exploited
to model the inherent structure of input data. In
this graph, there are ns + nt vertices with each vertex
representing a data point. In addition, each data point
is connected to its P nearest neighbors by edges. In
order to determine the weight of each edge on the
graph, the following weight function is de�ned:

Wi;j = e�k
(xi�xj)2

� k; (11)

where � is considered as a normalization parameter.
Then, function Mf is adjusted to learn a prediction
function with maximum consistency with the manifold
underlying the marginal distributions:

Mf (Ps; Pt) =
ns+ntX
i;j=1

(f(xi)� f(xj))2Wij

=
ns+ntX
i;j=1

f(xi)Li;jf(xj); (12)

where L speci�es the normalized Laplacian matrix,
and Ps and Pt represent the marginal distribution of
the source and target domains, respectively. Let D
be a diagonal matrix Dii =

Pns+nt
j=1 Wij , measuring

the weighted sum of node i with other nodes; thus,
L = D � W denotes the un-normalized Laplacian
matrix, which measures the sum of weights of node i
and other nodes except itself. Also, L = I�D� 1

2WD 1
2

is de�ned as the normalized form of matrix L [35].
Thus, incorporating Eqs. (10) and (12) can lead to
the formation of our adaptive classi�er optimization
problem [34]:

minf2F
nsX
i=1

l(f(g(xi)); yi)+�f2 + Mf (Ps; Pt); (13)

where � and  are the regularization parameters, and
F is a collection of classi�ers.

In order to solve Eq. (13) with kernel, kernel
trick form is utilized. Thus, the prediction function is
rede�ned as f(g(xi)) = wT'(g(xi)), where ' demon-
strates the mapping function to embed feature vector
x in a Hilbert space and w is the classi�er param-
eter. Moreover, k(g(xi); g(xj)) = '(g(xi))T'(g(xj))
is considered as the kernel function. Therefore, the
prediction function is modi�ed based on representation
theorem as follows [36]:

f(g(x)) =
ns+ntX
i=1

�ik(g(xi); g(x)): (14)

In addition, Eq. (13) is reformulated as:

� =argmin�2Rns+nt k (Y � �TK)R k2F
+ tr(�TKLK�+ ��TK�); (15)

where K is the kernel matrix and � denotes the optimal
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classi�er parameters. Moreover, when the derivation of
the objective function in Eq. (15) is set to 0, the optimal
classi�er parameters are achieved as in the following
relation:

� = (�I + (R+ L)K)�1RY T : (16)

Herein, the optimal parameters (�) of an ef-
�cient and robust classi�er have been achieved to
�nd prediction function f via Eq. (14). Therefore,
classi�er f is constructed in a new projected subspace
by employing labeled source and unlabeled target
samples. Now, this classi�er determines the labels of
unlabeled target samples with higher accuracy in the
new subspace. Algorithm 1 demonstrates the complete
process of JDAFMM. In the �rst phase, JDAFMM
projects the source and target domains in a shared
low-dimensional subspace and achieves di�erence min-
imization of marginal and conditional distributions
between domains. JDAFMM predicts pseudo target
labels using a trained model for the source domain in
the embedded subspace. Moreover, JDAFMM re�nes
the pseudo target labels in an iterative manner in order
to predict more accurate labels for target data. In the
second phase, JDAFMM achieves an adaptive classi�er,
which facilities adapting prediction function with the
manifold alongside marginal distribution adaptation.

4.4. Computational complexity
In this section, computational complexity of JDAFMM
is computed. According to Algorithm 1, we consider
the number of iterations to be constant (e.g., 10), i.e.,
O(1). The computational complexity is detailed as
follows: O((ns+nt)2) for computing MMD matrix M0,
i.e., Line 3; O(m2) for solving eigen-value decomposi-
tion, i.e., Line 5; O(m(ns + nt)) and O(C(ns + nt)2)
for classifying and updating MMD matrix Mc, respec-
tively, i.e., Lines 7 and 9; O((ns + nt)2) for computing
kernel matrix K and coe�cients �, i.e., Lines 13 and
14; and O((ns + nt)2) for construction of the adaptive
classi�er, i.e., Line 15. Since m << (ns+nt), the total
computational complexity of JDAFMM is considered
as O(C(ns + nt)2).

5. Experimental setup

This section presents the evaluation data and imple-
mentation details of our proposed method.

