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1. Introduction

Liquefaction is one of the most interesting and sophis-
ticated seismic geotechnical issues. This phenomenon
and various types of failure related to it (such as flow

Abstract. Lateral spreading is one of the most significant destructive and catastrophic
phenomena associated with liquefaction caused by earthquake and it can cause very serious
damage to structures and engineering facilities. The aim of this study is to evaluate
liquefaction-induced lateral spreading and find new relations using (Gene Expression
Programming (GEP), which is a new and developed generation of genetic algorithms
approaches. Since there are complicated, nonlinear, and higher-order relationships among
many factors affecting the lateral spreading, GEP was assumed to be capable of finding
complex and accurate relationships among the involved factors. This study includes three
main stages: (i) compiling available database (484 data); (ii) dividing data into training
and testing categories; and (iii) building new models and proposing new relationships to
predict ground displacement in free face, gentle slope, and general ground conditions. The
results of modeling each of these different ground conditions were presented in the form of
mathematical equations. At the end, the final GEP models for 3 different cases of ground
conditions were compared with Multiple Linear Regression (MLR) and other published
models. The statistical parameters indicated the higher accuracy of GEP models over
other relations.

(© 2020 Sharif University of Technology. All rights reserved.

occurs as a result of rapid loss of shear strength of the
soil due to increasing pore water pressure in saturated
soils subjected to static or dynamic loads. Lateral
spreading is the most common type of liquefaction-
induced ground failure. During this phenomenon,

liquefaction and lateral spreading) can impose tremen-
dous damages and losses on infrastructures, buildings
and structures, lifelines, and buried structures. In
general, liquefaction is considered one of the major
causes of ground movement due to earthquake and
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blocks of intact surficial soil are displaced along a shear
zone that has formed within the liquefied layer. Due
to earthquake and gravitational forces, surficial blocks
are transported downslope or in the direction of free
face upon reaching mobilization. Lateral spreading
can cause horizontal ground displacement from a few
centimeters to several meters [1]. This phenomenon
can be observed in fields with gentle slopes ranging
from 0.3 to 5% and in fields with free face like stream
channels and trenches. Lateral spreading depends on
several factors: physical and mechanical properties of
the soil layers, depth of groundwater, intensity and
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duration of ground shaking, distance from source of
seismic energy, and seismic attenuation properties of
in situ soil. Due to the participation of a large number
of parameters affecting this phenomenon, estimating
the liquefaction-induced lateral spreading is one of the
most complicated issues of geotechnical engineering [2].

Estimating the deformations and displacements
caused by liquefaction is part of soil liquefaction en-
gineering.  Unlike the phenomenon of liquefaction,
no specific mechanism is recognized in liquefaction-
induced lateral spreading. Several factors including
seismic characteristics, soil specification and geology,
topographical characteristics, etc. are involved in oc-
currence of lateral spreading. Generally, various meth-
ods that have been applied to predicting the magnitude
of liquefaction-induced lateral spreading can be divided
into 4 categories, as shown in Table 1.

In methods based on Newmark’s sliding block [3—
6], according to the simplifications made in modeling
the behavior of liquefied soil and considering soil as
a rigid body, the obtained equations do not enjoy
high accuracy of predicting lateral displacement. In
models based on minimum potential energy [7,8], the
liquefied soil is assumed to behave as liquid, and these
models have received less attention than the sliding
block methods.

In order to model all the details of liquefaction-
induced lateral spreading, numerical models [9-16]
should be able to simulate seismic excitation, softening
of the soil due to increase in pore water pressure, rapid
decrease in shear strength, and displacement continu-
ation of soil after loading and reconsolidation due to
the drainage of additional pore water pressure [17].
Due to the nonlinear behavior of soil and nonlinear
relationships between participating parameters, the
application of finite element method to modeling this
phenomenon is very complicated [18].

Methods based on experimental results [12,14—
16,19,20] also require a large number of the data
obtained from tests. In these methods, preparation of
high-quality specimens and simulation of shear strains

are of utmost importance and in practice, it is difficult
to provide all the in-situ conditions at the laboratory.

Given the large number of parameters including
seismological, topographical, and geotechnical param-
eters and nonlinear relationships among them, re-
searchers have vastly used empirical and parametric
methods. Empirical methods [1,21-33] are used based
on the collected data after earthquakes. Because of
their simplicity, they are widely used in predicting
the lateral spreading. Most of these relations have
been obtained using Multiple Linear Regression (MLR)
method and they usually offer separate relations for
gentle slope and free face ground conditions [17].

