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Abstract. The aim of this paper is to introduce an interval trapezoidal neutrosophic
set, which is a combination of trapezoidal fuzzy numbers, and an interval neutrosophic
set. This paper presents some operational rules and the score and accuracy functions of
interval trapezoidal neutrosophic numbers. Then, some aggregation operators based on
interval trapezoidal neutrosophic information are proposed: the Interval Trapezoidal Neu-
trosophic Number Weighted Arithmetic Averaging (ITNNWAA) operator and the Interval
Trapezoidal Neutrosophic Number Weighted Geometric Averaging (ITNNWGA) operator;
in addition, the properties of these operators are investigated in detail. Furthermore,
a multi-attribute decision-making method is developed based on the operators. Finally,
a numerical example is presented to illustrate the applicability and e�ectiveness of the
proposed method.

© 2020 Sharif University of Technology. All rights reserved.

1. Introduction

In order to deal with various types of uncertainty, the
theory of fuzzy sets [1] was introduced by Zadeh in
1965. Fuzzy set theory has been utilized in various
�elds with imprecise information. Although the the-
ory is a useful tool for modeling problems including
uncertainty information, determining the membership
function, which characterizes a fuzzy set, can be too
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di�cult in some cases. To avoid this di�culty, the
concept of interval-valued fuzzy set [2] was proposed.
Subsequently, to cope with the lack of knowledge
of non-membership degrees, Intuitionistic Fuzzy Sets
(IFSs) [3,4] were de�ned. The concept of vague set [5]
was introduced in 1993, and Bustince and Burillo [6]
showed that the vague set and Atanassovs IFSs were
equivalent mathematically.

Although the FSs theory and IFSs theory have an
important role in dealing with problems including un-
certain information, they are not enough for modeling
problems including indeterminate and inconsistent in-
formation in real decision-making. Therefore, the the-
ory of Neutrosophic Set (NS) [7] was �rst introduced by
Smarandache as a generalization of fuzzy set, interval-
valued fuzzy set, intuitionistic fuzzy set, interval-valued
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intuitionistic fuzzy set, paraconsistent set, paradox-
ist set, and tautological set. An NS is identi�ed
by three functions, namely truth-membership func-
tion, indeterminacy-membership function, and falsity-
membership function, which are independent of each
other. In some engineering and scienti�c applications,
modeling problems with NSs is a cumbersome task
characterized by di�culty. In order to overcome di�-
culties, a Single-Valued Neutrosophic Set (SVNS) [8,9],
which is a subclass of NS, was proposed. While
indeterminacy and falsity membership values are a
real or non-real subset of ]�0; 1+[ in an NS truth,
indeterminacy and falsity membership values are real
values at the interval [0; 1] in the SVNS truth. SVNS
is quite a useful tool in scienti�c and engineering �elds
containing uncertain, imprecise, incomplete, and in-
consistent information. Many researchers have studied
the decision-making method under the single-valued
environment. For example, S�ahin and Liu [10] in-
troduced the correlation coe�cient of a single-valued
neutrosophic hesitant fuzzy set and its application
to decision-making. Ye [11] studied multi-criteria
decision-making by the weighted correlation coe�-
cient of SVNS. Ye [12] also developed single-valued
neutrosophic cross-entropy for multi-criteria decision-
making problems. An interval-valued neutrosophic
set INS is a generalization of the NS. In 2005, for
this purpose, Wang et al. [13] de�ned the concept of
INS. Many MCDM methods were developed under the
interval neutrosophic environment. For example, Tian
et al. [14,15] provided an MCDM method based on
a cross-entropy with interval NSs. Ye [16] proposed
similarity measures between interval neutrosophic sets
and presented their applications to MCDM. For more
information on the NS and its applications to decision-
making problems, See the following [17{23].

Since the end solution must be obtained through
the synthesis of performance degrees of criteria in any
MCDM problem [24], the aggregation of information
is a fundamental factor. Therefore, many decision-
makers have introduced various types of aggregation
operators for MCDM and MADM problems with the
assessment at [0; 1] (see [25{33]), proportional assess-
ment at [1/9,9], and linguistic assessment [34{36].
In general, decision-makers working in scienti�c and
engineering �elds should apply the weighted arith-
metic average operator and the weighted geometric
average operator [37,38]. Therefore, these aggregation
operators are important tools for aggregating fuzzy
information, intuitionistic fuzzy information, interval-
valued fuzzy information, and interval-valued intuition-
istic fuzzy information in the decision-making problems
recently (see [39{42]).

The importance of scienti�c and engineering
points of view comes to fore when most of the decision-
makers commonly use the weighted arithmetic average

operator and the weighted geometric average opera-
tor [43,44], which have been applied to decision-making
problems. Therefore, these aggregation operators are
important tools for aggregating fuzzy information,
intuitionistic fuzzy information, interval-valued fuzzy
information, and interval-valued intuitionistic fuzzy
information in the decision-making problems in [45,46].
Although the NS generalizes the above sets from a
philosophical point of view, the NS and set-theoretic
operators are selected from scienti�c and engineering
points of view.

Ye [47] suggested the application of an MCDM
method using aggregation operators for the simpli�ed
NS. Moreover, some decision-making problems have
been developed using the method of aggregation op-
erators for triangular intuitionistic fuzzy sets proposed
by Liu and Yuan [48]. The triangular intuitionistic
fuzzy set is characterized in a way that its mem-
bership and nonmembership functions are triangular
fuzzy numbers rather than exact numbers. Later,
Wang [49] developed some MADM methods by using
the method of aggregations operators of triangular
intuitionistic fuzzy numbers. Liu and Jin [50] studied
the multi-attribute decision-making method based on
the weighted geometric averaging operator for interval-
valued trapezoidal fuzzy numbers as a generalization
of the triangular intuitionistic fuzzy number. Liu [51]
introduced a weighted aggregation operator for the
MAGDM method based on interval-valued trapezoidal
fuzzy numbers. Wu and Liu [52] developed an approach
to multi-attribute group decision-making problems
with interval-valued intuitionistic trapezoidal fuzzy
numbers. Further, Ye [53] extended the triangular
intuitionistic fuzzy set to the trapezoidal intuitionistic
fuzzy set in which, as its main characteristic, the values
of the membership and nonmembership functions are
trapezoidal fuzzy numbers rather than triangular fuzzy
numbers. He proposed the trapezoidal intuitionistic
fuzzy prioritized weighted averaging operator and the
trapezoidal intuitionistic fuzzy prioritized weighted
geometric operator to determine MCDM problems with
respect to di�erent priority levels. Since NSs are
models with incomplete, indeterminate, and inconsis-
tent information, they are suitable tools for modeling
human thinking. From this point of view, some recent
studies by Ye [54] have introduced the trapezoidal NS
as a combination of trapezoidal fuzzy numbers and NS;
Liang et al. [55] proposed the application of the MCDM
through the trapezoidal neutrosophic preference re-
lation; Ji et al. [56] introduced the fuzzy decision-
making framework for treatment selection based on
the combined QUALIFLEX-TODIM method in the
trapezoidal neutrosophic environment; Liang et al. [57]
developed the evaluation of e-commerce website man-
agement systems under the environment of trapezoidal
neutrosophic information. Li et al. [58] utilized power
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aggregation operators based on the distance from the
average solution (EDAS) method under linguistic neu-
trosophic environments to develop MAGDM problems.
Peng et al. [59] proposed a single-valued neutrosophic
hesitant fuzzy geometric weighted Choquet integral
Heronian mean operator based on the combination of
Heronian mean and Choquet integral operator and,
then, utilized this operator to develop MACD problems
for the applicability of the de�ned operator. Wang
et al. [60] introduced interval neutrosophic probability
with neutrosophic information and investigated several
properties. Then, they developed an MCDM problem
with interval neutrosophic information based on regret
theory. Ji et al. [61] proposed the selection of an
outsourcing provider based on the combined MABAC-
ELECTRE method using single-valued neutrosophic
linguistic sets. They �nally provided an illustrative
example to explain the utility and feasibility of their
proposed method. Garg and Nancy [62] proposed
linguistic prioritized aggregation operators in which
the priority among the attributes and the uncertainty
in linguistic terms under the Linguistic Single-Valued
Neutrosophic Set (LNSVNS) and the utilization of this
operator were considered to develop a multi-attribute
decision-making approach. Motivated by the above
works and to the best of our knowledge, there is
no work available on interval trapezoidal neutrosophic
numbers. Therefore, this study de�nes the concept of
the interval trapezoidal NS and the score and accuracy
functions of the interval trapezoidal NS. To propose
a multi-attribute decision-making method under inter-
val trapezoidal neutrosophic information, the interval
trapezoidal neutrosophic number weighted arithmetic
averaging operator ITNNWAA and the interval trape-
zoidal neutrosophic number weighted geometric aver-
aging operator ITNNWGA are de�ned.

The rest of the paper is organized as follows: In
Section 2, some fundamental concepts related to the
NS and trapezoidal intuitionistic fuzzy set are given.
In Section 3, a trapezoidal NS is de�ned as a general-
ization of the trapezoidal intuitionistic fuzzy set, and
its operational behaviors are introduced. Moreover, the
score and accuracy functions of the trapezoidal NS are
de�ned. In Section 4, the operational rules and some
properties of the score and accuracy functions of inter-
val trapezoidal neutrosophic numbers are investigated.
In Section 5, the aggregation operators, ITNNWAA
and ITNNWGA, are proposed for aggregating interval
trapezoidal neutrosophic information and investigating
their properties in detail. In Section 6, based on
ITNNWAA and ITNNWGA operators and the score
and accuracy functions of interval trapezoidal neu-
trosophic numbers, a multi-attribute decision-making
method for the interval trapezoidal neutrosophic infor-
mation is developed. In Section 7, a numerical example
is given to describe the application of the developed

method. In Section 8, a conclusion and suggestions for
future works are given.

2. Preliminaries

In this section, some basic concepts related to NSs [7]
and interval NSs in [13] are briey given, which are
necessary for this work.

