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Abstract. Redundancy Allocation Problem (RAP) is one of the most important problems
in the field of reliability. This problem is aimed at increasing system reliability under
constraints such as cost, weight, etc. This study works on a system with series-parallel
configuration and multi-state components. To draw the problem nearer to the real
condition, this study merges this problem with discount levels in purchasing components.
For calculating the reliability of sub-systems, a recursive algorithm is used. Because the
redundancy allocation problem belongs to NP-hard problems, for optimizing the presented
model, a new Genetic Algorithm (GA) was used. The algorithm parameters were tuned
using Response Surface Methodology (RSM), and an enumeration method was used for the
validation of GA.

(© 2020 Sharif University of Technology. All rights reserved.

1. Introduction

The simplest model of the Redundancy Allocation
Problem (RAP) is to assign identical components to
each subsystem. In mathematical models originally
provided for redundant allocation problems, it is as-
sumed that the components of the systems are in
a binary state. This means that the components
have only two states: working or failed. This study
intends to model the problem with multi-state system
components in order to get the problem closer to real-
world conditions. Multi-state components have several
functional states ranging from working to failed states.

Fyffe et al. [1] presented a mathematical model
of the general RAP problem. Their proposed objective
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function was to maximize the reliability under weight
and cost constraints. They solved the model by using
dynamic programming. Ida and Yokota [2,3] provided
a simple Genetic Algorithm (GA) for solving RAP
without the possibility of allocating non-identical com-
ponents to each subsystem in a series-parallel system of
several failed states. Applying changes in the objective
function, Coit and Smith [4] solved the problem using
GA. One of the major difficulties in solving RAP
with GA is the production and selection of infeasible
solutions. For this reason, the penalty functions were
defined to reduce the chance of selecting these infeasible
solutions. Coit and Smith [5] presented an effective
penalty function for RAP. Coit and Smith [6,7] intro-
duced a new model with a solution to RAP. They used
GA to solve the proposed new model in parallel-series
systems with k-out-of-n: G subsystems. The main
characteristic of the proposed algorithm is the presen-
tation of the algorithm chromosome. Coit [8] presented
a new model with a solution method for RAPs with
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a parallel-series structure. Tavakkoli-Moghaddam et
al. [9] applied the GA to solve RAP. The main charac-
teristics of the proposed algorithm include the design
of chromosomes and mutation operators. Tavakkoli-
Moghaddam and Safari [10] provided a new model
for redundant allocation problems with the possibility
of allocating non-homogeneous components to each
subsystem and, also, choosing a redundancy policy for
each subsystem. Chambari et al. [11] presented a two-
objective model for the RAP in parallel-series systems
under assumptions such as non-reparability. Zaretalab
et al. [12] solved the model presented by Chmbari by
means of knowledge-based-archive Simulated Anneal-
ing (SA) algorithm (knowledge-based archive simulated
annealing). They showed that their proposed meta-
heuristic algorithm was better than other algorithms.
For the first time, Ushakov introduced the concept
of Universal Generating Function (UGF) and applied
it to calculate the reliability of systems with multi-
state components. Li and Zuo [13] reported that their
proposed method (when the number of system com-
ponents is high) could reduce the computational time
significantly, compared to the UGF method. The pro-
posed method is well known as a recursive algorithm.
Pourkarim Guilani et al. [14] used a modified Markov
process and provided a new method for calculating the
reliability of a system with three-state components and
yielding a much shorter computational time than UGF
method and recursive algorithm. Pourkarim Guilani
et al. [15] solved a mathematical model of RAP with
subsystems consisting of three-state components using
complete numerical methods and GAs that cannot be
generalized to other multi-state systems.

The main objective of this paper is to consider
discount levels when the redundant components are
purchased from the suppliers. Therefore, when the
suppliers offer a general discount on each component,
then the unit price of each component depends on the
total number of the components purchased from that
supplier. In this case, the price is the level of discount
considered for the total purchased components [16].
Table 1 shows some new research results in the field.