In complex problems where the relationship be-
tween variables is unknown, optimization algorithms
such as machine learning-based methods are very
powerful predictive tools for solving the problems as
long as they can simulate the very nature of the
problem. Lateral spreading is one of the complex
issues of engineering problems and a large number of
parameters are involved in its occurrence. Therefore,
Artificial Neural Networks (ANNs) [18,34-36], Genetic
Programming (GP) [2,37,38], and other machine learn-
ing techniques can be significantly viable tools for
solving these problems. Table 2 lists a number of
relationships between empirical and machine learning-
based methods.

Due to the ability of finding complex relationships
among multivariate problems, Gene Expression Pro-
gramming (GEP) can be a useful tool for geotechnical
issues. Johari et al. [39] applied GEP to predicting
effective stress parameter of unsaturated soils. Ke-
shavarz and Mehramiri [40] utilized GEP to model the
normalized shear modulus and damping ratio of sands.
This method was also used to predict the maximum
lateral displacement of retaining wall [41] and soil-
water characteristic curve [42].

In this paper, a new approach was presented
to evaluate the liquefaction-induced lateral spread-
ing using GEP. Modeling liquefaction-induced lateral
displacement by GEP method was carried out using

Table 1. Available methods of lateral spreading predictions.

Analytical methods

Numerical methods

Empirical and semi-empirical methods

Machine learning approaches

Based on Newmark’s sliding block [3-6]

Based on minimum potential energy [7,8]

Based on finite element methods [9-12]

Based on in situ collected data [1,21-29]
Based on laboratory methods [12,19,20]

Artificial neural networks [18,34]

Genetic programming [2,37,38]
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Table 2. Proposed equations to predict liquefaction-induced lateral spreading.

D =0.75VHY0 Hamada et al. [21]
log LSI= —3.49 — 1.861log R + 0.98 M, Youd and Perkins [22]
Free face:

log D = —16.366 + 1.178 M — 0.927log R — 0.013R + 0.657 log W

+0.348log T5 + 4.5271og (100 — Fi5) — 0.922D5045

Gentle slope:

Bartlett and Youd [1,23]

log D = —15.787 + 1.178M — 0.927log R — 0.013R + 0.429log S
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log Dy = —16.713 + 1.532M — 1.406log R* — 0.012R + 0.592 log W

+0.540log 115 + 3.41310g(100 — Fy5) — 0.795log(D5015 + 0.1 mm)

Gentle slope:

Youd et al. [27]

log Dy = —16.213 + 1.532M — 1.406log R* — 0.012R + 0.338 log S
+0.540log 715 + 3.41310g(100 — Fy5) — 0.795log(D5015 + 0.1 mm)

— 0.006T%
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—0.0013W2 + 0.0002M 2 WTys + 3.7
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Javadi et al. [2]

Dpe = —0.8515 +0.0014F75 + 0.16T15 + 0.1125 + 0.04 521

—0.026 RD5015 +1.14
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Dy — _2:1414/EW _ 0.061863T15F15 _ 11.1201M° + 0.0017573M > Ty 5v/W +1.9671
H MZ2,/D50,5 VMW RFi5svVW D5015+v/F15 ’

Gentle slope:

Rezania et al. [37]

_ 1.6941Ti5F15
Dp = M2/D50:5 M2

2.254210~ 2T D503, VM

FL/RS + 0.85441

0.78905T15+/RSF15 + 0.036036 M T15V/'S
2 D505

484 datasets, compiled by Youd et al. [27] for gentle
slope, free face, and general ground conditions and
for each of these different ground conditions, a single
mathematical expression was established. The results
of the suggested relationships were compared to those
obtained by MLR and other methods and the benefits
of the proposed method were discussed in detail.

2. Gene Expression Programming (GEP)

GEP was fabricated by Ferreira [43]. GEP is a
type of evolutionary algorithms inspired by biological
systems. Like Genetic Algorithms (GAs) and GP, using
population of individuals, selecting them according
to fitness, and using genetic operators create new
offspring in the search space and they move toward
points with better fitness values [43]. Compared with
GAs and GP, individuals in GEP are more developed.
GA individuals are composed of linear strings with
fixed lengths (chromosomes). Despite GAs, individuals
(chromosomes) in GP are more complex and nonlinear