NS is a part of neutrosophy, which includes
the origin, nature, scope of neutralities, and their
interaction with di�erent ideational spectra [7], and is
a powerful general formal framework, which generalizes
the above-mentioned sets from a philosophical point of
view. The de�nition of a NS is given in [7] as follows:

De�nition 2.1 [7]. Let X be a space of points
(objects) with a generic element in X denoted by x.
An NS a in X is de�ned by:

a = fhTa(x); Ia(x); Fa(x)ijx 2 Xg ;
where Ta(x) is the truth-membership function, Ia(x)
is the indeterminacy-membership function, and Fa(x)
is the falsity-membership function. Ta(x), Ia(x), and
Fa(x) are real standard or non-standard subsets of
]0�; 1+[ such that Ta(x) : X !]0�; 1+[, Ia(x) : X !
]0�; 1+[ and Fa(x) : X !]0�; 1+[. There is no
restriction on the sum of Ta(x), Ia(x), and Fa(x); thus,
0� � Ta(x) + Ia(x) + Fa(x) � 3+.

The concept of the SVNS was de�ned by Smaran-
dache [8] and Wang et al. [9] and is presented in the
following.

De�nition 2.2 [9]. Let X be a space of points
(objects) with a generic element in X denoted by x.
SVNS is de�ned as follows:

a = fhTa(x); Ia(x); Fa(x)ijx 2 Xg ;
where Ta(x) : X ! [0; 1] is the truth-membership
degree, Ia(x) : X ! [0; 1] is the indeterminacy
membership degree, and Fa(x) : X ! [0; 1] is the
falsity-membership degree of x to A with the condition
0 � Ta(x) + Ia(x) + Fa(x) � 3.

An INS is a generalization of an NS, which has
real scienti�c and engineering applications. In 2005, [9]
gave the following de�nition of the INS.

De�nition 2.3 [13]. Let X be a space of points
(objects), with a generic element in X denoted
by x. An interval NS is characterized by truth-
membership function TA(x), indeterminacy member-
ship function IA(x), and falsity-membership function
FA(x) such that Ta(x) = [inf Ta(x); supTa(x)], Ia(x) =
[inf Ia(x); sup Ia(x)], and Fa(x) = [inf Fa(x); supFa(x)]
with 0 � supTa(x) + sup Ia(x) + supFa(x) � 3 for
x 2 X.
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De�nition 2.4 [13]. Let a = h[inf Ta(x); supTa(x)],
[inf Ia(x); sup Ia(x)]; [inf Fa(x); supFa(x)]i and b =
h[inf Tb(x); supTb(x)], [inf Ib(x); sup Ib(x)], [inf Fb(x);
supFb(x)]i be as Interval Neutrosophic Numbers
(INNs).

Then, the following operational rules hold true on
INNs:

1. a + b = h[inf Ta(x) + inf Tb(x)� inf Ta(x) inf Tb(x),
supTa(x) + supTb(x) � supTa(x) supTb(x)]; [inf Ia
(x) inf Ib(x); sup Ia(x) sup Ib(x)]; [inf Fa(x) inf
Fb(x); supFa(x) supFb(x)]i;

2. a:b = h[inf Ta(x) inf Tb(x); supTa(x) supTb(x)]; [inf
Ia(x) + inf Ib(x) � inf Ia(x) inf Ib(x); sup Ia(x) +
sup Ib(x)�sup Ia(x) sup Ib(x)] [inf Fa(x)+inf Fb(x)
� inf Fa(x) inf Fb(x); supFa(x) + supFb(x) � sup
Fa(x) supFb(x)]i;

3. �a = h[1 � (1 � inf Ta(x))�; 1 � (1 � supTa(x))�];
[inf I�a (x); sup I�a (x)]; [inf F�a (x); supF�a (x)]i;

4. a� = h[inf T�a (x); supT�a (x)]; [1�(1�inf Ia(x))�; 1�
(1 � sup Ia(x))�]; [1 � (1 � inf Fa(x))�; 1 � (1 �
supFa(x))�]i.

De�nition 2.5 [13]. Let a = h[inf Ta(x); supTa(x)];
[inf Ia(x); sup Ia(x)]; [inf Fa(x); supFa(x)]i, b = h[inf
Tb(x); supTb(x)]; [inf Ib(x); sup Ib(x)]; [inf Fb(x); sup
Fb(x)]i and c = h[inf Tc(x); supTc(x)]; [inf Ic(x); sup
Ic(x)]; [inf Fc(x); supFc(x)]i be INNs. Then, the fol-
lowing will be equivalent with respect to the INNs:

1. a+ b = b+ a,
2. a:b = b:a,
3. �(a+ b) = �a+ �b, for � > 0,
4. (a:b)� = a� + b�, for � > 0,
5. �1a+ �2a = (�1 + �2)a, for �1 > 0 and �2 > 0,
6. a�1 :a�2 = a�1+�2 , for �1 > 0 and �2 > 0,
7. (a+ b) + c = a+ (b+ c),
8. (a:b):c = a:(b:c).

3. Trapezoidal NS

The trapezoidal IFS is a generalization of the triangular
IFS, de�ned by Liu et al. [48]. Recently, Ye [54]
introduced a trapezoidal neutrosophic set based on the
combination of trapezoidal fuzzy numbers and a SVNS.
The following de�nition is a notion of the trapezoidal
neutrosophic set, as introduced by Ye [54].

De�nition 3.1 [54]. Let X be a space of points
(objects), with a generic element in X denoted by x.

A trapezoidal NS A in X de�ned in the form is:

�AN = fhTN (x); IN (x); FN (x)ijx 2 Xg ;

where TN (x) � [0; 1], IN (x) � [0; 1], and FN (x) �
[0; 1] are the three trapezoidal fuzzy numbers TN (x) =
(t1N (x); t2N (x); t3N (x); t4N (x)) : X ! [0; 1], IN (x) =
(i1N (x); i2N (x); i3N (x); i4N (x)) : X ! [0; 1] and FN (x) =
(f1
N (x); f2

N (x); f3
N (x); f4

N (x)) : X ! [0; 1] under the
condition 0 � t4N (x) + i4N (x) + f4

N (x) � 3, for x 2 X.
For the sake of convenience, let TN (x) = (t1;

t2; t3; t4), IN (x) = (i1; i2; i3; i4), and FN (x) = (f1; f2;
f3; f4) be three trapezoidal neutrosophic numbers. The
basic element of a trapezoidal NS is denoted by �n =
h(t1; t2; t3; t4); (i1; i2; i3; i4); (f1; f2; f3; f4)i. If t2 = t3,
i2 = i3, and f2 = f3 hold in a trapezoidal neutrosophic
number �n, then trapezoidal neutrosophic number �n is
reduced to a triangular neutrosophic number.

Here, some operations between two trapezoidal
neutrosophic numbers are described.

De�nition 3.2 [54]. Let �n1 = h(t1; t2; t3; t4); (i1; i2;
i3; i4); (f1; f2; f3; f4)i and �n2 = h(T1; T2; T3; T4); (I1; I2;
I3; I4); (F1; F2; F3; F4)i be two trapezoidal neutro-
sophic numbers. Then:

1. �n1 � �n2 = h(t1 + T1 � t1T1; t2 + T2 � t2T2; t3 +
T3 � t3T3; t4 + T4 � t4T4); (i1I1; i2I2; i3I3; i4I4);
(f1F1; f2F2; f3F3; f4F4)

�
;

2. �n1
�n2 = h(t1T1; t2T2; t3T3; t4T4); (i1+I1�i1I1; i2+
I2 � i2I2; i3 + I3 � i3I3; i4 + I4 � i4I4); (f1 +F1 �
f1F1; f2 +F2�f2F2; f3 +F3�f3F3; f4 +F4�f4F4)i;

3. ��n1 = h(1�(1�t1)�; (1�(1�t2)�; (1�(1�t3)�; (1�
(1� t4)�); (i�1 ; i�2 ; i�3 ; i�4 ); (f�1 ; f�2 ; f�3 ; f�4 )i for � > 0;

4. �n�1 = h(t�1 ; t�2 ; t�3 ; t�4 ); (1� (1� i1)�; 1� (1� i2)�; 1�
(1�i3)�; 1�(1�i4)�); (1�(1�f1)�; 1�(1�f2)�; 1�
(1� f3)�; 1� (1� f4)�)i for � � 0.

De�nition 3.3 [54]. Let �n = h(t1; t2; t3; t4); (i1; i2;
i3; i4); (f1; f2; f3; f4)i be a trapezoidal neutrosophic
number. Then, the score function of trapezoidal
neutrosophic number is de�ned by Ye [54] as follows:

S (�n) =
1
3

�
2+

t1 + t2 + t3 + t4
4

� i1 + i2 + i3 + i4
4

�f1 + f2 + f3 + f4

4

�
; S (�n) 2 [0; 1]; (1)

where the larger the value of S(�n), the larger the
trapezoidal neutrosophic number �n. For a particular
case, when t2 = t3, i2 = i3, and f2 = f3, then the
score function of trapezoidal neutrosophic number �n of
Eq. (1) is reduced to the following score function of the
triangular neutrosophic number:

S (�n) =
1
3

�
2 +

t1 + 2t2 + t4
4

� i1 + 2i2 + i4
4

�f1 + 2f2 + f4

4

�
; S(�n) 2 [0; 1]: (2)
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De�nition 3.4 [54]. Let �n = h(t1; t2; t3; t4); (i1;
i2; i3; i4); (f1; f2; f3; f4)i be a trapezoidal neutrosophic
number. Then, the accuracy function of the trapezoidal
neutrosophic number is de�ned by Ye [54] as follows:

H (�n) =
�
t1 + t2 + t3 + t4

4
� f1 + f2 + f3 + f4

4

�
;

H (�n) 2 [�1; 1]; (3)

where the larger the value of H(�n), the higher the
accuracy degree of the trapezoidal neutrosophic num-
ber �n. In addition, when t2 = t3 and f2 = f3,
then the accuracy function of trapezoidal neutrosophic
number �n of Eq. (3) is reduced to the following accuracy
function of triangular neutrosophic number:

H (�n) =
�
t1 + 2t2 + t4

4
� f1 + 2f2 + f4

4

�
;

H (�n) 2 [�1; 1]; (4)

which is the special case for Eq. (3).