In this paper, in order to optimize the system reli-
ability, the recursive method is used and preferred over
the UGF method due to its faster computing speed.
The performance of the recursive algorithm to evaluate
the reliability of multi-state systems is satisfactory.
This method also enjoys a shorter computational time
to perform than other evaluation methods such as
universal generation function. In the research studies
conducted by Guilani et al. [14] and Li and Zuo [13],
the aforementioned result is confirmed. Moreover, due
to the affiliation of RAP to NP-hard problems, the
GA was used to obtain an optimal combination of
components.

This paper is divided into five sections. The

second section defines the problem definitions. The
third section deals with the solving methods. Section 4
is a numerical example, and the last section deals with
conclusion and further studies.

2. Problem definition

2.1. The proposed model

Consider a system consisting of s subsystems that are
connected serially, and each subsystem has n, parallel
components. The components of each subsystem are
multi-state and non-repairable. Moreover, the price of
each component is calculated according to the total
amount of the purchase and has a discount level. This
model aims to determine the optimal number and type
of components in each subsystem, considering that only
one type of component is assigned to each subsystem
from a list of component types, and that the objective
function is to minimize the system cost.

2.2. Model assumptions
e Each component is of multi-state type;

e System parameters such as cost and weight are
constant;

e The components are non-repairable;
o Components’ failures are independent and the fail-

ure of each component does not damage the system.

2.3. Nomenclatures

1 Subsystem index, s =1,2,---, 5

S Number of subsystems

M max Maximum allowable components in
subsystem ¢

7 Components type index, 7 =
17 27 co Mg max

M max Maximum available component types
for the subsystem 4

Cijk Price of components type j in

subsystem i at discount level k,
E=1,2,---, Xijmax

Aijk Discount level k£ for components type j
in subsystem 1

Nijk Maximum purchase amount for
discount level k for components type j
in subsystem ¢

Nij Order value of components type j in
subsystem ¢

Aij max Maximum discount level of components
type j in subsystem 4
Wik Weight of components type 7 in

subsystem i at discount level k,
k= 1,27"’ , My

W Maximum acceptable weight of system
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Table 1. Some recent studies on reliability area.

Authors Year State Algorithm Repairable Objective Pararr.leter Failure
setting rate
Garg et al. [17] 2013  Binary Bee colony Single No Constant
Levitin et al. [18] 2013 Multi-state GA Single No Constant
Maatouk et al. [19] 2013 Multi-state GA Single No Constant
Chambeari et al. [11] 2013  Binary SA Single No Constant
. Greedy, .
Gago et al. [20] 2013  Binary Single No Constant
walk back
Fuzzy
Ebrahimipour et al. [21] 2013 Binary Inference Single No Constant
System (FIS)
Imperfect
Liu et al. [22] 2013 Multi-state repair Single No Constant
model
Khalili-Damghani et al. [23] 2014  Binary e-constraint Multiple No Constant
o . Markov .
Guilani et al. [15] 2014 Multi-state Single No Constant
model
Sharifi et al. [24] 2015  Binary GA, MA Single RSM Time dependent-
load sharing
Mousavi et al. [25] 2015 Multi-state CE-NRGA Multiple Taguchi Constant
Zaretalab et al. [12] 2015 Multi-state MOSA Multiple No Constant
Miriha et al. [26] 2017  Binary NSGA-II Multiple Taguchi Time
MOEA/D dependent,
Guilani et al. [27] 2017 Multi-state SPEA-IL Multiple No Constant
NSGA-II
Hadipour et al. [28] 2018  Binary NSGA-IT Single Taguchi Constant
NRGA
Guilani et al. [29] 2018  Binary Simulation Single — Time

dependent
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w Minimum acceptable system
performance rate

Aw) System availability

Ag Minimum acceptable system
availability

2.4. Mathematical model
The mathematical model of RAP considering the
model assumptions is as follows:

S Mi.max

min Z:Z Z

Jj=1 j=1

Aij max

Z Cijk-Aijk | -Nij, (1)
k=1

My max

S
S.t.i Z Z wij.Nij S W7 (2)
j=1 j=1

Nij > Nije-Nij—1)

i=1,2,---,8
v J: 1727"' > Mg max (3)
k= 1a27”' a)\ij,max

Aij max

Z Aijr =1
k=1

v:{lzm’m’s 4)