entities and are of different shapes and sizes (parse
trees) [43]. Entities in GAs and GP work both as geno-
type and phenotype simultaneously. GEP combines
simple linear chromosomes of fixed lengths, like the
entities used in GAs, branched structures (Expression
Trees (ETs)) with different shapes and sizes like GP,
and parse trees to create a more complete program with
high similarity to natural biological systems and better
performance. Chromosomes and ETs are the main
agents in GEP. ETs function as phenotypes and are en-
coded in fixed-length linear chromosomes (genotype).
Selection is based on fitness of ETs. According to
fitness of ETs, chromosomes will be selected to create
new offspring using genetic modifications. Although
selection of individuals is based on fitness of ETs, it is
the chromosomes, not ET's, that are reproduced [43].
Information is encoded in linear entities of fixed
length (chromosomes) and is decoded into ETs due to
the translation process. Genetic codes in chromosomes
are composed of members of functions and terminals
sets. Each symbol in the chromosome (genetic code)
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Figure 1. The expression tree and open reading frame of
a mathematical expression [44].

forms a part of spatial organization of the correspond-
ing ETs due to the translation process [44]. GEP
chromosomes are usually composed of multiple genes of
equal length. Fach gene forms a sub ET, and the sub
ETs together form a more complex multi-subunit ET.

Understanding the structural organization of
GEP genes requires deeper familiarity with Open Read-
ing Frames (ORFs). An algebraic or mathematical
expression (Figure 1(a)) can be expressed in the form of
an ET (Figure 1(b)). As mentioned, ET is in fact the
phenotype of GEP individuals. In addition, through
straightforward reading of the ET levels from left to
right and from top to bottom, the ORF (genotype) can
be inferred easily (Figure 1(c)). Expression presented
in Figure 1(c) is an ORF, starting at “Q” and termi-
nating at “d”. An ORF in GEP language is called K-
expression [43]. Expressing an ORF into an ET is also
very simple and straightforward. To express an ORF
to an ET, the rules governing the spatial distribution
of functions and terminals are dominant. Consider
Figure 1 in reverse order; the start position of the ORF
(Figure 1(c)) forms the root of the ET at the first
line of the ET. As a rule, depending on the number
of arguments of each element in a line (functions have
different number of arguments, while terminals have no
arguments), nodes will be formed in the next lines and
by reading ORF from left to right, the new nodes are
filled consecutively with the elements of the ORF. This
process will be terminated when a line containing only
terminals is formed (Figure 1(b)) [44].

GEP chromosomes are usually composed of more
than one gene of equal length. FEach gene codes
for a sub-ET and the sub-ETs interact with one
another, thus forming a more complex multi-subunit
ET (Figure 2) [43]. It should be noted that genes
in a chromosome have equal length, but multigenic
chromosomes have different ORFs that are compared
with each other. The chromosomes of GEP contain
several ORFs, each ORF coding for a structurally and
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Figure 2. The three-genic chromosome: (a) The open
reading frame and (b) the expression tree of each gene.
The tail of each gene is shown in bold [44].

SUb-ET,

functionally unique sub-ET [44]. Complete expression
of the genetic information requires the interaction of
these sub-ETs with one another. One of the simplest
interactions is the linking of sub-ETs by a particular
function. In GEP, linking functions include addition
(+) and multiplication (*) for algebraic expressions and
If and OR for Boolean expressions [43].

GEP uses mutation, transposition, and recombi-
nation (crossover) to make variations in individuals
and find the solutions. Due to the unconstrained
genotype/phenotype mapping of GEP, several genetic
operators can be easily implemented; Ferreira [43] used
seven operators: mutation, three kinds of transposition
(Insertion Sequence, IS; Root Insertion Sequence, RIS;
and gemne transposition), and three kinds of recombina-
tion (one-point, two-point, and gene recombination).

Ferreira [45] investigated genetic operators and
found that mutation had the greatest impact by far
among other genetic operators and RIS, IS, two-
point recombination, one-point recombination, and
gene recombination had the highest impact on the
performance of chromosomes.

3. Data collection

Finding an empirical or semi-empirical model requires
compiling valid and high-quality data.  Concern-
ing liquefaction-induced lateral spreading, researchers
have used various data and parameters and Youd et
al. [27] compiled the most reliable and frequently used
datasets. Bartlett and Youd [1] compiled case histories
of lateral spreading consisting of data obtained from
different earthquakes. Based on Standard Penetration
Test (SPT) and by using MLR, they provided a
relatively better relationship between variables than
existing relationships. Youd et al. [27] compiled a
dataset consisting of 484 data from 11 different earth-
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Figure 3. Parameters associated with free face and gentle
slope conditions.

quakes by revising the previous dataset. Using this
collection, they improved their previous equations.