5.1. Data description
In order to assess the performance of JDAFMM
approach, we conduct a variety of experiments on
three types of visual benchmark datasets. Table 1
summarizes the benchmark image datasets.

Algorithm 1. Joint Distribution Adaptation via Feature and Model Matching (JDAFMM).

Table 1. Description of benchmark image datasets.

Dataset #Type #Examples #Features #Classes Subsets
USPS Digit 1,800 256 10 U

MNIST Digit 2,000 256 10 M
PIE Face 11,554 1,024 68 P1,: : : , P5

O�ce Object 1,410 800 10 A, W, D
Caltech Object 1,123 800 10 C
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O�ce and Caltech [9,11,21,37] datasets are well-
known benchmark sets for visual DA. The datasets are
comprised of four distinct object domains: Amazon
(A), DSLR (D), Webcam (W), and Caltech-256 (C).
Images in Amazon domain are collected from online
merchants; images in DSLR domain are captured via
high-resolution cameras; images in Webcam domain
are taken by low-resolution cameras; and images in
Caltech-256 domain are collected from Google images.
In our experiments, the common O�ce dataset is
employed, which was released by Gong et al. [9].

The images of O�ce and Caltech datasets follow
various distributions; however, the following 10 com-
mon classes are considered in our experiments: head-
phones, touring-bike, computer-monitor, computer-
mouse, computer-keyboard, laptop-101, calculator,
video projector, backpack, and co�ee-mug. By utilizing
a subdivision of images from Amazon as the codebook,
the images of all domains are encoded into 800-bin
histograms and standardized with z-score. In general,
12 domain adaptation experiments are designed based
on four available domains by considering two di�erent
datasets as the source and target domains, i.e., C �!
A;C �!W; : : : ;D �!W .

USPS (U) and MNIST (M) domains are popular
handwritten digit datasets with di�erent distributions
and statistics. USPS dataset has 7,291 training and
2007 test images of size 16� 16 scanned from envelops
of the US Postal Service. MNIST dataset has 60,000
training and 10,000 test images of size 28� 28 scanned
from mixed American Census Bureau employees and
American high school students. All images of USPS
and MNIST datasets are resized to 16 � 16 at a
grayscale level. Thus, two domain adaptation exper-
iments are designed, namely: U �!M , and M �! U .

PIE is a well-known benchmark face dataset,
which contains 41,368 images of size 32 � 32 from
68 individuals. All images are captured by 13
synchronized cameras and 21 ashes with di�erent
poses, illuminations, and expressions. PIE dataset,
depending on the position of images, is divided into
5 di�erent subsets: PIE1(C05, left pose), PIE2(C07,
upward pose), PIE3(C09, downward pose), PIE4(C27,
frontal pose), and PIE5(C29, right pose). Thus, 20
domain adaptation experiments are designed as follows:
P1 �! P2; P1 �! P3; : : : ; P5 �! P4.

5.2. Method evaluation
In this section, our JDAFMM results are compared
with the results of two baseline machine learning
approaches (TCA [3], GFK [9], JDA [27], TJM [38],
and VDA [8]). Since all the mentioned methods
are presented as dimensionality reduction approaches,
another model is trained for the labeled source data
using NN classi�er for predicting the primitive labels of

the unlabeled target data. All approaches are evaluated
based on their reported best results.

5.3. Implementation details
In order to assess the e�ectiveness of JDAFMM versus
other approaches, classi�cation accuracy is employed
as the evaluation criterion. The number of iterations
for convergence of JDAFMM is set to 10. JDAFMM
approach contains four di�erent parameters, namely �
(the regularization parameter in Eq. (13), k (the size of
subspace),  (the regularization parameter in Eq. (7),
and � (the regularization parameter of Eq. (13), of
which the optimal values are reported in Table 2.
Moreover, the impact of parameter setting is evaluated
in the next section.

6. Experimental results and discussion

In order to assess the e�ectiveness of our JDAFMM
approach, it is compared with six related baseline
methods for benchmark visual domain adaptation
datasets.

6.1. Result evaluation
6.1.1. Object and digit recognition
Table 3 presents the classi�cation accuracy of
JDAFMM and six baseline methods for object (Of-
�ce+Caltech) and digit datasets. For more details,
experimental results are visualized in Figure 2. The
experimental results demonstrate that JDAFMM leads
to considerable improvement in classi�cation accuracy
(2.19%) in comparison with the best approach, i.e.,
VDA, and outperforms it in 8 out of 14 experiments.