4. Interval trapezoidal NS

In this section, this study extends the trapezoidal
interval-valued intuitionistic fuzzy set to an INNS
to introduce the interval trapezoidal neutrosophic set
based on the connection between trapezoidal fuzzy
numbers and the INNs and its score and accuracy
functions. Let us propose a de�nition of the interval
trapezoidal NS as a generalization of interval-valued
intuitionistic trapezoidal fuzzy numbers.

De�nition 4.1. Let X be a space of points (objects),
with a generic element in X denoted by x. An interval
trapezoidal NS A in X is de�ned in the following form:

�AN =
�
�

TLN (x); TUN (x)
�
;
�
ILN (x); IUN (x)

�
;�

FLN (x); FUN (x)
�� jx 2 X	 ;

where TLN (x); TUN (x) � [0; 1], ILN (x); IUN (x) � [0; 1] and
FLN (x); FUN (x) � [0; 1] are six trapezoidal fuzzy num-
bers such that TLN (x) = (tL1 (x); tL2 (x); tL3 (x); tL4 (x)) :
X ! [0; 1], TUN (x) = (tU1 (x); tU2 (x); tU3 (x); tU4 (x)) :
X ! [0; 1],ILN (x) = (iL1 (x); iL2 (x); iL3 (x); iL4 (x)) :
X ! [0; 1], IUN (x) = (iU1 (x); iU2 (x); iU3 (x); iU4 (x)) :
X ! [0; 1], FLN (x) = (fL1 (x); fL2 (x); fL3 (x); fL4 (x)) :
X ! [0; 1]FUN (x) = (fU1 (x); fU2 (x); fU3 (x); fU4 (x)) :
X ! [0; 1] and under the condition 0 � sup tU4 (x) +
sup iU4 (x) + sup fU4 (x) � 3 for x 2 X.

Therefore, an interval trapezoidal neutrosophic
number is denoted by �n = h[(tL1 ; tL2 ; tL3 ; tL4 ); (tU1 ; tU2 ; tU3 ,
tU4 )], [(iL1 ; iL2 ; iL3 ; iL4 ), (iU1 ; iU2 ; iU3 ; iU4 )], [(fL1 ; fL2 ; fL3 ; fL4 ),
(fU1 ; fU2 ; fU3 ; fU4 )]i, which is the basic element of the

interval trapezoidal NS. An interval trapezoidal neutro-
sophic number ITNN consists of 24 real numbers that
all belong to the interval [0; 1]. If tL2 = tL3 , tU2 = tU3 ,
iL2 = iL3 , iU2 = iU3 , fL2 = fL3 and fU2 = fU3 hold in the
interval trapezoidal neutrosophic number n, then it is
reduced to an interval triangular neutrosophic number,
which is the special case of an interval trapezoidal
neutrosophic number.

De�nition 4.2. Let �n1 = h[(tL1 ; tL2 ; tL3 ; tL4 ); (tU1 ; tU2 ; tU3 ;
tU4 )]; [(iL1 ; iL2 ; iL3 ; iL4 ); (iU1 ; iU2 ; iU3 ; iU4 )]; [(fL1 ; fL2 ; fL3 ; fL4 );
(fU1 ; fU2 ; fU3 ; fU4 )]i and �n2 = h[(TL1 ; TL2 ; TL3 ; TL4 ); (TU1 ;
TU2 ; TU3 ; TU4 )]; [(IL1 ; IL2 ; IL3 ; IL4 ); (IU1 ; IU2 ; IU3 ; IU4 )]; [(FL1 ;
FL2 ; FL3 ; FL4 ); (FU1 ; FU2 ; FU3 ; FU4 )]i be two interval
trapezoidal neotrosophic numbers. Then, the following
operations hold:

1. �n1 � �n2 = h[(tL1 + TL1 � tL1 TL1 ; tL2 + TL2 � tL2 TL2 ; tL3
+TL3 � tL3 TL3 ; tL4 + TL4 � tL4 TL4 ); (tU1 + TU1 � tU1 TU1 ;
tU2 + TU2 � tU2 TU2 ; tU3 + TU3 � tU3 TU3 ; tU4 +TU4 �
tU4 TU4 ]; [(iL1 IL1 ; iL2 IL2 ; iL3 IL3 ; iL4 IL4 ); (iU1 IU1 ; iU2 IU2 ; iU3 IU3 ;
iU4 IU4 )]; [(fL1 FL1 ; fL2 FL2 ; fL3 FL3 ; fL4 FL4 ); (fU1 FU1 ; fU2 FU2 ;
fU3 FU3 ; fU4 FU4 )]i .

2. �n1 
 �n2 = h[(tL1 TL1 ; tL2 TL2 ; tL3 TL3 ; tL4 TL4 ); (tU1 TU1 ;
tU2 TU2 ; tU3 TU3 ; tU4 TU4 ]; [(iL1 + IL1 �iL1 IL1 ; iL2 + IL2 �
iL2 IL2 ; iL3 + IL3 � iL3 IL3 ; iL4 + IL4 � iL4 IL4 ); (iU1 + IU1 �
iU1 IU1 ; iU2 + IU2 � iU2 IU2 ; iU3 + IU3 � iU3 IU3 ; iU4 + IU4 �
iU4 IU4 )]; [(fL1 + FL1 � fL1 FL1 ; fL2 + FL2 � fL2 FL2 ; fL3
+FL3 � fL3 FL3 ; fL4 + FL4 � fL4 FL4 ); (fU1 + FU1 �
fU1 FU1 ; fU2 + FU2 � fU2 FU2 ; fU3 + FU3 � fU3 FU3 ; fU4 +
FU4 � fU4 FU4 )]i .

3. ��n1 = h[(1�(1� tL1 )�; 1�(1� tL2 )�; 1�(1� tL3 )�; 1�
(1�tL4 )�); (1�(1�tU1 )�; 1�(1�tU2 )�; 1�(1� tU3 )�;
1 � (1 � tU4 )�)]; [((iL1 )�; (iL2 )�; (iL3 )�; (iL4 )�); ((iU1 )�;
(iU2 )�; (iU3 )�; (iU4 )�)]; [((fL1 )�; (fL2 )�; (fL3 )�; (fL4 )�);
((fU1 )�; (fU2 )�; (fU3 )�; (fU4 )�)]i for � > 0 .

4. �n�1 = h[((tL1 )�; (tL2 )�; (tL3 )�; (tL4 )�); ((tU1 )�; (tU2 )�;
(tU3 )�; (tU4 )�)]; [(1� (1� iL1 )�; 1� (1� iL2 )�; 1� (1�
iL3 )�; 1� (1� iL4 )�); (1� (1� iU1 )�; 1� (1� iU2 )�; 1�
(1� iU3 )�; 1� (1� iU4 )�)]; [(1� (1� fL1 )�; 1� (1�
fL2 )�; 1�(1�fL3 )�; 1�(1�fL4 )�); (1�(1�fU1 )�; 1�
(1� fU2 )�; 1� (1� fU3 )�; 1� (1� fU4 )�)]i for � � 0.

This study proposes a de�nition of score and accuracy
functions for an interval trapezoidal neutrosophic num-
ber based on the expected value of an interval trape-
zoidal fuzzy number de�ned by Ye [63] and the score
and accuracy functions of a trapezoidal neutrosophic
number de�ned by Ye [54].

De�nition 4.3. Let �n1 = h[(tL1 ; tL2 ; tL3 ; tL4 ); (tU1 ; tU2 ; tU3 ;
tU4 )]; [(iL1 ; iL2 ; iL3 ; iL4 ); (iU1 ; iU2 ; iU3 ; iU4 )]; [(fL1 ; fL2 ; fL3 ; fL4 );
(fU1 ; fU2 ; fU3 ; fU4 )]

E
be an interval trapezoidal neutro-

sophic number. Then, the score function of an interval
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trapezoidal neutrosophic number is de�ned as follows:

S (�n) =
�
tU1 + tU2 + tU3 + tU4

4
+
tL1 + tL2 + tL3 + tL4

4

�
+
�
iU1 + iU2 + iU3 + iU4

4
� iL1 + iL2 + iL3 + iL4

4

�
+
�
fU1 +fU2 +fU3 +fU4

4
� fL1 +fL2 +fL3 +fL4

4

�
;

S (�n) 2 [�1; 1]; (5)

where the larger the value of S(�n), the larger the
interval trapezoidal neutrosophic number �n. When
tL2 = tL3 , tU2 = tU3 , iL2 = iL3 , iU2 = iU3 , fL2 = fL3 and
fU2 = fU3 hold in an interval trapezoidal neutrosophic
number �n in Eq. (5), then Eq. (5) is reduced to the
score function of an interval triangular neutrosophic
number:

S (�n) =
�
tU1 + 2tU2 + tU4

4
+
tL1 + 2tL2 + tL4

4

�
+
�
iU1 + 2iU2 + iU4

4
� iL1 + 2iL2 + iL4

4

�
+
�
fU1 + 2fU2 + fU4

4
� fL1 + 2fL2 + fL4

4

�
;

S (�n) 2 [�1; 1]; (6)

which is the special case of Eq. (5).