In this study, the dataset and variables com-
piled by Youd et al. [27] were used to estimate the
liquefaction-induced lateral spreading. For each mea-
sured displacement (Dj.) in the dataset, there are
seven specifications obtained from tests and known
as independent variables. Variables can be divided
into three categories: seismological, topographical,
and geotechnical variables. Seismological variables are
associated with the intensity and duration of strong
ground motion including: the moment magnitude of
the earthquake (M, ), the nearest distance to the
seismic energy source (R (km)), and the modified
source distance (R*). Topographical variables include
free face ratio (W (H/L (%)), L: horizontal distance
from the toe of free face to the displacement vector
(m), H: height of the free face (m)), and the ground
slope (S (%)). These variables were used to determine
the location of lateral spreading and the boundary
conditions of the ground (Figure 3). Geotechnical
variables include cumulative thickness of saturated
cohesionless soil layers with corrected SPT number
(N1)e6o less than 15 (715 (m)), the average fines content
for granular materials included within T75(F}5), and
the average mean size of granular materials within
T15((Ds0)15)-

Statistical characteristics of variables (such as
minimum, maximum, and average values) were used
for data evaluation. Figure 4 shows the distribution
graph of variables. As seen earlier, in most cases,
lateral spreading occurred by earthquakes of moment
magnitude ranging from 6.5 to 7.5 and at a distance less
than 25 km away from the source of seismic energy. It
was shown that most of the lateral spreading events
occurred on a slope less than 3% and a free face
ratio less than 10%. Moreover, the measured ground
displacements (Dy,.) for most of the case histories were
below 2 m. The average value of each variable is
written in the corresponding chart, and the dominant
cases in each chart imply that most of the observed
displacements have such specifications. Given that
searching for solutions is carried out in wide spaces
with many specifications and since the aim of this
study is to find a proper relationship between D). and
other independent variables, we expect the results to
be more accurate and reliable in regions with dominant
specifications.

Table 3. Classification of training and testing data in
different ground conditions.

Number L. .
Ground Training Testing
. of case
condition . . data data
histories
Free face 229 190 39
(82.97%)  (17.03%)
[<4rd
Gentle slope 255 198 o
(77.65%)  (22.35%)
General 484 388 96 -
(80.17%)  (19.83%)

In machine learning techniques, the available data
are divided into two categories of training dataset and
testing dataset. The training dataset was used as
the selection environment and by using this set of
data, the algorithm would attempt to adapt to the
problem environment as well as learn and discover the
relationships between variables. This dataset should be
chosen in such a way that it can be representative of the
whole problem space. Obviously, with a larger number
of members of the training dataset and less dispersal
of the data in training dataset, better relationships can
be identified by the algorithm. The testing dataset is
also used for validation of the relations obtained by the
training dataset. In this study, as indicated in Table 3,
the data were separated into three different types of
ground conditions: gentle slope grounds, grounds with
free face, and grounds with a general state.

The values of the Minimum (Min), average (Avg),
Standard Deviation (SD), and Maximum (Max) of all
independent and dependent variables in both of the
training and testing sets are shown in Tables 4, 5, and
6 for the general, free face, and gentle slope ground
conditions, respectively. The comparison shows the
fact that the values of these statistical parameters are
close in both training and testing datasets.

4. Modeling using GEP

The aim of modeling in GEP is to find and build
different relationships between variables. Necessary
parameters for modeling can be divided into three
categories as follows:

- Population parameters including the number of
individuals (chromosomes) in population and the
characteristics of chromosomes (number of genes of
each chromosome, the size of the head of genes, the
gene’s linking function, and the number of numerical
constants of each gene);

- Control parameters including termination criterion
of the program and appropriate fitness function;
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Figure 4. Distribution graph of variable values.

- Operating parameters including the rate of genetic
operators, mathematical and logical functions, etc.
to create a function set.

Conceptually, modeling can be divided into two parts:
genetic modeling and mathematical modeling. Genetic
modeling is that part of the modeling carried out by the
user. Mathematical modeling is the result of genetic
modeling, and the function of each genetic model is
evaluated on the basis of its mathematical model. In
GEP, mathematical models are built based on input

data and according to the values determined for genetic
parameters. The function of GEP in dealing with a
problem depends on the genetic model and the values
selected for genetic parameters. Therefore, selecting
the most appropriate and optimal values for genetic
parameters is the main issue that we are dealing with
GEP modeling, because the program may not reach
the desired result using a set of these values, or it may
take much longer for the process of the program to
bear fruit. The best model in GEP was obtained by
comparing different built mathematical models with a
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Table 4. Comparison of statistical parameters for training and testing data sets in general ground conditions.