Table 2. Optimal values of JDAFMM for three visual
datasets.

Dataset k �  �

O�ce+Caltech 140 1 0.01 1

Digit 180 0.01 10 0.001

PIE 180 0.1 0.01 0.001

Figure 2. Classi�cation accuracy (%) for O�ce+Caltech
and Digits datasets. JDAFMM outperforms other
dimensionality reduction and DA approaches in 8 out of
14 experiments.
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Table 3. Classi�cation accuracy (%) of the proposed method for O�ce+Caltech and digits datasets (our approach
outperforms other dimensionality reduction and DA approaches in 8 out of 14 experiments).

Dataset NN PCA TCA GFK JDA TJM VDA JDAFMM

C �! A 23.70 36.95 45.82 41.02 44.78 46.76 46.14 56.37

C �!W 25.76 32.54 30.51 40.68 41.69 39.98 46.10 54.58

C �! D 25.48 38.22 35.67 38.85 45.22 44.59 51.59 50.96

A �! C 26.00 34.73 40.07 40.25 39.36 39.45 42.21 43.01

A �!W 29.83 35.59 35.25 38.98 37.97 42.03 51.19 47.80

A �! D 25.48 27.39 34.39 36.31 39.49 45.22 48.41 46.50

W �! C 19.86 26.36 29.92 30.72 31.17 30.19 27.60 34.11

W �! A 22.96 29.35 28.81 29.75 32.78 29.96 26.10 32.57

W �! D 59.24 77.07 85.99 80.89 89.17 89.17 89.18 87.9

D �! C 26.27 29.65 32.06 30.28 31.52 31.43 31.26 35.08

D �! A 28.50 32.05 31.42 32.05 33.09 32.78 37.68 38.31

D �!W 63.39 75.93 86.44 75.59 89.49 85.42 90.85 87.80

U �!M 44.70 44.95 51.05 46.45 59.65 52.25 62.95 65.25

M �! U 65.94 66.22 56.28 67.22 67.28 63.28 74.72 76.50

Average 34.79 41.93 44.93 44.55 48.04 48.76 51.86 54.05

In addition, JDAFMM achieves 19.26% performance
improvement in comparison with NN. This proves
JDAFMM to be a promising and satisfactory solution
in the case of domain shift problem.

6.1.2. Face recognition
Table 4 reports the classi�cation accuracy of JDAFMM
and six baseline methods for PIE dataset. For more
details, the experimental results are visualized as bar-
plots in Figure 3. From the reported results, it is ob-
served that JDAFMM obtains signi�cant improvement
(13.07%) in classi�cation accuracy compared with the
best approach, i.e., VDA, and outperforms VDA in
19 out of 20 experiments. In the rest, we compare
JDAFMM with each of the considered methods.

PCA is a signi�cant approach in the literature on
dimensionality reduction, which aims to transfer source
and target data into a shared subspace alongside maxi-
mum variance preservation in the embedded subspace.
Since it is supposed that the source and target samples
are drawn from a similar distribution, PCA does not
reach a considerably better performance than other
domain adaptation methods do. The performance
improvement with JDAFMM in comparison with PCA
is 12.12 and 50.23 for face and object+digit datasets,
respectively.

TCA is one of the domain adaptation benchmark
methods that exploits transfer components to project
source and target data in a new subspace. The

Figure 3. Classi�cation accuracy (%) for PIE dataset.
Our approach outperforms other dimensionality reduction
and DA approaches in 19 out of 20 experiments: (a) The
�rst 10 experiments and (b) the second 10 experiments.
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Table 4. Classi�cation accuracy (%) of the proposed method for PIE dataset (our approach outperforms other
dimensionality reduction and DA approaches in 19 out of 20 experiments).