De�nition 4.4. Let �n1 = h[(tL1 ; tL2 ; tL3 ; tL4 ); (tU1 ; tU2 ;
tU3 ; tU4 )]; [(iL1 ; iL2 ; iL3 ; iL4 ); (iU1 ; iU2 ; iU3 ; iU4 )]; [(fL1 ; fL2 ; fL3 ;
fL4 ); (fU1 ; fU2 ; fU3 ; fU4 )]i be an interval trapezoidal neu-
trosophic number. Then, the accuracy function of
an interval trapezoidal neutrosophic number can be
de�ned as:

H (�n) =
�
tU1 + tU2 + tU3 + tU4

4
+
tL1 + tL2 + tL3 + tL4

4

�
+
�
fU1 +fU2 +fU3 +fU4

4
� fL1 +fL2 +fL3 +fL4

4

�
;

H(�n) 2 [0; 1]; (7)

where the larger the value of H(�n), the larger the
interval trapezoidal neutrosophic number �n. When
tL2 = tL3 , tU2 = tU3 , iL2 = iL3 , iU2 = iU3 ,fL2 = fL3 , and fU2 =
fU3 hold in an interval trapezoidal neutrosophic number
�n in Eq. (7), then Eq. (7) is reduced to the accuracy
function of an interval triangular neutrosophic number
as:

H (�n) =
�
tU1 + 2tU2 + tU4

4
+
tL1 + 2tL2 + tL4

4

�
+
�
fU1 +2fU2 +fU4

4
� fL1 +2fL2 +fL4

4

�
;

H (�n) 2 [0; 1]; (8)

which is the special case of Eq. (7).

De�nition 4.5. Let �n1 = h[(tL1 ; tL2 ; tL3 ; tL4 ); (tU1 ; tU2 ;
tU3 ; tU4 )]; [(iL1 ; iL2 ; iL3 ; iL4 ); (iU1 ; iU2 ; iU3 ; iU4 )]; [(fL1 ; fL2 ; fL3 ;
fL4 ); (fU1 ; fU2 ; fU3 ; fU4 )]i and �n2 = h[(TL1 ; TL2 ; TL3 ; TL4 );
(TU1 ; TU2 ; TU3 ; TU4 )]; [(IL1 ; IL2 ; IL3 ; IL4 ); (IU1 ; IU2 ; IU3 ; IU4 )];
[(FL1 ; FL2 ; FL3 ; FL4 ); (FU1 ; FU2 ; FU3 ; FU4 )]i be two interval
trapezoidal neutrosophic numbers. Therefore, S(�n1)
and S(�n2) are the scores of �n1, �n2, respectively, and
H(�n1), H(�n2) are the accuracy degrees of �n1 and �n2.
respectively.

Then, the order relation of the two interval trape-
zoidal neutrosophic numbers is de�ned in the following
form:

1. If S(�n1) > S(�n2), then �n1 > �n2,
2. If S(�n1) = S(�n2), and

(i) If H(�n1) = H(�n2), then �n1 = �n2,
(ii) If H(�n1) > H(�n2), then �n1 > �n2.

5. Weighted aggregation operators of interval
trapezoidal neutrosophic numbers

In aggregation information, for the decision-making
problem, the weighted arithmetic averaging operator
and geometric averaging operator are usually used.
Here, based on De�nition 4.3, these two operators are
proposed here for the interval trapezoidal neutrosophic
numbers.

5.1. Interval trapezoidal neutrosophic numbers
with the weighted arithmetic averaging
operator

De�nition 5.1. Let �n1j = h[(tL1j ; tL2j ; tL3j ; tL4j); (tU1j ;
tU2j ; tU3j ; tU4j)]; [(iL1j ; iL2j ; iL3j ; iL4j); (iU1j ; iU2j ; iU3j ; iU4j)]; [(fL1j ;
fL2j ; fL3j ; fL4j); (fU1j ; fU2j ; fU3j ; fU4j)]i (j = 1; 2; � � � ; n) be
an interval trapezoidal neutrosophic number. Then,
an Interval Trapezoidal Neutrosophic Number with
Weighted Arithmetic Averaging (ITNNWAA) operator
is de�ned as follows:

ITNNWAA (�n11; �n12; �n13; : : : ; �n1n)

=w1�n11�w2�n12�� � � � wn�n1n=
nM
j=1

(wj�n1j); (9)

where wj (j = 1; 2; � � � ; n) is the weight of the jth
interval trapezoidal neutrosophic number �n1j (j =
1; 2; � � � ; n) with wj 2 [0; 1] and

Pn
j=1 wj = 1.



C. Jana et al./Scientia Iranica, Transactions E: Industrial Engineering 27 (2020) 1655{1673 1661

By the operation rules of the interval trapezoidal
neutrosophic numbers in De�nition 4.2, the following
theorem is given.

Theorem 5.2. Let �n1j = h[(tL1j ; tL2j ; tL3j ; tL4j); (tU1j ;
tU2j ; tU3j ; tU4j)]; [(iL1j ; iL2j ; iL3j ; iL4j); (iU1j ; iU2j ; iU3j ; iU4j)]; [(fL1j ;
fL2j ; fL3j ; fL4j); (fU1j ; fU2j ; fU3j ; fU4j)]i (j = 1; 2; � � � ; n) be a
collection of interval trapezoidal neutrosophic numbers.
Then, their aggregated value by using the ITNNWAA
operator is also an interval trapezoidal neutrosophic
number. Then, we have:
ITNNWAA (�n11; �n12; �n13; : : : ; �n1n)

= w1�n11 � w2�n12 � : : :� wn�n1n =
nM
j=1

(wj�n1j)

=

*" 
1�

nY
j=1

�
1� tL1j�wj ; 1� nY

j=1

�
1� tL2j�wj ;

1�
nY
j=1

�
1� tL3j�wj ; 1� nY

j=1

�
1� tL4j�wj!; 

1�
nY
j=1

(1� tU1j)wj ; 1�
nY
j=1

�
1� tU2j�wj ;

1�
nY
j=1

�
1� tU3j�wj ; 1� nY

j=1

�
1� tU4j�wj!#;24 nY

j=1

�
iL1j
�wj ; nY

j=1

(iL2j)
wj ;

nY
j=1

�
iL3j
�wj ;

nY
j=1

�
iL4j
�wj!;0@ nY

j=1

�
iU1j
�wj ; nY

j=1

�
iU2j
�wj ;

nY
j=1

�
iU3j
�wj ; nY

j=1

�
iU4j
�wj1A35 ;240@ nY

j=1

(fL1j)
wj ;

nY
j=1

�
fL2j
�wj ; nY

j=1

�
fL3j
�wj ; nY

j=1

�
fL4j
�wj1A ;

0@ nY
j=1

�
fU1j
�wj ; nY

j=1

�
fU2j
�wj ; nY

j=1

�
fU3j
�wj ;

nY
j=1

�
fU4j
�wj1A35i;

where wj (j = 1; 2; � � � ; n) is the weight of the jth

interval trapezoidal neutrosophic number �n1j (j =
1; 2; � � � ; n) with wj 2 [0; 1] and

Pn
j=1 wj = 1.

Proof. The above theorem can be proved through the
mathematical induction method. When n = 2, then:

w1�n11 =


[(1� (1� tL11)w1 ; 1� (1� tL21)w1 ;

1� (1� tL31)w1 ; 1� (1� tL41)w1);

(1� (1� tU11)w1 ; 1� (1� tU21)w1 ;

1� (1� tU31)w1 ; 1� (1� tU41)w1)];

[((iL11)w1 ; (iL21)w1 ; (iL31)w1 ; (iL41)w1);

((iU11)w1 ; (iU21)w1 ; (iU31)w1 ; (iU41)w1)];

[((fL11)w1 ; (fL21)w1 ; (fL31)w1 ; (fL41)w1);

((fU11)w1 ; (fU21)w1 ; (fU31)w1 ; (fU41)w1)]
�
;

w2�n12 =


[(1� (1� tL12)w2 ; 1� (1� tL22)w2 ;

1� (1� tL32)w2 ; 1� (1� tL42)w2);

(1� (1� tU12)w2 ; 1� (1� tU22)w2 ;

1� (1� tU32)w2 ; 1� (1� tU42)w2)];

[((iL12)w2 ; (iL22)w2 ; (iL32)w2 ; (iL42)w2);

((iU12)w2 ; (iU22)w2 ; (iU32)w2 ; (iU42)w2)];

[((fL12)w2 ; (fL22)w2 ; (fL32)w2 ; (fL42)w2);

((fU12)w12; (fU22)w2 ; (fU32)w2 ; (fU42)w2)]
�
:

Therefore:

ITNNWAA(�n11; �n12) = w1�n11 � w2�n12 = h[(1
�(1�tL11)w1 +1�(1�tL12)w2�(1�(1�tL11)w1)(1

�(1�tL12)w2); 1�(1�tL21)w1 +1�(1�tL22)w2�(1

�(1�tL21)w1)(1�(1�tL22)w2); 1�(1�tL31)w1 +1

�(1�tL32)w2�(1�(1�tL31)w1)(1�(1�tL32)w2); 1

�(1�tL41)w1 +1�(1�tL42)w2�(1�(1�tL41)w1)(1

�(1�tL42)w2)); (1�(1�tU11)w1 +1�(1�tU12)w2�(1

�(1�tU11)w1)(1�(1�tU12)w2); 1�(1�tU21)w1 +1



1662 C. Jana et al./Scientia Iranica, Transactions E: Industrial Engineering 27 (2020) 1655{1673

�(1�tU22)w2�(1�(1�tU21)w1)(1�(1�tU22)w2); 1

�(1�tU31)w1 +1�(1�tU32)w2�(1�(1�tU31)w1)(1

�(1�tU32)w2); 1�(1�tU41)w1 +1�(1�tU42)w2�(1

�(1�tU41)w1)(1�(1�tU42)w2))]; [((iL11)w1(iL12)w2 ;

(iL21)w1(iL22)w2 ; (iL31)w1(iL32)w2 ; (iL41)w1(iL42)w2);

((iU11)w1(iU12)w2 ; (iU21)w1(iU22)w2 ; (iU31)w1

(iU32)w2 ; (iU41)w1(iU42)w2)]; [((fL11)w1(fL12)w2 ;

(fL21)w1(fL22)w2 ; (fL31)w1(fL32)w2 ; (fL41)w1

(fL42)w2); ((fU11)w1(fU12)w2 ; (fU21)w1(fU22)w2 ;