Training data

Testing data

General

Min Avg SD Max Min Avg SD Max
log(Dhr.) -2.0 0.16 0.48 1.01 -2.0 0.17 0.47 0.94
M 6.4 7.36 0.45 9.2 6.4 7.45 0.47 9.2
R 0.2 20.61  12.72 100 0.2 23.83 17.11 100
log(R™) 0.13 1.38 0.41 2.66 0.23 1.46 0.4 2.66
log(Wyy) 00 044 051 1.75 00 035 047  1.62
log(Sys) -1.3  -0.11 0.28 1.04 -1.0 -0.14 0.28 1.04
log(T15) -2 0.75 0.38 1.22 -0.3 0.8 0.32 1.29
log(100 — Fis) 1.48 1.93 0.08 2.0 1.61 1.94 0.07 2.0
log(D5015 +0.1) -0.87 -0.39 0.22 1.08 -0.79 -0.39 0.19 0.57

Table 5. Comparison of statistical parameters of training and testing data sets in grounds with free face conditions.

Training data

Testing data

Free face

Min Avg SD Max Min Avg SD Max
log(Dhre) -2.0 0.18 0.53 1.01 -2.0 0.14 0.6 094
M 6.4 7.19 0.51 9.2 6.4 7.34 0.6 9.2
R 0.5 1752  14.26  95.0 0.5 22.56 18.7 100
log(R") 0.21 1.24 049 2.62 0.21 1.39 048 2.66
log(Wyy) 0.0 0.9 0.34 1.75 0.31 0.86 0.33 1.61
log(T1s) -0.7 081 0.38 1.22 -03 084 033 1.19
log(100 — Fis) 1.48 1.91 0.09 2.0 1.72 192 0.06 1.98
log(D50:5 +0.1) —0.87 —-0.42 0.26 0.32 -0.77 -0.45 0.19 0.2

Table 6. Comparison of statistical parameters of training and testing data sets in grounds with gentle slope conditions.

Training data

Testing data

Gentle slope

Min Avg SD Max Min Avg SD Max
log(Dhe) -2.0 0.15 0.43 0.65 -1.22  0.18 0.36 0.73
M 6.4 7.53 0.29 9.2 6.4 7.53 0.33 9.2
R 0.2 23,57 10.19 100 0.2 24.69 15.87 100
log(R") 0.13  1.52 0.25 2.66 0.13 1.5 0.34 2.66
log(Sys) -1.3  -0.21 0.36 1.04 -1.0 -0.24 0.33 1.04
log(T1s) 2.0 069 038 115 0.0 077 032  1.29
log(100 — Fis) 151  1.95 0.07 2.0 1.61 1.95 0.07 2.0
log(D50:5 +0.1) 0.8 -0.37  0.18 1.08 -0.79 -0.35 0.17 0.57

model with lower error rate, and higher fitness was
considered to be a better model. Therefore, having
the best genetic model (the most optimal parameter
values), the mathematical relationship between the
variables was determined.

As mentioned previously, modeling involves deter-
mining the optimal values of genetic parameters and
by using these parameters, the program moves forward
in an evolutionary process. Then, the generated
genetic models are expressed in mathematical terms,
and fitness of each model is evaluated on the basis

of generated mathematical relations. In other words,
modeling can be introduced as an attempt to find the
best values of genetic parameters in a step-by-step
process.

In this research, the modeling of lateral spreading
was carried out using GEP in three separate phases.
There are different steps in each phase, and each step
involved determining the optimal value of one of the
genetic parameters. Thus, in each step, the value of
one of the parameters was considered as a variable and
by changing the value of that variable, different models
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Table 7. The values of genetic parameters of selected models.