J :]—7 27 © 0, Mg max

i max

> N1
j=1

Vi=1,2--,85, (5)

i . max

ZNiani,max VZZ1727 757 (6)
j=1

A(w) > Ap. (7)

Eq. (1) is an objective function that minimizes system
costs. Eq. (2) is the system weight constraint. Eq. (3)
defines the discount level, i.e., it establishes the value
of purchase at each discount level after determining the
purchase value of each component in each subsystem.
Eq. (4) ensures that the purchase value of component
type j in subsystem ¢ should be at the discount levels,
and Eq. (5) implies that there is at least one component
in each subsystem. Eq. (6) ensures that the number
of components in each subsystem does not exceed the
maximum number of acceptable components. Finally,
Eq. (7) specifies the minimum expected availability of
the system.

For calculating the system availability (Eq. (7)),
the recursive algorithm is used. This algorithm is
presented in the next section.

3. Solving methods

3.1. Recursive algorithm

3.1.1. The weighted multi-state k-out-of-n: G system
In the multi-state system, each component of the
system may be in different states and, in each state,
the component shows a specific performance. When a
component completely fails, its performance is 0 [13].

Definition 1. In a system with n components, each
component of the system may be in one of the possible
(m + 1) states.

The component ¢ (1 < ¢ < n), when placed in
state j, has performance g;;. In this case, the system
is in the state j if the sum of the performances of all
components of the system is greater than or equal to
k;. Assume that ¢ is the system structure function that
indicates the state of the system, and G is the sum of
the performances of all the system components. Based
on the above definition, we have:

Pr{p > j} = Pr{G > k). (8)
Since state 0 is the worst state in the system, we have:
Pr{¢ > 0} = 1. (9)

3.1.2. Recursive algorithm

To evaluate the reliability of the multi-state weighted
k-out-of-n: G system using the recursive algorithm,
the following parameters are first introduced. These
parameters are only used in this section.

n Number of components in the system
M State with the highest possible
performance
Gij The performance of component 7 in
state j
Dij The probability that component ¢ is in
state j
Qij The performance of the component
¢ when it is in a state lower than j,
7—1
Tij = Y Dij
i=0
k; Minimum total performance required
to ensure that the system is in state j
or higher
le-(kj,n) The probability that the system is in

the state j or higher.

Therefore, the recursive equation for evaluating
the distribution of the system state is as follows [13]:

r=M
Rl(kj,i) = > pip-Ri(kj — gipii—1). (10)
r=0

The partial conditions for this recursive equation are
as follows:
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Table 2. Components’ state probabilities (p;;) [1].

7J=0 =1 j53=2
1 =0 0.1 0.2 0.7
1t =1 0.4 0.2 0.4
=2 0.3 0.5 0.2

Table 3. Components’ state performance (g;;) [1].

i=0 j=1 j=2
1= 1 2 3
1 =1 1 3 4
1 = 1 3 5

RI(k;,00=0  when 0<Fk<Kkj,

RI(k;,i)=1  when i>0 and k<0. (11)
For example, consider a weighted multi-state k-out-of-
n: G system with three components. Each component
has three possible states 0, 1, and 2. Tables 2 and 3
show the reliability and performance of all components.

In this example, n =3, M =2, k; =5, and ky =
10. The reliability of the system is obtained through
Eqgs. (10) and (11) as follows [13]:

2
R{(5,3) =) ps1.R{(5—gs,,3 1)
r=0

:p370.R{(5 — ].7 2) + p371.R{(5 — 37 2)
+ p32.Ri(5—5,2) = p3.Ri(4,2)
+ pg,l.R{(Z, 2) + p3’2.R{(0, 2)

=ps.0-R1(4,2) + p3.1 + P32, (12)

2
R{(47 2) = ZP271~R{(4 —g2,r2-1)

r=0
:102,0~R{(4 -1L1)+ ]92713{(4 -3,1)
+ P2,2~R{(4 -4,1) = 102,0~R{(37 1)
+ pm.R{(l, 1+ 102,2~R{(07 1)
=p2,0-P1,2 + P21+ P22
=0.4"0.7+ 0.2+ 0.4 = 0.88, (13)
R{(573) :p370.R{(4, 2) 4+ p3.1 + P32
=p3,0.0.88 + p3 1 + p32 = 0.370.88