(fU31)w1(fU32)w2 ; (fU41)w1(fU42)w2)]i = h[(1
� (1� tL11)w1(1� tL12)w2 ; 1

� (1� tL21)w1(1� tL22)w2 ; 1

� (1� tL31)w1(1� tL32)w2 ; 1

� (1� tL41)w1(1� tL42)w2); (1

� (1� tU11)w1(1� tU12)w2 ; 1

� (1� tU21)w1(1� tU22)w2 ; 1

� (1� tU31)w1(1� tU32)w2 ; 1

� (1� tU41)w1(1� tU42)w2)];240@ 2Y
j=1

(iL1j)
wj;

2Y
j=1

(iL2j)
wj;

2Y
j=1

(iL3j)
wj ;

2Y
j=1

(iL4j)
wj

1A ;

0@ 2Y
j=1

(iU1j)
wj;

2Y
j=1

(iU2j)
wj;

2Y
j=1

(iU3j)
wj;

2Y
j=1

(iU4j)
wj

1A35 ;
240@ 2Y

j=1

(fL1j)
wj;

2Y
j=1

(fL2j)
wj;

2Y
j=1

(fL3j)
wj;

2Y
j=1

(fL4j)
wj

1A;
0@ 2Y
j=1

(fU1j)
wj;

2Y
j=1

(fU2j)
wj;

2Y
j=1

(fU3j)
wj;

2Y
j=1

(fU4j)
wj

1A35+:
When n = k holds, then:

ITNNWAA (�n11; �n12;� � �; �n1k)

=w1�n11�w2�n12�� � ���n1k

=
kM
j=1

(wj�n1j) =

*240@1�
kY
j=1

(1� tL1j)wj ; 1

�
kY
j=1

(1� tL2j)wj ; 1�
kY
j=1

�
1� tL3j�wj ; 1

�
kY
j=1

(1� tL4j)wj
1A ;

0@1�
kY
j=1

(1� tU1j)wj ; 1

�
kY
j=1

(1� tU2j)wj ; 1�
kY
j=1

(1� tU3j)wj ; 1

�
kY
j=1

(1� tU4j)wj
1A35 ;240@ kY

j=1

(iL1j)
wj ;

kY
j=1

(iL2j)
wj ;

kY
j=1

(iL3j)
wj ;

kY
j=1

(iL4j)
wj

1A;0@ kY
j=1

(iU1j)
wj ;

kY
j=1

(iU2j)
wj ;

kY
j=1

(iU3j)
wj ;

kY
j=1

(iU4j)
wj

1A35 ;240@ kY
j=1

(fL1j)
wj ;

kY
j=1

(fL2j)
wj ;

kY
j=1

(fL3j)
wj ;

kY
j=1

(fL4j)
wj );

0@ kY
j=1

(fU1j)
wj ;

kY
j=1

(fU2j)
wj ;

kY
j=1

(fU3j)
wj ;

kY
j=1

(fU4j)
wj

1A35+ :
When n = k + 1 holds, then by applying:

ITNWAA (�n11; �n12; � � � ; �n1k+1)

=

*240@1�
kY
j=1

(1� tL1j)wj + 1� (1� tL1k+1)wk+1

�
0@1�

kY
j=1

�
1�tL1j�wj1A�1�(1�tL1k+1)wk+1� ; 1

�
kY
j=1

(1� tL2j)wj + 1� (1� tL2k+1)wk+1

�
kY
j=1

(1� (1� tL2j)wj )(1� (1� tL2k+1)wk+1); 1
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�
kY
j=1

(1� tL3j)wj + 1� (1� tL3k+1)wk+1

� �1� kY
j=1

(1� tL3j)wj�(1� (1� tL3k+1)wk+1); 1

�
kY
j=1

(1� tL4j)wj + 1� (1� tL4k+1)wk+1

��1� kY
j=1

(1�tL4j)wj�(1�(1�tL4k+)wk+1)

1A; 1

�
kY
j=1

(1� tU1j)wj + 1� (1� tU1k+1)wk+1

� �1� kY
j=1

(1� tU1j)wj�(1� (1� tU1k+1)wk+1); 1

�
kY
j=1

(1� tU2j)wj + 1� (1� tU2k+1)wk+1

� �1� kY
j=1

(1� tU2j)wj�(1� (1� tU2k+1)wk+1); 1

�
kY
j=1

(1� tU3j)wj + 1� (1� tU3k+1)wk+1

��1� kY
j=1

(1�tU3j)wj�(1�(1�tU3k+1)wk+1); 1

�
kY
j=1

(1� tU4j)wj + 1� (1� tU4k+1)wk+1

��1� kY
j=1

(1�tU4j)wj�(1�(1�tU4k+1)wk+1))

35 ;
240@k+1Y

j=1

(iL1j)
wj ;

k+1Y
j=1

(iL2j)
wj ;

k+1Y
j=1

(iL3j)
wj ;

k+1Y
j=1

(iL4j)
wj

1A ;

0@k+1Y
j=1

(iU1j)
wj ;

k+1Y
j=1

(iU2j)
wj ;

k+1Y
j=1

(iU3j)
wj ;

k+1Y
j=1

(iU4j)
wj

1A35 ;
240@k+1Y

j=1

(fL1j)
wj ;

k+1Y
j=1

(fL2j)
wj ;

k+1Y
j=1

(fL3j)
wj ;

k+1Y
j=1

(fL4j)
wj

1A ;

0@k+1Y
j=1

(fU1j)
wj;

k+1Y
j=1

(fU2j)
wj;

k+1Y
j=1

(fU3j)
wj;

k+1Y
j=1

(fU4j)
wj

1A35+

=

*240@1�
k+1Y
j=1

(1� tL1j)wj ; 1�
k+1Y
j=1

(1� tL2j)wj ; 1

�
k+1Y
j=1

(1� tL3j)wj ; 1�
k+1Y
j=1

(1� tL4j)wj
1A ;

 
1

�
k+1Y
j=1

(1� tU1j)wj ; 1�
k+1Y
j=1

(1� tU2j)wj ; 1

�
k+1Y
j=1

(1� tU3j)wj ; 1�
k+1Y
j=1

(1� tU4j)wj
!35 ;

240@k+1Y
j=1

(iL1j)
wj ;

k+1Y
j=1

(iL2j)
wj ;

k+1Y
j=1

(iL3j)
wj ;

k+1Y
j=1

(iL4j)
wj

1A ;

0@k+1Y
j=1

(iU1j)
wj ;

k+1Y
j=1

(iU2j)
wj ;

k+1Y
j=1

(iU3j)
wj ;

k+1Y
j=1

(iU4j)
wj

1A35 ;
240@k+1Y

j=1

(fL1j)
wj ;

k+1Y
j=1

(fL2j)
wj ;

k+1Y
j=1

(fL3j)
wj ;

k+1Y
j=1

(fL4j)
wj

1A ;

0@k+1Y
j=1

(fU1j)
wj ;

k+1Y
j=1

(fU2j)
wj ;

k+1Y
j=1

(fU3j)
wj ;

k+1Y
j=1

(fU4j)
wj

1A35+ :
Thus, through the mathematical induction method, the
proof of the theorem is completed. �

It is observed that when W = (1=n; 1=n; � � � ;
1=n)T , then ITNNWAA operator is reduced to an
interval trapezoidal neutrosophic number arithmetic
averaging operator.

It is obvious that the ITNNWAA operator is
characterized by the following properties:

Theorem 5.3. Idempotency property: Let
�n1j = h[(tL1j ; tL2j ; tL3j ; tL4j); (tU1j ; tU2j ; tU3j ; tU4j)]; [(iL1j ; iL2j ; iL3j ;
iL4j); (iU1j ; iU2j ; iU3j ; iU4j)], [(fL1j ; fL2j ; fL3j ; fL4j); (fU1j ; fU2j ; fU3j ;
fU4j)]i (j = 1; 2; � � � ; n) be a collection of interval
trapezoidal neutrosophic numbers. If each �n1j where
j 2 f1; 2; � � � ; ng is equal to �n1, �n1j = �n1 for j =
1; 2; � � � ; n, then:

ITNNWAA(�n11; �n12; : : : ; �n1n) = �n1: (10)

Theorem 5.4. Boundness property: Let �n1j
(j = 1; 2; � � � ; n) be a collection of ITNNs. Let:
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( �n1)� =
��

min
j
tL1j ;min

j
tL2j ;min

j
tL3j ;min

j
tL4j

�
;�

max
j
iL1j ;max

j
iL2j ;max

j
iL3j ;max

j
iL4j

�
;

max
j
fL1j ;max

j
fL2j ;max

j
fL3j ;max

j
fL4j

��
;

( �n1)+ =
��

max
j
tU1j ;max

j
tU2j ;max

j
tU3j ;max

j
tU4j

�
;�

min
j
iU1j ;min

j
iU2j ;min

j
iU3j ;min

j
iU4j

�
;

min
j
fU1j ;min

j
fU2j ;min

j
fU3j ;min

j
fU4j

��
:

Then:

�n�1 � ITNNWAA(�n11; �n12; � � � ; �n1n) � �n+
1 : (11)

Theorem 5.5. Monotonicity property: Let
�n1j (j = 1; 2; � � � ; n) and �n1j (j = 1; 2; : : : ; n) be
two collections of the interval trapezoidal neutrosophic
numbers. If �n1j � �n�1j for j 2 f1; 2; � � � ; ng, then:

ITNNWAA(�n11; �n12; : : : ; �n1n)

� ITNNWAA(�n�11; �n
�
12; : : : ; �n

�
1n): (12)

Proof. Let:

(A) �n1j = �n1 where j = 1; 2; � � � ; n, then we have:

ITNNWAA(�n11; �n12; � � � ; �n1n)

= (w1 � �n�11 � w2�n�12; � � � ;�wn�n�1n)

=
nM
j=1

(wj�n1j) =

*240@1�
nY
j=1

(1� tL1j)wj ; 1

�
nY
j=1

(1� tL2j)wj ; 1�
nY
j=1

(1� tL3j)wj ; 1

�
nY
j=1

(1� tL4j)wj
1A ;