Specification of genetic parameters Free face Gentle slope General

1 Fitness function RMSE RMSE RMSE
2 Number of generations 100000 100000 100000
3 Number of chromosomes 90 70 50

4 Number of genes 13 12 13

5 Head size 14 5 13

6 Linking function + + +

7 Mutation rate 0.03 0.025 0.005

8 Inversion 0.1 0.1 0.1

9 IS transposition 0.1 0.1 0.1

10 RIS transposition 0.1 0.1 0.3

11 One-point recombination 0.3 0.3 0.3

12 Two-point recombination 0.1 0.6 0.1

13 Gene recombination 0.1 0.1 0.1

14 Gene transposition 0.1 0.1 0.1

15 Random numerical constants per gene 2 € [-10,10] 2 € [-10,10] 2 € [-10,10]

were built; finally, through the comparison of fitness
and statistical errors of the models, the best model of
that step and thus, the most optimal value of that vari-
able could be identified. Evolutionary algorithms were
of random-evolutionary nature and a program might
not evolve appropriately over certain generations. To
avoid this situation, the chosen model of each step
was executed 5 times again, and the average value of
fitness and its error were calculated. At the next step,
these mean values were compared with the previously
built models again, and the models with the values
close to the mean values were also applied 5 times
again; then, the average values of the models were
compared. The aim of following this trend is to reduce
the impact of random-evolutionary nature of algorithm
on the results. By determining the value of a variable
at each step, the process goes through the next step to
determine the optimum value of the next variable and
therefore, at the end of each phase, the optimum values
of all variables and thereby, the optimized model were
identified using the stepwise method. At the end of
each phase, the variables with no effect on the results
would be removed from the list of variables of the next
phase. It should be noted that the model chosen in
every step was considered as a prototype for the next
step and also, the final model of each phase was sent to
the next phase as a prototype. More information about
how to model and find the optimal values of population,
control, and operating parameters and how they will
affect the results are available in [43,44].

Based on provided explanations, genetic modeling
was carried out for three different types of ground
conditions with emphasis on Root Mean Square Error
(RMSE) as the fitness function. Number of generations
is a termination criterion that allows populations to
be built and evolved due to a certain number of gen-
erations. It is obvious that more generations provide
more opportunity to evolve for individuals; however,
due to time problems, it is set to 100000 in this
study.

Modeling in the first phase is composed of 8
steps: determining the number of population indi-
viduals (chromosomes), the number of genes of each
chromosome, the head size of each gene, the mutation
operator rate, the rate of Root Insertion Sequence
(RIS) operator, the rate of the two-point recombination
operator, the rate of the Insertion Sequence of elements
(IS) operator, and the rate of the gene recombination
operator, respectively. By removing the step associated
with determining the rate of IS operator, the second
phase is reduced to 7 steps. Moreover, by eliminating
the steps involved in determining the rate of two-point
recombination and gene recombination operators, the
third phase is also performed through 5 steps. Thus,
at the end of the modeling process in the third phase,
the genetic characteristics of the chosen models related
to each of different ground conditions are given in
Table 7. According to these genetic characteristics for
each of different ground conditions, a final model is
identified.
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Table 8. The simplified form of the variables used in evaluation of liquefaction-induced lateral spreading.

Variable M R log(R*) log(Sgs) log(Wss) log(Tis) log(100— Fi5) log(D50¢5 + 0.1)
Abbreviated M R r s T F D
5. Results

To avoid lengthy built relationships, a simple and
concise form of the variables was used in relations,
as shown in Table 8. The performance and efficiency
of the obtained relations were compared with those
of other equations using correlation coefficient (R2)
criteria, RMSE, and Mean Absolute Error (MAE), as
defined below:

(TiPy) — > T > Py

R, = j=1 j=1 ~ j=1 ’
rEr (5| g (5]
"ZT]‘_ > T nZPw-— > b
PR R

RMSE = i(aj 7;)?, (2)

map=13"1p, -1, (3)

In these equations, i index represents the program
number for which the fitness and errors are evaluated;
P;; is the value predicted by the individual program ¢
for fitness case j (out of n fitness cases); and T is the
target value for fitness case j.

5.1. Grounds with free face

As already noted, for the grounds with free face, 229
datasets were obtained from SPT, of which training
and testing data constituted 82.97% (190 data) and
17.03% of the dataset (39 data), respectively. Following
a considerable amount of time devoted to modeling and
comparing developed models in terms of fitness values,
complexity, and length of equations, the following
equation was selected as the ultimate model for the
grounds with free face:

0387FwR  (F-1? T
M? M M

1 (w—7.320)2(F=T)_,
+ F -

+w (F—\/;Z(D—w—F—gﬁszs))

+ (F + R)wﬂ/m

log Dy, = —

r D+1.524
+ (i)
10exp(0.035F D)

1.616r—w=D—=3.212
Lolor—w=D=3.212 _p

+10

—exp (2exp(—1.811(w+r)))+vT - D

+2.927F —r + M — 12.406. (4)

Figure 5 shows the comparison of the correlation
coefficient (R?) of training data obtained using MLR
method by Youd et al. [27] and the GEP method
proposed in the present study. The obtained value of
R? in training data was equal to 90.3% and 84.1% as
calculated by GEP and MLR methods, respectively,
reflecting the higher accuracy of the equation developed
by GEP.