+0.5+ 0.2 = 0.964, (14)

2
R(10,3) = ps1.R{(10 - g3,,3—1)
r=0

=p3.0.R1(10 — 1,2) + p3.1.R3(10 — 3,2)

+ p3.2-RE(10 — 5,2) = p39.R3(9,2)

+p3,1~R£(772) +p3,2~R£(572)7 (15)
2
R{(5,2) =Y pa,RE(5—ws,,2—1)
r=0

=pa0.R5(5—1,1) + pa.1.R5(5 — 3,1)
+ poo.Ry(5—4,1) = poo.R5(4,1)
+ D21 R(2,1) + P2,2~R£(17 1)
=200+ p21.(P11 +P12) + D22
=0.2.(0.2 + 0.7) + 0.4 = 0.58, (16)
Ré(?, 2) = p1,2.p22 = 0.7°0.4,
R3(9,2) =0,
R.(10,3) =p31.0.28 + p3 5.0.58
=0.5"0.28 + 0.270.58 = 0.256. (17)

Therefore, the distribution of the system state is as
follows [13]:

Pr(¢ >0) =1,

Pr(¢ > 1) = 0.964,

Pr(¢ > 2) = 0.256,

Pr(¢ = 2) = 0.256,

Pr(¢ = 1) = 0.964 — 0.256 = 0.708,

Pr(¢ > 0) =1 —0.964 = 0.036. (18)

3.2. Genetic Algorithm (GA)

In 1975, this algorithm was first introduced by Hol-
land [30] at Michigan University and developed by him
and his students. The original idea of this algorithm
was derived from the Darwinian evolutionary theory
in 1895. According to this theory, those creatures
that are more adaptable to the environment survive.
Information transmitted from each generation to the
next generation is enclosed in chromosomes, and in-
herited properties are transmitted in this way. In this



M. Sharifi et al./Scientia Iranica, Transactions E: Industrial Engineering 27 (2020) 970-982 975

algorithm, according to the principle of survival of the
fittest, the better population are combined together
and, based on the suitability of each solution, this
solution is repeated more often in the next generation.
This process continues to reach an optimal solution.

3.2.1. Algorithm steps
Step 1: Generate a random population including n
chromosome or initial solution;

Step 2: Evaluate the fitness function of each chro-
mosome population;

Step 3: Create a new population based on the
following steps:

e Selection of parent chromosomes by selective
methods such as roulette wheel, tournament, ran-
domly, competitive, and so on by crossover and
mutation operators;

e Considering a certain value for the probability of
crossover operator and, then, performing a combi-
nation operation on parents to create offspring;

e Considering a certain value for the probability of
mutation operator and, then, using this operation
to change one or more genes from a parent chro-
mosome to achieve a new chromosome.

Step 4: Replacing new offspring in the new popula-
tion.

3.2.2. Solution encoding

The problem chromosome is an ngxas matrix, pre-
sented in Figure 1. In this matrix, S is the number
of subsystems and M is the maximum type of compo-
nents. These chromosomes are presented by Tavakkoli-
Moghaddam et al. [9].

Assume that the model has three subsystems and
four different component types; in subsystem 1, there
are 2 components of type 1, 3 components of type 3,
and 1 component of type 4; in subsystem 2, there are
3 components of type 1, 3 components of type 2, and
1 component of type 3; in subsystem 3, there are 4
components of type 1, 2 components of type 2, and 4
components of type 3. The chromosome matrix of this
solution is presented in Figure 2.

Ni1 N21 -+ Ny
Ni1 N22 -+ Npo
Nis Nor -+ NyoT

Figure 1. Model chromosome.

2 0 3 1
3 3 1 0
4 2 4 0

Figure 2. Sample chromosome.