Dataset NN PCA TCA GFK TJM JDA VDA JDAFMM

P1 �! P2 26.09 24.8 40.76 26.15 23.87 58.81 72.99 69.18

P1 �! P3 26.59 25.18 41.79 27.27 28.86 54.23 61.64 73.96

P1 �! P4 30.67 29.26 59.63 31.15 43.37 84.59 90.12 97.12

P1 �! P5 16.67 16.3 29.35 17.59 19.3 49.75 42.40 69.24

P2 �! P1 24.49 24.22 41.81 25.24 26.14 57.62 72.87 84.51

P2 �! P3 46.63 45.53 51.47 47.37 37.93 62.93 75.61 82.35

P2 �! P4 54.07 53.35 64.73 54.25 50.53 75.82 83.60 93.99

P2 �! P5 26.53 25.43 33.7 27.08 21.63 39.89 57.72 72.67

P3 �! P1 21.37 20.95 34.69 21.82 28.66 50.96 58.76 79.41

P3 �! P2 41.01 40.45 47.7 43.16 35.97 57.95 74.65 85.67

P3 �! P4 46.53 46.14 56.23 46.41 51.97 68.45 87.53 96.31

P3 �! P5 26.23 25.31 33.15 26.78 25.31 39.95 52.63 77.27

P4 �! P1 32.95 31.96 55.64 34.24 45.71 80.58 92.35 96.49

P4 �! P2 62.68 60.96 67.83 62.92 57.58 82.63 92.27 96.99

P4 �! P3 73.22 72.18 75.86 73.35 71.63 87.25 90.38 92.89

P4 �! P5 37.19 35.11 40.26 37.38 30.94 54.66 69.98 85.85

P5 �! P1 18.49 18.85 26.98 20.35 27.13 46.46 49.91 71.73

P5 �! P2 24.19 23.39 29.9 24.62 22.65 42.05 62.31 80.66

P5 �! P3 28.31 27.21 29.9 28.49 28.86 53.31 61.27 85.91

P5 �! P4 31.24 30.34 33.64 31.33 32.59 57.01 71.19 89.31

Average 34.76 33.85 44.75 35.35 35.53 60.24 71.01 84.08

following major limitations have considerable impact
on the performance of TCA: (1) It maps the source
and target data in an unsupervised procedure and does
not exploit label information of the source domain
and (2) It only adapts the marginal distribution of
the source and target domains and obviously does not
reduce the conditional distribution di�erence across
domains. JDAFMM bene�ts from the source domain
labels to construct a new subspace and adapts the dif-
ferences in both marginal and conditional distributions
of the source and target domains. Improvement in
performance by JDAFMM in comparison with TCA
is 9.12 and 39.33 for face and object+digit datasets,
respectively.

GFK learns a low-dimensional subspace by inte-
grating an in�nite number of subspaces to distinguish
drifts in geometric and statistical properties of the
source and target data. Due to the low-dimension of
the embedded subspace, GFK represents the original

data inaccurately in the embedded subspace. However,
JDAFMM �nds a common subspace that accurately
reects the original data. Improvement in performance
by JDAFMM compared with GFK is 9.5 and 48.73 for
face and object+digit datasets, respectively.

JDA, TJM, and VDA are well-known approaches
that attempt to learn a common feature space by
reducing distribution di�erence across the source and
target domains. TJM su�ers from the following two
restrictions: (1) It needs to solve a complex optimiza-
tion problem; and (2) It only adapts the marginal
distribution di�erences between domains. JDA re-
duces di�erences of both the marginal and conditional
distributions between the source and target domains;
however, it does not bene�t from label information of
source data. In addition to reducing the mismatch
between the joint marginal and conditional distri-
butions, VDA maximizes the discrimination margin
across various classes. JDAFMM outperforms JDA
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and VDA in 14 out of 14 and 9 out of 14 object+digit
datasets, respectively, and 20 out of 20 and 19 out of
20 face datasets, respectively.

6.2. E�ectiveness evaluation
A targeted series of experiments are conducted on
all datasets to verify the e�ectiveness of JDAFMM
and three baseline methods by comparing their per-
formances in 10 iterations. TJM, JDA, VDA, and
JDAFMM are repeated 10 times with their optimal pa-
rameters for O�ce+Caltech, Digits, and PIE datasets,
and the results are illustrated in Figures 4-6. Later on,
in this section, the convergence property of JDAFMM
will be investigated.

Figure 4 demonstrates the average classi�cation
accuracy of JDAFMM and three baseline methods for
the O�ce+Caltech dataset. As it is clear from the �g-
ures, TJM reduces the marginal distribution mismatch
between domains via integrating feature matching and
instance reweighting; however, it performs poorly in
comparison with other baseline methods. JDA obtains
desirable performance and outperforms TJM in 7
out of 12 experiments. VDA reduces the mismatch
between joint marginal and conditional distributions
in the source and target domains and employs domain
invariant clustering in the embedded subspace. VDA
outperforms TJM and JDA in most cases. However,
JDAFMM incorporates transfer learning and domain
adaptation concurrently and reduces the distribution
mismatch between domains. Moreover, JDAFMM
exploits an adaptive classi�er in the embedded sub-
space to adapt source and target domains. JDAFMM
outperforms VDA in 7 out of 12 experiments for
O�ce+Caltech dataset.