0@1�
nY
j=1

(1� tU1j)wj ; 1

�
nY
j=1

(1� tU2j)wj ; 1�
nY
j=1

(1� tU3j)wj ; 1

�
nY
j=1

(1� tU4j)wj
1A35 ;240@ nY

j=1

(iL1j)
wj ;

nY
j=1

(iL2j)
wj ;

nY
j=1

(iL3j)
wj ;

nY
j=1

(iL4j)
wj

1A ;

0@ nY
j=1

(iU1j)
wj ;

nY
j=1

(iU2j)
wj ;

nY
j=1

(iU3j)
wj ;

nY
j=1

(iU4j)
wj

1A35 ;240@ nY
j=1

(fL1j)
wj ;

nY
j=1

(fL2j)
wj ;

nY
j=1

(fL3j)
wj ;

nY
j=1

(fL4j)
wj

1A ;

0@ nY
j=1

(fU1j)
wj ;

nY
j=1

(fU2j)
wj ;

nY
j=1

(fU3j)
wj ;

nY
j=1

(fU4j)
wj

1A35+ ;
=

*" 
1� (1� tL1 )

nP
j=1

wj
; 1� (1� tL2 )

nP
j=1

wj
; 1

�(1� tL3 )
nP
j=1

wj
; 1� (1� tL4 )

nP
j=1

wj
!
;

 
1

� (1� tU1 )
nP
j=1

wj
; 1� (1� tU2 )

nP
j=1

wj
; 1

�(1� tU3 )
nP
j=1

wj
; 1� (1� tU4 )

nP
j=1

wj
!#

;

" 
(iL1 )

nP
j=1

wj
;(iL2 )

nP
j=1

wj
;(iL3 )

nP
j=1

wj
;(iL4 )

nP
j=1

wj
!
;

 
(iU1j)

nP
j=1

wj
;(iU2j)

nP
j=1

wj
;(iU3j)

nP
j=1

wj
;(iU4j)

nP
j=1

wj
!#

;

" 
(fL1 )

nP
j=1

wj
;(fL2 )

nP
j=1

wj
;(fL3 )

nP
j=1

wj
;(fL4 )

nP
j=1

wj
!
;

 
(fU1 )

nP
j=1

wj
;(fU2 )

nP
j=1

wj
;(fU3 )

nP
j=1

wj
;(fU4 )

nP
j=1

wj
!#+

;

=

�

(tL1 ; t
L
2 ; t

L
3 ; t

L
4 ); (tU1 ; t

U
2 ; t

U
3 ; t

U
4 )
�
;

[(iL1 ; i
L
2 ; i

L
3 ; i

L
4 ); (iU1 ; i

U
2 ; i

U
3 ; i

U
4 )];

[(fL1 ; f
L
2 ; f

L
3 ; f

L
4 ); (fU1 ; f

U
2 ; f

U
3 ; f

U
4 )]
�

= �n1:

(B) Since �n�1 � �n1j � �n+
1 for j = 1; 2; � � � ; n. Thus,
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Pn
j=1 wj�n

�
1 � Pn

j=1 wj�n1j � nP
j=1

wj�n+
1 . There-

fore, according to (A), �n�1 � Pn
j=1 wj�n1j � �n+

1 ,
that is, �n�1 � ITNNWAA(�n11; �n12; � � � ; �n1n) �
�n+

1 ;

(C) Since �n1 � �n�1 for j = 1; 2; � � � ; n,
then

Pn
j=1 wj�n1 � Pn

j=1 wj�n
�
1, hence

obtained ITNNWAA(�n11; �n12; � � � ; �n1n) �
ITNNWAA(�n�11; �n�12; � � � ; �n�1n).

Hence, the proof is completed. �
5.2. Interval trapezoidal neutrosophic number

weighted geometric averaging operator
In this section, the interval trapezoidal neutrosophic
number weighted geometric averaging operator is pro-
posed, and its properties are discussed.

De�nition 5.6. Let �n1j = h[(tL1j ; tL2j ; tL3j ; tL4j); (tU1j ;
tU2j ; tU3j ; tU4j)]; [(iL1j ; iL2j ; iL3j ; iL4j); (iU1j ; iU2j ; iU3j ; iU4j)], [(fL1j ;
fL2j ; fL3j ; fL4j); (fU1j ; fU2j ; fU3j ; fU4j)]i (j = 1; 2; � � � ; n) be
interval trapezoidal neutrosophic numbers. Then,
an interval trapezoidal neutrosophic number with a
weighted geometric averaging ITNNWGA operator is
de�ned as:

ITNNWGA(�n11; �n12; �n13; � � � ; �n1n)

= �nw1
11 
 �nw2

12 
 � � � 
 �nwn1n =
nO
j=1

(�nwj1j ); (13)

where wj (j = 1; 2; � � � ; n) is the weight of the jth
interval trapezoidal neutrosophic number �n1j (j =
1; 2; � � � ; n) with wj 2 [0; 1] and

Pn
j=1 wj = 1.

By the operation rules of interval trapezoidal
neutrosophic numbers in De�nition 4.2, the following
theorem is given.

Theorem 5.7. Let �n1j = h[(tL1j ; tL2j ; tL3j ; tL4j); (tU1j ; tU2j ;
tU3j ; tU4j)]; [(iL1j ; iL2j ; iL3j ; iL4j); (iU1j ; iU2j ; iU3j ; iU4j)]; [(fL1j ; fL2j ;
fL3j ; fL4j); (fU1j ; fU2j ; fU3j ; fU4j)]i (j = 1; 2; � � � ; n) be a col-
lection of interval trapezoidal neutrosophic numbers.
In this respect, their aggregated value by using the
ITNNWGA operator becomes also an interval trape-
zoidal neutrosophic number. Then, we have:

ITNNWGA(�n11; �n12; �n13; � � � ; �n1n)

= �nw1
11 
 �nw2

12 
 � � � 
 �nwn1n =
nO
j=1

(�nwj1j )

=

*240@ nY
j=1

(tL1j)
wj;

nY
j=1

(tL2j)
wj;

nY
j=1

(tL3j)
wj;

nY
j=1

(tL4j)
wj

1A ;

0@ nY
j=1

(tU1j)
wj;

nY
j=1

(tU2j)
wj;

nY
j=1

(tU3j)
wj;

nY
j=1

(tU4j)
wj

1A35 ;
240@1�

nY
j=1

(1� iL1j)wj ; 1�
nY
j=1

(1� iL2j)wj ; 1

�
nY
j=1

(1� iL3j)wj ; 1�
nY
j=1

(1� iL4j)wj
1A ;

0@1�
nY
j=1

(1� iU1j)wj ; 1�
nY
j=1

(1� iU2j)wj ; 1

�
nY
j=1

(1� iU3j)wj ; 1�
nY
j=1

(1� iU4j)wj
1A35 ;

240@1�
nY
j=1

(1� fL1j)wj ; 1�
nY
j=1

(1� fL2j)wj ; 1

�
nY
j=1

(1� fL3j)wj ; 1�
nY
j=1

(1� fL4j)wj
1A ;

0@1�
nY
j=1

(1� fU1j)wj ; 1�
nY
j=1

(1� fU2j)wj ; 1

�
nY
j=1

(1� fU3j)wj ; 1�
nY
j=1

(1� fU4j)wj
1A35+ ;

where wj (j = 1; 2; � � � ; n) is the weight of the jth
interval trapezoidal neutrosophic number �n1j (j =
1; 2; � � � ; n) with wj 2 [0; 1] and

Pn
j=1 wj = 1.

Proof. The proof can be made in similar way to that
of Theorem 5.2. �

It is observed that when W = (1=n; 1=n;
� � � ; 1=n)T , the ITNNWGA operator is reduced to
an interval trapezoidal neutrosophic number geometric
averaging operator.

The ITNNWGA operator satis�es the following
properties.

Theorem 5.8. Idempotency property: Let �n1j =
h[(tL1j ; tL2j ; tL3j ; tL4j); (tU1j ; tU2j ; tU3j ; tU4j)]; [(iL1j ; iL2j ; iL3j ; iL4j);
(iU1j ; iU2j ; iU3j ; iU4j)]; [(fL1j ; fL2j ; fL3j ; fL4j); (fU1j ; fU2j ; fU3j ; fU4j)]i
(j = 1; 2; � � � ; n) be a collection of interval trape-
zoidal neutrosophic numbers. If each �n1j where j 2
f1; 2; � � � ; ng is equal to �n, �n1j = �n for j = 1; 2; � � � ; n,
then:
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ITNNWGA(�n11; �n12; � � � ; �n1n) = �n: (14)

Theorem 5.9. Boundedness property: Let �n1j
(j = 1; 2; � � � ; n) be a collection of ITNNs. Let:

(�n)� =
��

min
j
tL1j ;min

j
tL2j ;min

j
tL3j ;min

j
tL4j

�
;�

max
j
iL1j ;max

j
iL2j ;max

j
iL3j ;max

j
iL4j

�
;�

max
j
fL1j ;max

j
fL2j ;max

j
fL3j ;max

j
fL4j

��
;

(�n)+ =
��

max
j
tU1j ;max

j
tU2j ;max

j
tU3j ;max

j
tU4j

�
;�

min
j
iU1j ;min

j
iU2j ;min

j
iU3j ;min

j
iU4j

�
;�

min
j
fU1j ;min

j
fU2j ;min

j
fU3j ;min

j
fU4j

��
:

Then:

�n� � ITNNWGA(�n11; �n12; � � � ; �n1n) � �n+: (15)

Theorem 5.10. Monotonicity property: Let
�n1j (j = 1; 2; � � � ; n) and �n1j (j = 1; 2; � � � ; n) be
two collections of interval trapezoidal neutrosophic
numbers. If �n1j � �n�1j for j 2 f1; 2; � � � ; ng, then:

ITNNWGA(�n11; �n12; � � � ; �n1n) � (�n�11; �n
�
12; � � � ; �n�1n):

(16)

This property and the one presented in Subsection 5.1
can be similarly proved.