3.2.8. Initial population
The initial population is generated randomly, referred
to as npop.

3.2./. Fitness function

Because of the model constraints, the produced chro-
mosome is not feasible. Therefore, the most important
problem concerning the use of GA for problems with
constraints is how to deal with constraints. Penalty
functions are one of the first methods to deal with
problems with constraints in GA. The penalty func-
tions reduce infeasible solutions in accordance with
the violation ratio of the constraints. In fact, the
penalty function turns constrained problems into prob-
lems without constraints. Because of the problem
constraints, the penalty functions are as follows:

p1 = max{4y — A(w),0}, (19)

S My, max
max{ Z Z wz‘j.Ni]‘ — W, 0}
j=1 j=1

P2 = W ) (20)
s {max { j;l Nij - nmnax} 70}

2= — . (21)
i=1 2, max

Therefore, the general penalty function of the problem
is presented as follows:

Dlotal = P1 + D2 + Ds. (22)

Moreover, the fitness function of the model is as follows:

F(x) = f(x).(1+ pr). (23)

Now, if the equality is satisfied, the value of pr is 0
and the fitness function is the same as the objective
function.

3.2.5. Crossover operator

In this operator, first, the number of parents is
calculated with a crossover rate and, then, parents
are randomly selected using the roulette wheel. To
perform the crossover operator, firstly, the parent is
selected and, then, the offspring is created using a
uniform crossover operator. The operation of this
operator was described in [10]. Intersection operations
are performed on the parent chromosomes so that
offspring’s chromosomes are formed. In this operator,
for each genome in the parent chromosome, a binary
number is randomly generated; if this number is 1,
the genome is replaced in the parent chromosomes; in
addition, if the number is 0, it is not replaced. The
crossover operator in the proposed GA is shown in
Figure 3.
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2 1 1 0 O 2 1 1 1 0
1 1 0 2 1 1 1 0 2 1
0 0 0 0 O L 0O 0 0 0 O
Parent 1 2 0 3 0 1 Offspring 1 5 0 3 0 1
0 4 0 2 O 0 4 0 2 O
1 0 3 0 O 0O 0 3 0 O
0
0
0
0
0
C
1 0 4 1 O 1 0 4 0 O
3 1 0 2 O 3 1 0 2 O
0 3 0 3 O . 0 3 0 3 O
Parent 2 0 2 2 2 o0 Offspring 2 0 2 2 2 0
0 1 1 1 2 0o 1 1 1 2
o 3 0 0 1 1 3 0 0 1
Figure 3. Crossover operator.
0.79 0.18 0.37 0.62 0.65
0.74 0.06 0.35 0.93 0.42
0.81 0.58 0.31 0.64 0.44
0.03 0.83 027 039 031
; (1] 3 i 8 071 0.76 0.49 0.52 0.63 ; g g 3 8
o 3 0 3 0 0.02 0.84 0.03 0.73 0.59 o 3 0 3 0
Parent » Offspring
02 2 2 o0 > pring 002 2 2 o0
001 1 1 2 001 1 1 2
0 3 0 0 1 13 1 0 1
Figure 4. Mutation operator.
2 6 7 10 12 16
2 4 1 3 2 4

Figure 5. Roulette wheel method.

3.2.6. Mutation operator

In this operator, first, the number of parents is cal-
culated with the mutation rate and, then, the parents
are randomly selected using the roulette wheel. After
selecting the parent, for each genome in the parent
chromosome, a random number is generated between
0 and 1 and mutations are performed at a specific mu-
tation rate of the parent chromosome genes. Now, if the
generated random number is smaller than the desired
mutation rate, the genome in the parent chromosome
is randomly mutated. If the generated random number
is larger than the mutation rate, the gene in the parent
chromosome is not mutated [10]. This type of mutation
is illustrated in Figure 4. In this figure, the mutation
rate is considered as py; = 0.1.

3.2.7. Selection

In this paper, the roulette wheel was used to select
the population of the next generation. There are two
main ideas in this way. First, better chromosomes have
better chances of selecting and, second, the chances
of selecting each chromosome are proportional to their

fitness. For each chromosome, the fitness function is
calculated and, then, the cumulative fitness function of
the chromosomes is computed. Next, a random number
is generated between 0 and the cumulative fitness
function of the last chromosome. The corresponding
number is compared with the cumulative fitness func-
tion, and the chromosome located at the corresponding
distance is selected. The implementation of this
method is shown in Figure 5.