Figure 5 also shows the R? values in validation
or testing data which have been estimated in GEP
and MLR methods as 79.9% and 82.5%, respectively.
Moreover, Figure 6 shows the comparison of the results
of GEP model and those of the models of Rezania et
al. [37] and Javadi et al. [2]. Referring to Table 9 and
checking other statistical criteria indicate the higher
accuracy of the equation obtained from GEP method
than other methods. As is clear from Figure 5, the
GEP results are characterized by significantly higher
accuracy for the data up to 5 m, especially for the
data up to 2 m. As previously noted, this result
was predictable according to the frequency of the data
collected in the mentioned range.

It should be noted that GEP managed to develop
a model with much higher accuracy (R? = 92.2%) in
the training data. However, it was not briefed here
due to the higher complexity of the obtained equation
than the existing equation. Furthermore, in this study,
only about 80% of the data were used to create the
model and the other data were used for validation,
whereas in MLR method, all data were used to create
the model and validation was not performed using the
other datasets.

5.2. Grounds with gentle slope

Of all the 255 data sets included in this category,
77.65% (198 data) and 22.35% (57 data) were consid-
ered as training and testing data, respectively. Follow-
ing the comparison of the models developed in terms
of fitness values, complexity, and length of equations,
the following equation was given as the final model for
the gentle slope ground conditions:
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Figure 6. Comparison of the results of the model developed by Gene Expression Programming (GEP) in grounds with
free face: (a) Present study, (b) model developed by Rezania et al. [37], and (c) model developed by Javadi et al. [2].
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Variables used in this equation are introduced in Ta-
ble 8. A comparison between Eq. (5) and the equation
obtained from MLR method of Youd et al. [27] was
made in Figure 7. In the training dataset, GEP method
created an equation with a correlation coefficient of
88.7%, while the correlation coefficient of the MLR
equation was 83.7%. In addition, the correlation
coefficients of the validation dataset for both GEP and
MLR equations were 79.02% and 79.3%, respectively.
In Figure 8, the results of the model developed by

GEP were shown along with the models developed by
Rezania et al. [37] and Javadi et al. [2] for all the
data in gentle slope ground conditions. The results
presented in Table 9 indicate the better accuracy of
the equation obtained by GEP method than the other
methods.

In this case of ground conditions, GEP managed
to develop a model with a correlation coefficient of
90.16% in training data, which is not briefed here due
to the higher complexity and length of the equation.

5.3. General condition

Another option examined in this study is lateral
spreading in grounds with both gentle slope and free
face conditions. Therefore, all available data (484
data) were used to present a general equation that
can be used both in gentle slopes and free faces. In
this case of ground conditions called general condition,
388 (80.17% of) data were used as the training data
and the other data (96 (19.83% of) data) were used
for validation. Thus, with a trend similar to that
for the grounds with free face and gentle slope, the
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Table 9. Statistical comparison of different models results.

Performance criteria

Model R? (%) RMSE MAE

Train Test Total Train Test Total Train Test Total
Free face
MLR? 84.1 82.5 83.7 0.214 0.251  0.220 0.161 0.194 0.166
GP? 73.7 69.3 72.6 1.781 1.566  1.746 1.382 1.269 1.362
EPR? 70.0 60.5 51.2 1.776 1.996 2.799 1.374 1.488 2.128
GEP* 90.3 79.9 88.11 0.168 0.272  0.190 0.123 0.202 0.137

Gentle slope

MLR* 83.7 79.3 829 0.175 0.162 0.172 0.132  0.131 0.132
GP? 60.5 584  59.8 0.527  0.697 0.621 0.470  0.562  0.490
EPR? 59.5 59.7 594 0.624 0.689 0.640 0.496 0.548 0.508
GEP* 88.7  79.02 87.0 0.145 0.165 0.149 0.118 0.132 0.122
General

ANN?® 95 85 92 0.52 1.1 0.7 — — —
GEP* 89.4 776 87.1 0.158  0.222 0.172 0.122  0.173  0.132

1: Youd et al. [27]; 2: Javadi et al. [2]; 3: Rezania et al. [37]; 4: Present Study;
5: Baziar and Ghorbani [34].
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Figure 7. Comparison of the results of models created using Multiple Linear Regression (MLR) [27] and Gene Expression
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data.
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equation identified for this state of the ground is given ( /(1099 — R — w2 sinw — )E
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are described in Table &: 5
+ cos’* (cosl'6 (cos(F — D)~ 3% — M) )

0.0102
logDp.=—7.541+tan tan tan( )

tan(F — R—5.089) + y/sinexp (R (T — 104 — sin®(D + 0.899)))

10 _
+cos (L5T7(r — M) + sinw — 0.17 (r + cos(T'sD — Tr)?)