6. Multi-attribute decision-making method
using ITNNWAA and ITNNWGA
operators

In this section, the multi-attribute decision-making
problem is solved using ITNNWAA and ITNNWGA
operators with the score and accuracy functions based
on an interval trapezoidal neutrosophic information.

In the multi-attribute decision-making problem,
let A = fA1; A2; � � � ; Amg be a set of alternatives, and
G = fG1; G2; � � � ; Gng be a set of attributes related
to alternatives. In this problem, decision-makers
evaluate each of alternatives with interval trapezoidal
neutrosophic numbers according to each of criteria.

Thus, we can work out an interval trapezoidal
neutrosophic decision matrix:

Q =(qjk)m�n =
�
��

tL1jk; t
L
2jk; t

L
3jk; t

L
4jk
�
;�

tU1jk; t
U
2jk; t

U
3jk; t

U
4jk
��
;
��
iL1jk; i

L
2jk; i

L
3jk; i

L
4jk
�
;

�
iU1jk; i

U
2jk; i

U
3jk; i

U
4jk
��
;
��
fL1jk; f

L
2jk; f

L
3jk; f

L
4jk
�
;�

fU1jk; f
U
2jk; f

U
3jk; f

U
4jk
����

m�n ;

where tL1jk; tL2jk; tL3jk; tL4jk; tU1jk; tU2jk; tU3jk; tU4jk all be-
long to the interval [0; 1], iL1jk; iL2jk; iL3jk; iL4jk; iU1jk; iU2jk;
iU3jk; iU4jk all belong to the interval [0; 1], and
fL1jk; fL2jk; fL3jk; fL4jk; fU1jk; fU2jk; fU3jk; fU4jk all belong to
the interval [0; 1], indicating that alternative Aj does
not satisfy the attribute Cj under 0 � tU4jk + iU4jk +
fU4jk � 3, where j = 1; 2; � � � ;m and k = 1; 2; � � � ; n.

Herein, the following algorithm is proposed to ob-
tain the solution of the multi-attribute decision-making
problem with the interval trapezoidal neutrosophic
information by using ITNNWAA and ITNNWGA op-
erators with score and accuracy functions.

Algorithm:

Input: To select the best alternative;
Output: Best alternative;
Step 1: We obtained qj (j = 1; 2; � � � ;m) by using
the ITNNWAA operator:

qj =
�
�

(tL1j ; t
L
2j ; t

L
3j ; t

L
4j); (t

U
1j ; t

U
2j ; t

U
3j ; t

U
4j);�

(iL1j ; i
L
2j ; i

L
3j ; i

L
4j); (i

U
1j ; i

U
2j ; i

U
3j ; i

U
4j)
�
;�

(fL1j ; f
L
2j ; f

L
3j ; f

L
4j); (f

U
1j ; f

U
2j ; f

U
3j ; f

U
4j)
��

=ITNNWAA(qj1; qj2; � � � ; qjn);

or :

qj =
�
�

(tL1j ; t
L
2j ; t

L
3j ; t

L
4j); (t

U
1j ; t

U
2j ; t

U
3j ; t

U
4j)
�
;�

(iL1j ; i
L
2j ; i

L
3j ; i

L
4j); (i

U
1j ; i

U
2j ; i

U
3j ; i

U
4j)
�
;�

(fL1j ; f
L
2j ; f

L
3j ; f

L
4j); (f

U
1j ; f

U
2j ; f

U
3j ; f

U
4j)
��

=ITNNWGA(qj1; qj2; � � � ; qjn);

where j 2 f1; 2; � � � ;mg to obtain interval trapezoidal
neutrosophic numbers of qj (j = 1; 2; � � � ;m) for each
alternative Aj (j = 1; 2; � � � ;m);
Step 2: Next, the value of S(qj) (j = 1; 2; � � � ;m) of
the overall interval trapezoidal neutrosophic numbers
of qj (j = 1; 2; � � � ;m) is obtained to rank the
alternatives Aj (j = 1; 2; � � � ;m). If the score values
of S(qj) and (qk) are equal for two alternatives Aj and
Ak, then it is required to calculate accuracy degrees of
H(qj) and H(qk) with respect to the overall collective
interval trapezoidal neutrosophic numbers to rank the
alternatives Aj and Ak, respectively, based on the
aforementioned accuracy degrees H(qj) and H(qk);
Step 3: We select the best alternative from the
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rankings of all alternatives Aj (j = 1; 2; � � � ;m)
according to S(qj) (H(qj)) (j = 1; 2; � � � ;m);

Step 4: End.

7. Illustrative example

In this part, a numerical result is given to establish a
probable depicted (see [64]) assessment of technology
commercialization with trapezoidal neutrosophic data
so as to reach the proposed approach in this article.
There is a committee that selects �ve viable emerging
technology enterprises At (t = 1; 2; � � � ; 5). They
choose four attributes to assess �ve possible rising
technology enterprises as follows:

G1 : Technical advancement
G2 : Potential market and market risk
G3 : Industrialization framework, human

resources, and �nancial investments
G4 : The employment formation and the

progress of science and technology.

In order to avoid any conict or any sense of dom-
inance over one another, decision-makers are required
to allow the four possible emerging technology enter-
prises At (t = 1; 2; � � � ; n) under the above attributes
whose weight vector (0:25; 0:25; 0:3; 0:2)T are presented
by decision-makers, where the decision matrix, ~Q =
(�ts)5�4, is given in Box I where �ts is in the form of the

ITrNs. For the proposed method, di�erent parameters
are calculated in the following:

Step 1. We applied the ITNNWAA operator to
obtain collective overall interval trapezoidal neutro-
sophic numbers qj (j = 1; 2; 3; 4; 5) for Aj (j =
1; 2; 3; 4; 5) as follows:

q1 =h[(0:1028; 0:1841; 0:2566; 0:3569);

(0:1896; 0:3171; 0:4025; 0:4764)];

[(0:0; 0:1; 0:1414; 0:1565);

(0:1231; 0:1464; 0:3257; 0:3279)];

[(0; 0:1366; 0:1681; 0:1823);

(0:1366; 0:2018; 0:3085; 0:3719)]i;
q2 =h[(0:1261; 0:1514; 0:2338; 0:2907);

(0:3003; 0:4032; 0:4940; 0:5747)];

[(0:0; 0:1189; 0:1414; 0:1565)

(0:1189; 0:1927; 0:2632; 0:3662)];

[(0:0; 0:1149; 0:1625; 0:2431);

(0:1366; 0:1824; 0:2595; 0:2713)]i;

Q =

h[(0:2; 0:3; 0:3; 0:4); (0:2; 0:4; 0:5; 0:5)]; [(0:1; 0:1; 0:2; 0:2); (0:1; 0:1; 0:2; 0:3)]; [(0:1; 0:1; 0:1; 0:1); (0:1; 0:1; 0:2; 0:2)]i
h[(0:2; 0:2; 0:3; 0:4); (0:2; 0:3; 0:4; 0:5)]; [(0:1; 0:2; 0:2; 0:2); (0:1; 0:3; 0:4; 0:5)]; [(0:1; 0:1; 0:2; 0:2); (0:2; 0:2; 0:2; 0:2)]i
h[(0:0; 0:1; 0:1; 0:1); (0:1; 0:1; 0:1; 0:2)]; [(0:1; 0:2; 0:2; 0:2); (0:1; 0:1; 0:2; 0:3)]; [(0:2; 0:3; 0:4; 0:5); (0:3; 0:4; 0:5; 0:6)]i
h[(0:3; 0:4; 0:5; 0:5); (0:4; 0:5; 0:6; 0:7)]; [(0:0; 0:1; 0:2; 0:3); (0:1; 0:2; 0:3; 0:4)]; [(0:0; 0:1; 0:1; 0:2); (0:1; 0:1; 0:1; 0:2)]i
h[(0:0; 0:1; 0:2; 0:2); (0:1; 0:2; 0:2; 0:3)]; [(0:0; 0:1; 0:1; 0:1); (0:2; 0:2; 0:2; 0:2)]; [(0:2; 0:3; 0:4; 0:5); (0:4; 0:4; 0:6; 0:7)]i
h[(0:0; 0:1; 0:2; 0:3); (0:1; 0:2; 0:3; 0:4)]; [(0:0; 0:1; 0:2; 0:3); (0:1; 0:2; 0:3; 0:3)]; [(0:2; 0:2; 0:2; 0:2); (0:2; 0:3; 0:4; 0:5)]i
h[(0:1; 0:2; 0:3; 0:4); (0:5; 0:6; 0:7; 0:8)]; [(0:1; 0:1; 0:2; 0:3); (0:2; 0:2; 0:3; 0:4)]; [(0:0; 0:1; 0:2; 0:2); (0:1; 0:1; 0:2; 0:2)]i
h[(0:2; 0:3; 0:4; 0:5); (0:3; 0:4; 0:4; 0:6)]; [(0:1; 0:1; 0:2; 0:2); (0:2; 0:3; 0:3; 0:3)]; [(0:1; 0:2; 0:2; 0:2); (0:2; 0:2; 0:2; 0:3)]i
h[(0:0; 0:1; 0:2; 0:3); (0:2; 0:3; 0:4; 0:5)]; [(0:0; 0:1; 0:1; 0:3); (0:1; 0:1; 0:2; 0:3)]; [(0:0; 0:1; 0:2; 0:3); (0:1; 0:2; 0:3; 0:3)]i
h[(0:2; 0:2; 0:3; 0:3); (0:6; 0:7; 0:7; 0:8)]; [(0:0; 0:1; 0:1; 0:1); (0:1; 0:1; 0:1; 0:2)]; [(0:0; 0:1; 0:1; 0:1); (0:1; 0:1; 0:2; 0:2)]i
h[(0:1; 0:2; 0:3; 0:4); (0:3; 0:4; 0:5; 0:6)]; [(0:1; 0:1; 0:1; 0:1); (0:2; 0:2; 0:2; 0:2)]; [(0:0; 0:1; 0:1; 0:2); (0:1; 0:2; 0:3; 0:4)]i
h[(0:1; 0:1; 0:2; 0:2); (0:3; 0:4; 0:5; 0:5)]; [(0:0; 0:1; 0:1; 0:1); (0:1; 0:2; 0:2; 0:3)]; [(0:0; 0:1; 0:1; 0:1); (0:1; 0:2; 0:3; 0:3)]i
h[(0:1; 0:2; 0:2; 0:3); (0:1; 0:2; 0:3; 0:4)]; [(0:1; 0:1; 0:1; 0:1); (0:1; 0:1; 0:2; 0:2)]; [(0:1; 0:2; 0:3; 0:3); (0:3; 0:4; 0:5; 0:6)]i
h[(0:2; 0:2; 0:3; 0:3); (0:2; 0:3; 0:3; 0:4)]; [(0:1; 0:1; 0:1; 0:1); (0:2; 0:2; 0:2; 0:2)]; [(0:2; 0:3; 0:4; 0:5); (0:4; 0:5; 0:6; 0:7)]i
h[(0:1; 0:1; 0:2; 0:2); (0:1; 0:2; 0:3; 0:3)]; [(0:1; 0:1; 0:2; 0:3); (0:1; 0:2; 0:3; 0:4)]; [(0:1; 0:2; 0:3; 0:4); (0:5; 0:6; 0:7; 0:8)]i
h[(0:1; 0:1; 0:2; 0:3); (0:1; 0:2; 0:2; 0:3)]; [(0:1; 0:1; 0:1; 0:1); (0:1; 0:1; 0:2; 0:3)]; [(0:1; 0:2; 0:2; 0:3); (0:2; 0:3; 0:4; 0:5)]i
h[(0:1; 0:1; 0:1; 0:1); (0:1; 0:2; 0:2; 0:3)]; [(0:0; 0:1; 0:1; 0:1); (0:1; 0:1; 0:2; 0:3)]; [(0:1; 0:2; 0:2; 0:3); (0:2; 0:3; 0:4; 0:5)]i
h[(0:2; 0:3; 0:4; 0:5); (0:6; 0:7; 0:8; 0:9)]; [(0:1; 0:1; 0:2; 0:3); (0:1; 0:1; 0:2; 0:3)]; [(0:0; 0:1; 0:2; 0:3); (0:1; 0:2; 0:3; 0:3)i
h[(0:1; 0:1; 0:3; 0:3); (0:1; 0:2; 0:4; 0:4)]; [(0:0; 0:2; 0:2; 0:3); (0:1; 0:2; 0:2; 0:3)]; [(0:1; 0:1; 0:1; 0:1); (0:2; 0:2; 0:2; 0:2)]i
h[(0:2; 0:3; 0:3; 0:4); (0:4; 0:4; 0:6; 0:7)]; [(0:0; 0:1; 0:2; 0:2); (0:1; 0:2; 0:2; 0:2)]; [(0:0; 0:1; 0:2; 0:3); (0:1; 0:2; 0:3; 0:4)]i