3.2.8. Stop criteria

There are many criteria to stop the algorithm: the
number of algorithms’ iterations, the improvement of
the objective function, and so on. In this algorithm,
the number of algorithms’ iteration has been used. It
is implied here that this algorithm stops after a certain
number of iterations and generation. The algorithm
iteration is shown by MaxIt.

3.3. Parameter tuning
The time of the meta-heuristic algorithms depends
on their input parameters. The goal of tuning the
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Table 4. GA optimal values.

Parameter Lower Upper Optimal
bound bound value
npop 50 100 75
De 0.4 0.7 0.55
Pm 0.1 0.3 0.2

parameters of the algorithms is for them to reach
appropriate solutions in a short amount of time. The
parameter tuning method of the proposed algorithm
is as follows. The proposed GA input parameters
include population size (npop), intersection crossover
probability (P¢), and probability of mutation (Py).
Response Surface Methodology (RSM) was used to
identify the appropriate values of parameters. This
study used a two-level factorial design method for
tuning the algorithm parameters. For each experiment,
two levels are considered that are high and low. In
addition to the upper and lower limits, axial points
and a number of central points (there are 5 central
points) are also considered. In this model, considering
the three existing parameters, the 23 factorial design
is considered. Meanwhile, the stop criterion for pa-
rameter tuning is equal to 100 algorithm iterations,
and the response variable in the model is the system
reliability. The input values and the optimal value of
each parameter are presented in Table 4.

4. Numerical example

In this section, the objective is to validate and solve the
proposed model. To this end, first, a numerical exam-
ple is designed. It should be noted that the numerical
examples used in this paper are taken from [16]. It is
assumed that the system consists of 14 subsystems and
three price levels to buy components. The maximum
acceptable weight for the system is 100, the maximum
number of components in each subsystem is considered
6, the minimum acceptable availability (reliability)
for the system is 0.9, and the minimum acceptable
performance rate for the components is 50. It is
also assumed that there are four types of components
available to allocate to the subsystems.

Table 5 shows the values of reliability, weight, and
cost for each component in all subsystems at different
failure levels. Table 6 shows the performance rates of
each component when placed in each of the subsystems.
Table 7 shows the probability that the components
would match the performance rate of each subsystem
when placed in each of the subsystems.

Now, in order to confirm the correct operation of
the GA, some small-sized problems are to be solved
using the precise method of numerical rule, and the

obtained solutions and their solving time are compared
with the solutions and their solving time obtained
from the GA. After ensuring that the proposed GA is
validated in solving the proposed model, the proposed
model is solved with large-sized problems by GA.

In this way, it is first assumed that the problem
has five subsystems and, then, a problem with six
subsystems is considered. More precisely, with the
same number of parameters shown in Tables 2 to 4,
the system with particular conditions is assumed: once
only from the first to fifth subsystems and once only
from the first to sixth subsystems. In addition, there
are two types of components available to allocate to the
subsystems.

The total number of problem solutions is obtained
according to the numerical rule method of the following
equation:

(nmax + 1)(SXT)- (24>

It is also assumed that the maximum number of accept-
able components in these problems is 2, the maximum
acceptable weight is 60, the minimum acceptable per-
formance rate for components is 30, and the minimum
acceptable reliability for the system is 0.2.

Thus, according to Eq. (24), the total number of
available solutions to the first problem is 59049 and to
the second problem is 531441, and the highest number
obtained in these repetitions is chosen as the optimal
solution to each problem.

The enumeration method and the proposed GA
are programmed for the two mentioned problems in
MATLAB 17, and the best solution and the solving
time for two problems are presented in Table 8.

By applying the enumeration method, an in-
crease in the number of subsystems (or the number
of component types increasing the feasible solutions of
the problem) makes the enumeration method unable
to generate optimal solutions to the problem in an
appropriate amount of time. As observed earlier, the
values of the solutions were the same for both methods
of solving two problems, indicating the validity of the
suggested GA for the proposed model. However, as
the size of the problem enlarges, the solving time of
the problem using the enumeration method becomes
too long and the enumeration method is not a suitable
method for solving the problem. Therefore, since the
proposed GA has achieved the optimal solution to
small-sized problems, it can be used to solve problems
of larger sizes.