It should be noticed that the classi�cation ac-
curacy of JDAFMM increases sharply in the 11th
iteration. This is due to the use of an adaptive
classi�er in the embedded subspace in the second phase
(iteration 11). Indeed, in the �rst phase, JDAFMM is
repeated 10 times in order to discover a suitable shared
feature representation by reducing joint marginal and
conditional distributions mismatch between the do-
mains. In most cases, JDAFMM shows similar results
to those of other DA approaches; however, in the 11th
iteration, JDAFMM lunges considerably because of
applying the adaptive classi�er. In fact, JDAFMM
adapts the model along with the data in the last
iteration. In this case, the model resists data drifts
in source and target domains.

Figure 5 displays the performance of JDAFMM
and three baseline methods for digits dataset. As it is
clear from the sub-�gures, JDAFMM makes remark-
able improvement with digits dataset in comparison
with other DA methods, particularly JDA (7.23%
improvement).

Figure 6 shows the average classi�cation accuracy
of JDAFMM and three baseline methods for PIE
dataset. As can be seen in the sub�gures, JDAFMM
performs worse than other methods in the starting
steps; however, it achieves extraordinary progress from
the 6th iteration onwards. Performance improvement
in JDAFMM in comparison with JDA and VDA is
23.84 and 13.07, respectively.

6.3. Impact of objective function factors
In order to assess our contributions regarding the
performance of JDAFMM, we conduct a serious of
experiments on two benchmark datasets. Table 5
demonstrates the obtained results of JDAFMM for
O�ce+Caltech and Digits datasets in 10 iterations.

Ignoring the second phase (model matching) of
the proposed approach results in 5% accuracy reduc-
tion for O�ce+Caltech and Digits datasets. In such
situation, there are two principal reasons that propel
the accuracy reduction in JDAFMM: (1) The learned
model does not have minimum error for the labeled
source data, and (2) The learned model does not
consistent with geometric data structure. Therefore,
by learning an adaptive classi�er in the embedded
subspace, the trained model possesses high accuracy
for target samples due to the model matching with the
manifold underlying the marginal distributions.

Eliminating the marginal distribution adaptation
from the �rst phase leads to 6.54% accuracy reduc-
tion for O�ce+Caltech and Digits datasets. This is
due to the substantial marginal distribution di�erence
between the source and target domains. Thus, the
learned model predicts the labels of target samples with
low accuracy.

Ignoring the conditional distribution adaptation
from the �rst phase yields 5.03% accuracy reduction for
O�ce+Caltech and Digits datasets. This considerable
reduction is due to the mismatch between the condi-
tional distributions of the source and target domains.
Therefore, by minimizing the conditional distribution
mismatch between domains, the trained model predicts
the labels of target data with high accuracy.

Table 5. Impact of objective function factors.

Dataset JDAFMM Ignoring model
matching

Ignoring
cnd(Xs; Xt)

Ignoring
mrg(Xs; Xt)

O�ce+Caltech, Digits 54.05 48.04 49.02 47.51
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Figure 4. Classi�cation accuracy (%) with respect to the number of iterations for O�ce+Caltech dataset.

6.4. Impact of parameter settings
The proposed experiments are conducted with respect
to di�erent values of parameters in order to evaluate
the performance of JDAFMM in various situations.
In general, four important parameters are adjusted

for JDAFMM in di�erent datasets, namely the size
of subspaces, k, and the regularization parameters
, �, and �. JDAFMM, VDA, and JDA are run
with di�erent values of parameters for O�ce+Caltech,
Digits, and PIE datasets.
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Figure 5. Classi�cation accuracy (%) with respect to the number of iterations for digits dataset.

Figure 7 demonstrates the empirical results for
parameter k for the O�ce+Caltech dataset. We in-
vestigate the classi�cation accuracy of JDAFMM with
k 2 [20 220] for 12 O�ce+Caltech datasets. The value
of k characterizes the feature representation accuracy
for data reconstruction. The plots show that, in most
cases, JDAFMM has maximum performance with k =
140 for O�ce+Caltech dataset. Figure 8 shows the
experimental results of JDAFMM, VDA, and JDA with
respect to � 2 [0:00001 10] for the O�ce+Caltech
dataset. As it is clear from the plots, JDAFMM obtains
considerable results with large values of �. However,
� = 1 is considered for O�ce+Caltech dataset. In
general, larger values of � increase the importance of
the regularization term. Moreover, smaller values of
� make the optimization problem ill-de�ned and the
eigenvalue decomposition complex.