5 _ _Dp_ T
+ cos® (0.0120(M —2w—R—2x0.01207) +7.268) 5 exp(— sin(s?—2.1635) sin F—4.36) +2F.  (6)

0.2
1
+ cos (7.731 -5 — MD+7210> Since no equation was presented by MLR for this
' type of the ground condition, only the results of GEP
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Figure 9. Comparison of the results of the model made by Gene Expression Programming (GEP) with the measured

values of data in general case: (a) Training data and (b) testing data.

are shown in Figure 9. In Table 9, the equation
developed for this case was compared to the equation
developed by ANN approach and despite the lower
value of R?, it can be seen that in other comparative
criteria (RMSE, MAE), the equation obtained from
GEP method provided much better results than ANN.

6. Discussion and review

The aim of this study is to provide a new method
based on machine learning techniques to predict the
extent of liquefaction-induced lateral spreading. The
methodology used in this study is a subcategory of GA
that searches within the solution space using the laws
of evolution and Darwinian survival. In this method
that is a more complete and more advanced generation
of GAs than the previous ones, attempts were made to
simulate the natural evolution and what would occur
in natural systems, more effectively.

Thus, for datasets and the three different states

of the ground conditions, some models were developed
using GEP. This method had a great ability to de-
velop high-precision models and identify the complex
relationships between variables. Unlike many of the
artificial intelligence methods, it can offer the equations
in a closed form. According to Figures 5, 7, and 9 and
based on the comparison of the values predicted by
GEP and MLR methods, this claim was investigated
with the real data.

Although the equations obtained by GEP method
were more complex than those obtained by the tradi-
tional methods, it is necessary to use methods that
can simulate the complexity of these problems due
to the complex nature of these problems. Therefore,
in practical problems, GEP can analyze the problems
more accurately and provide more accurate solutions.

Figure 4 shows that the data are more abundant
in certain domains of geotechnical, topographical, and
seismological characteristics and given the nature of
GAs, the developed equations are more reliable within
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these domains. Therefore, in order to obtain a general
relationship that can be applicable to different ground
conditions in different regions, it is necessary to compile
more collections of data that can cover a wider range
of specifications. By achieving this data set and using
GEP, more accurate equations can be developed.

7. Conclusions

Lateral spreading is a type of ground failure caused
by liquefaction due to earthquakes and unlike the
liquefaction phenomenon, no clear mechanism has
been characterized for it. This phenomenon includes
fracturing of the surface layers on the liquefied soil and
the movement of these pieces toward the downstream
slope or the free face. Given that this phenomenon
may occur again in grounds with free face, grounds
with gentle slopes, and a combination of both ground
conditions, all the three different ground states were
studied in this research.

In order to study the phenomenon of lateral
spreading, a dataset consisting of 484 data, compiled by
Youd et al. [27], was used. In all artificial intelligence
methods, the data should be categorized into two cat-
egories of training and testing data; the first category
of the data was used for learning and developing equa-
tions, and the second category was used for verification
of the developed equations. Therefore, in this research,
for each of the different ground conditions, about 80%
and 20% of the data were used as training data and
testing data, respectively.

In this study, Gene Expression Programming
(GEP) method was used to evaluate the liquefaction-
induced lateral spreading. Being one of the methods
associated with machine learning techniques, GEP is a
new generation of genetic algorithms and is used as an
optimization tool that searches the solution space to
find the most optimal one using the laws of Darwinian
evolution, survival, and reproduction.

Comparative criteria of R%, Root Mean Square
Error (RMSE), and MAE and also the length of equa-
tions were used for choosing the best model, and all
developed models were evaluated using these criteria.
Eq. (4) was the best relationship obtained for the
grounds with free face that would produce correlation
coefficients of 90.3% and 79.9% for training and testing
data sets, respectively. Moreover, in grounds with a
gentle slope, the best developed equation was Eq. (5)
with correlation coefficients of 88.7% and 79.02% in
training and testing datasets, respectively. Moreover,
the best general equation was Eq. (6) with correlation
coefficients of 89.4% in training data and 77.6% in
testing data. As previously mentioned, equations with
higher accuracy were also made by GEP method.
However, due to their level of complexity and lower
length, these equations were offered as final equations.

In Table 9, the equations obtained by GEP were
compared with other equations developed by other
methods through statistical criteria and the results
indicated the higher accuracy of developed equations
than other equations. Furthermore, the comparison
showed the substantial ability of GEP to diagnose
relationships and building appropriate models.
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