To perform sensitive analysis, 15 new problems
were solved. It is assumed that the reliability of the
component type 1 in the first subsystem varies from
0.82 to 0.96 and the other parameters of the problem
are in accordance with those shown in Tables 4 to 6.
The time and cost of these 15 problems are presented
in Table 9.
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Table 5. Components’ reliability, cost, and weight.

Components Parameters Number of subsystems
type 1 2 3 4 5 6 7 8 9 10 11 12 13 14
R 0.90 0.95 0.85 0.83 0.94 0.99 0.91 081 0.97 0.83 0.94 0.79 0.98 0.90
W 3 8 7 5 4 5 7 4 8 6 5 4 5 6
4 6 7 7 8 7 8 9 8 7 9 8 7 7 9
1 Co 4 5 5 6 5 6 7 6 5 7 6 5 5 7
Cs 3 4 4 4 4 4 5 4 4 5 4 4 4 5
n1 2 2 3 2 2 2 2 3 2 2 2 3 3 2
na 4 3 4 3 4 3 4 5 3 3 4 5 3 3
R 0.93 0.94 0.90 0.87 0.93 0.98 0.92 0.90 0.99 0.85 0.95 0.82 0.99 0.92
W 4 10 5 6 3 4 8 7 9 5 6 5 5 7
Cy 6 6 8 7 8 9 10 8 9 9 8 8 9
2 Oy 4 4 6 7 5 6 7 8 6 7 7 6 6 7
C 3 3 4 5 4 4 5 6 4 5 5 4 4 5
n1 2 2 3 2 2 2 2 3 2 2 2 3 2 2
na 4 3 4 3 4 3 4 5 3 3 4 5 3 3
R 0.91 0.93 0.87 0.85 0.95 0.97 0.94 091 0.96 0.90 0.96 0.85 0.97 0.95
W 2 9 6 4 5 5 9 6 7 6 6 6 6 6
Ch 7 6 6 10 8 7 10 11 9 10 10 9 710
3 Oy 5 4 4 8 6 5 8 9 7 8 8 7 5 8
O 4 3 3 6 4 4 6 7 5 6 6 5 4 6
ny 2 2 3 2 2 2 2 3 2 2 2 3 2 2
na 4 3 4 3 4 3 4 5 3 3 4 5 3 3
R 095 — 092 — — 096 — — 091 — — 09 — 0.99
w 5 — 4 — — 4 — — 8 — — 7T — 9
Cy 7 - 9 - — 7 — — 8 — — 10 — 11
4 Co 5 - 7 - — 5 — — 6 — — 8 — 9
Cs 4 — 5 - — 4 — — 4 — — 6 — T
n1 2 — 3 - — 2  — — 2  —  — 3  — 2
na 4 — 4 - —- 3 - — 3 — — 5 — 3

Further, the optimal solution of the problem num-
ber 15 is presented in Figure 6, and the convergence

diagram of GA is presented in Figure 7.

5. Conclusion and further studies

5.1. Conclusion

In this paper, the reliability of a multi-state RAP, in

which discounted levels were considered for purchas-
ing components, was investigated using a recursive
method. A single-objective cost optimization model
was investigated under various constraints including
reliability, and since the RAP belonged to NP-hard
problems, a GA was used to solve the model. Further,
to validate the proposed model, some small-sized prob-
lems were solved using an enumeration method and
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Table 6. Components’ performance rate.
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Component type 1