Figure 9 represents to parameter evaluation of
JDAFMM regarding the classi�cation accuracy and
parameter  2 [0:0000110] for O�ce+Caltech dataset.
As it is observable in the sub�gures, JDAFMM per-
forms poorly with large values of parameter . The
value  = 0:01 is chosen for O�ce+Caltech dataset.
In general, large values of parameter  neglect the
label information of source domain in constructing the
adaptive classi�er. Moreover, small values of parameter
 neglect the extracted information from unlabeled
target data.

Figure 10 reports the classi�cation accuracy of
JDAFMM for evaluating parameter � 2 [0:00001 10]
for the O�ce+Caltech dataset. As it is clear from the
sub�gures, in most cases, the performance of JDAFMM
is degraded with larger values of �. We choose � = 1
for O�ce+Caltech dataset. In fact, larger values of
� may increase complexity of the model and decrease
the e�ect of the other parameters in constructing the
adaptive classi�er.

Figure 11 illustrates the experimental results

for parameter k for Digits dataset. The sub�gures
represent the performance of JDAFMM against other
baseline methods with k 2 [20 220]. JDAFMM
obtains satisfactory results with large values of k. We
set k = 180 for digits dataset. Figure 12 presents
the parameter evaluation with respect to classi�cation
accuracy and parameter � 2 [0:00001 10] for Digits
dataset. The reported results illustrate that JDAFMM
performs well for digits dataset with small values of
�. In other words, for large values of �, JDAFMM
cannot learn an adaptive model across the source and
target domains. Thus, we set � = 0:01 for Digits
dataset.

Figure 13(a) displays the performance of
JDAFMM regarding  2 [0:00001 10] for digits
dataset. It is clear from Figure 13(a) and (b) that
JDAFMM has an ascending order of large values of .
As a result,  = 10 is considered for Digits dataset.
Figure 13(b) represents the experimental results
of JDAFMM in analyzing the e�ect of parameter
� 2 [0:00001 10] on the accuracy of model. The
�gure shows that JDAFMM gains poor classi�cation
accuracy with large values of �. We consider � = 0:001
for Digits dataset.

Figure 14 shows the classi�cation accuracy of
JDAFMM, VDA, and JDA with respect to k 2 [20 220]
for PIE dataset. The experimental results show that
JDAFMM outperforms other DA methods with various
values of k. In other words, the results indicate the
e�ectiveness and robustness of JDAFMM in knowledge
transfer from the source domain to the target one.
The optimal value of k is set to 180 for PIE dataset.
Figure 15 demonstrates parameter evaluation with
respect to classi�cation accuracy and parameter � 2
[0:00001 10] for PIE dataset. As it is clear from
the sub�gures, in most cases, JDAFMM has better
performance with � 2 [0:01 1]. The optimal value of �
is 0.1 for PIE dataset.
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Figure 6. Classi�cation accuracy (%) with respect to the number of iterations for PIE dataset.
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Figure 7. Parameter evaluation with respect to classi�cation accuracy (%) and the number of subspace bases, k, for
O�ce+Caltech dataset. In most cases, JDAFMM has the best performance with k = 140 for O�ce+Caltech dataset.

Figure 16 reports the experimental results of
JDAFMM in evaluating parameter  2 [0:00001 10]
for PIE dataset. It is observed in sub�gures that, in
most cases, JDAFMM has high classi�cation accuracy
with  2 [0:001 0:01]. The optimal value of  is 0.01 for

PIE dataset. Figure 17 illustrates the performance of
JDAFMM regarding � 2 [0:00001 10] for PIE dataset.
JDAFMM demonstrates an descending order in large
values of �. Thus, we choose � = 0:001 for PIE
dataset.
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Figure 8. Parameter evaluation with respect to classi�cation accuracy (%) and parameter, �, for O�ce+Caltech dataset.
JDAFMM obtains considerable results with large values of �. We consider � = 1 for O�ce+Caltech dataset.