Component type 2

Component type 3

Component type 4

1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4
1 50 100 — 0 25 75 100 50 100 — 0 100 — —
2 0 25 75 100 0 50 100 — 0 50 100 — o — — —
3 0 100 — — 0 50 100 — 0 25 5 100 0 50 100 —
4 0 100 — — 0 50 100 — 0 50 100 — o — — —
5 0 50 100 — 0 50 100 — 0 100 — — o — —  —
g 6 0 50 100 — 0 50 100 — 0 100 — — 0 50 100 —
"é 7T 0 25 75 100 0 100 — — 0 50 100 — o — — —
..i: 8 0 50 100 — 0 50 100 — 0 50 100 — o — —  —
“ 9 0 5 100 — 0 100 — — 0 50 100 — 0 50 100 —
10 0 50 100 — 0 50 100 — 0 50 100 — o — — —
11 0 50 100 — 0 100 — — 0 50 100 — _ = = —
12 0 50 100 — 0 100 — — 0 50 100 — 0 50 100 —
13 0 50 100 — 0 50 100 — 0 50 100 — o — — —
14 0 25 75 100 0 100 — — 0 50 100 — 0 50 100 —
Table 7. Correspondence probability of components’ performance rate.
Component type 1 Component type 2 Component type 3 Component type 4
1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4
1 0.1 04 0.5 — 0.1 0.2 03 04 0.1 04 0.5 — 0.2 08 — —
2 01 02 03 04 0.1 04 05 — 0.1 04 05 — 0 —_ = —
3 02 08 — — 0.1 04 0.5 — 0.1 0.2 03 04 0.1 0.4 0.5 —
4 02 08 — — 0.1 04 05 — 0.1 04 05 — 0 —_ = —
5 01 04 05 — 0.1 04 05 — 0.2 08 — — 0 —_ = —
g 6 01 04 05 — 0.1 04 05 — 02 08 — — 0.1 04 05 —
"E 7 01 02 03 04 0.2 08 — — 0.1 04 0.5 — 0 — —
g 8§ 01 04 05 — 0.1 04 05 — 0.1 04 05 — 0 —_ = —
“ 9 01 04 0.5 — 0.2 08 — — 0.1 04 0.5 — 0.1 04 0.5 —
10 01 04 05 — 0.1 04 05 — 0.1 04 05 — 0 —_ = —
11 01 04 0.5 — 0.2 08 — — 0.1 04 0.5 — —_ — — —
12 01 04 0.5 — 0.2 08 — — 0.1 04 0.5 — 0.1 04 0.5 —
13 01 04 05 — 0.1 04 05 — 0.1 04 05 — 0 —_ = —
14 01 02 03 04 0.2 08 — — 0.1 04 0.5 — 0.1 04 0.5 —

Table 8. The cost and time calculated by the numerical rule and the GA.

First problem

Second problem

Solving method Cost Time (sec) Cost Time (sec)
Enumeration method 34 66.949 42 892.133
GA 34 5.379 42 3.845
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Table 9. The reliability and the cost of 15 solved
problems.

Reliability of

¢ Svst Solving
Problem componen ystem time
type 1 in cost
(second)
subsystem 1

1 0.82 282 17.21
2 0.83 299 17.44
3 0.84 287 16.46
4 0.85 306 17.00
5 0.86 301 16.51
6 0.87 285 17.48
7 0.88 288 17.30
8 0.89 291 16.97
9 0.90 287 17.03
10 0.91 284 17.05
11 0.92 290 17.37
12 0.93 289 16.97
13 0.94 289 17.18
14 0.95 292 16.12
15 0.96 290 17.79

rn o 1 17

0 1 2 4

0 0 3 0

1 1 0 1

0O 1 2 4

C =290 Lo ol

1 3 0 3

w = 33.64 5 0 0 0

R =0.9048 5 0 0 0

0 3 0 1

1 0 1 3

1 0 2 0

0 2 0 4

0 1 1 0l

Figure 6. Optimal solution of the problem number 15.

GA, and it was shown that the GA could reach the
optimal solution. Finally, a GA was used to solve 15
large-scale problems.

5.2. Further studies
This study recommends a number of suggestions and
adds some insights for future studies in the following;:

e Providing multi-objective models for solving real-
world problems by considering objectives such as
discount levels, weight, volume, etc. in the proposed
model;

e Considering incremental discounts instead of all
units’ discount in the presented model,

Genetic algorithm

500 1 ! T T 1 1

450 oo b N
400

350

Objective function value

300

250 R S S (N TN NN S S

Iteration

Figure 7. Convergence diagram of GA for the problem
no. 15.

e Considering the problem parameters such as relia-
bility, cost, etc. as probabilistic parameters;

o Considering the time-dependent failure rate rather
than the constant failure rate;

e Considering repairable components and limits for
the number of repairmen to bring the problem closer
to real-world conditions.
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