6.5. Convergence evaluation
Comprehensive experiments on O�ce+Caltech, digits,
and PIE datasets are conducted to validate JDAFMM
from a convergence standpoint and the performances
of JDAFMM in comparison with VDA and JDA pre-

sented. Figures 18, 19, and 20 show the experimental
results of JDAFMM, VDA, and JDA in 20 iterations for
O�ce+Caltech, Digits, and PIE datasets, respectively;
they demonstrate that there is no signi�cant improve-
ment after the 10th iterations. As it is clear from the
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Figure 9. Parameter evaluation with respect to the classi�cation accuracy (%) and parameter, , for O�ce+Caltech
dataset. JDAFMM performs poorly with large values of parameter . The value  = 0:01 is chosen for O�ce+Caltech
dataset.

Figure 10. Parameter evaluation with respect to the classi�cation accuracy (%) and parameter, �, for O�ce+Caltech
dataset. In most cases, the performance of JDAFMM is degraded with large values of �. We choose � = 1 for
O�ce+Caltech dataset.
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Figure 11. Parameter evaluation with respect to the classi�cation accuracy (%) and the number of subspace bases, k, for
digits dataset. JDAFMM obtains satisfactory results with large values of k. We set k = 180 for digits dataset.

Figure 12. Parameter evaluation with respect to the classi�cation accuracy (%) and the regularization parameter, �, for
digits dataset. JDAFMM performs well for digits dataset with small values of �. We adjust � = 0:01 for digits dataset.

Figure 13. Parameter evaluation with respect to the classi�cation accuracy (%) and parameters  and � for digits
dataset. JDAFMM shows an ascending manner with large values of . Moreover, JDAFMM has poor classi�cation
accuracy with large values of �. As a result, we consider � = 0:001 and  = 10 for digits dataset in evaluating (a)
parameter  and (b) parameter �.
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Figure 14. Parameter evaluation with respect to the classi�cation accuracy (%) and the number of subspace bases, k, for
PIE dataset. The experimental results show that JDAFMM outperforms other DA methods with varying values of k. The
optimal value of k is set to 180 for PIE dataset.
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Figure 15. Parameter evaluation with respect to the classi�cation accuracy (%) and the number of subspace bases, �, for
PIE dataset. In most cases, JDAFMM has better performance with � 2 [0:01 1]. The optimal value of � is 0.1 for PIE
dataset.
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Figure 16. Parameter evaluation with respect to the classi�cation accuracy (%) and parameter  for PIE dataset. In most
cases, JDAFMM reaches high classi�cation accuracy with  2 [0:001 0:01]. The optimal value of  is 0.01 for PIE dataset.

Figure 17. Parameter evaluation with respect to the classi�cation accuracy (%) and parameter � for PIE dataset.
JDAFMM demonstrates a descending manner for large values of �. We choose � = 0:001 for PIE dataset.

�gures, in most cases, the performance of JDAFMM
gradually increases during early iterations and becomes
stable after about 10 iterations. In addition, JDAFMM
achieves considerable improvement whenever the adap-
tive classi�er is applied after either the 10th or the 20th
iteration.

7. Conclusion

This research introduced JDAFMM as an unsuper-
viseddomain adaptation approach that bene�ted from
both model- and feature-based techniques to cope with
the domain shift problem. JDAFMM was a two-
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Figure 18. Convergence evaluation with respect to the classi�cation accuracy (%) in 20 iterations for O�ce+Caltech
dataset. In most cases, all three methods converge in the �rst 10 iterations.

Figure 19. Convergence evaluation with respect to the classi�cation accuracy (%) in 20 iterations for digits dataset. In
most cases, all three methods converge in the �rst 10 iterations.
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Figure 20. Convergence evaluation with respect to the classi�cation accuracy (%) in 20 iterations for PIE dataset. In
most cases, all three methods converge in the �rst 10 iterations.
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phase solution with the following characteristics. In
the �rst phase, JDAFMM projected the source and
target data into a shared feature subspace where the
di�erences of joint marginal and conditional distribu-
tions between domains were minimized simultaneously.
In the second phase, an adaptive classi�er was trained
in the embedded subspace based on the joint labeled
source and unlabeled target data. The goal of this
adaptive classi�er was to �nd a prediction function
with minimum empirical risk for the labeled source
data and maximum consistency with geometric data
structure. Comprehensive experiments were conducted
to validate the performance of JDAFMM from di�erent
standpoints. Our experimental results demonstrated
that JDAFMM signi�cantly outperformed other state-
of-the-art domain adaptation methods for various vi-
sual benchmark datasets.
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