Box I
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q3 =h[(0:1237; 0:2241; 0:2761; 0:3593);

(0:2813; 0:3698; 0:4417; 0:5929)];

[(0:1; 0:1189; 0:1625; 0:1762);

(0:1189; 0:1316; 0:2213; 0:2656)];

[(0:0; 0:1927; 0:2686; 0:3080);

(0:2176; 0:2928; 0:3590; 0:4392)]i;
q4 =h[(0:1624; 0:2150; 0:3548; 0:3565);

(0:2378; 0:3390; 0:4321; 0:5179)];

[(0:0; 0:1149; 0:1366; 0:2158);

(0:1231; 0:1681; 0:2213; 0:2854)];

[(0:0; 0:1390; 0:1803; 0:2536);

(0:1741; 0:2214; 0:2588; 0:3223)]i;
q5 =h[(0:1237; 0:1690; 0:2467; 0:2695);

(0:3224; 0:4090; 0:4764; 0:5680)];

[(0:0; 0:1; 0:1414; 0:1597);

(0:1189; 0:1682; 0:1899; 0:2462)];

[(0:0; 0:1620; 0:2259; 0:2823);

(0:2291; 0:2780; 0:4157; 0:4763)]i:
Again, the ITNNWGA operator is applied here to
obtain the overall interval trapezoidal neutrosophic
information qj (j = 1; 2; ::; n) for Aj (j = 1; 2; :::; n)
as follows:

q1 =h[(0:0; 0:1620; 0:2500; 0:3514);

(0:1653; 0:2928; 0:3664; 0:4509)];

[(0:0760; 0:1; 0:1515; 0:1793);

(0:1312; 0:1565; 0:2263; 0:2714)];

[(0:0981; 0:1465; 0:1465; 0:1978);

(0:1465; 0:2241; 0:3247; 0:4060)]i;
q2 =h[(0:1189; 0:1414; 0:2132; 0:2462);

(0:2473; 0:3586; 0:4282; 0:5078)];

[(0:0513; 0:1261; 0:1515; 0:1793);

(0:1793; 0:2078; 0:2800; 0:3808)];

[(0:04630; 0:1210; 0:1712; 0:1930);

(0:1465; 0:1978; 0:2744; 0:3004)]i;
q3 =h[(0:0; 0:2018; 0:2297; 0:2869);

(0:1883; 0:2569; 0:2980; 0:4378)];

[(0:1; 0:1261; 0:1712; 0:1931);

(0:1261; 0:1637; 0:2263; 0:2714)];

[(0:1075; 0:2078; 0:2848; 0:3366);

(0:2389; 0:3170; 0:3985; 0:4855)]i;
q4 =h[(0:0; 0:1741; 0:3080; 0:3409);

(0:2071; 0:3143; 0:4061; 0:4865)];

[(0:0311; 0:1210; 0:1465; 0:2452);

(0:1312; 0:1760; 0:2263; 0:2989)];

[(0:0843; 0:1654; 0:2262; 0:3120);

(0:2216; 0:2844; 0:3528; 0:4235)]i;
q5 =h[(0:0; 0:1189; 0:2400; 0:1882);

(0:2065; 0:3142; 0:3849; 0:4542)];

[(0:0311; 0:1; 0:1515; 0:1848);

(0:1261; 0:1761; 0:2084; 0:2661)];

[(0:1075; 0:1841; 0:2634; 0:3457);

(0:3182; 0:3772; 0:5120; 0:6100)]i:
Step 2. We calculated score values S(qj) and
accuracy values H(qj) for the overall collective in-
terval trapezoidal neutrosophic information qj (j =
1; 2; 3; 4; 5). Based on De�nition 4.3, di�erent score
values are obtained and given in Table 1 for the
operators ITNNWAA and ITNNWGA. Therefore,
there is no need to compute the accuracy function
value;
Step 3. Ranking of alternatives.

According to De�nition 4.5 and the score values
obtained in Step 2, it is clear that S(q5) > S(q2) >
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Table 1. Score values of alternatives using ITNNWAA
and ITNNWGA operators.

Alternative
(Ai)

Score value
(ITNNWAA)

Score value
(ITNNWGA)

A1 0.8357 0.7071
A2 0.8571 0.7972
A3 0.7895 0.6545
A4 0.8376 0.6725
A5 0.9089 0.7833

Table 2. Ranking order of the alternatives.

Aggregation operator Ranking ordered

ITNNWAA A5 � A2 � A4 � A1 � A3

ITNNWGA A2 � A5 � A1 � A4 � A3

S(q4) > S(q1) > S(q3) (see Table 1) can be obtained for
the ITNNWAA operator. Therefore, the �nal ranking
is A5 A5 � A2 � A4 � A1 � A3 (see Table 2) for
the ITNNWAA operator. Thus, the most desirable
emerging technology is A5, while the worst is A3.

Now, the ITNNWGA operator is used to calculate
score values as per De�nition 4.5. The values obtained
in Step 2 are shown in Table 1 (Second column). It is
seen that S(q2) > S(q5) > S(q1) > S(q4) > S(q3).
Therefore, as per operator ITNNWGA, the ranking
of the technologies is A2 � A5 � A1 � A4 � A3
(see Table 2). Hence, as per this operator, the best
technology is A2, while the worst is A3. According
to the two obtained results above, the best technology
includes A5 and A2 and the worst one is A3 (in both
cases).

In this paper, the proposed method is more
valuable than that in the relevant papers (see
[50,51,65]), which proposed multi-attribute decision-
making method based on the weighted geomet-
ric averaging operator for interval-valued trapezoidal
fuzzy numbers, weighted aggregation operator multi-
attribute group decision-making method based on
interval-valued trapezoidal fuzzy numbers, and an
approach to multi-attribute group decision-making
problems with interval-valued intuitionistic trapezoidal
fuzzy numbers, whereas the decision in this proposed
method is considered based on interval trapezoidal
neutrosophic information. As mentioned earlier, the
trapezoidal neutrosophic set is a generalization of
the trapezoidal intuitionistic fuzzy set, and interval
trapezoidal neutrosophic number is a generalization
of interval-valued intuitionistic trapezoidal fuzzy num-
bers. Therefore, the proposed method is typical to ap-
ply to decision-making problems. This method solves
not only triangular and trapezoidal interval-valued
intuitionistic fuzzy information, but also triangular
and trapezoidal neutrosophic information in decision-

making; however, decision-making in [50,51,65] was
only based on triangular and trapezoidal interval-
valued intuitionistic fuzzy numbers. Thus, the pro-
posed method in this paper is a more relevant gener-
alization of the existing decision-making methods with
triangular and trapezoidal interval-valued intuitionistic
fuzzy information.

In most cases, to calculate the actual aggregation
values of the alternatives, di�erent aggregation oper-
ators have been used. Moreover, the two aforemen-
tioned aggregation operators, ITNNWAA operator or
ITNNWGA operator, are all used to deal with di�erent
relationships of the aggregated arguments, which can
provide decision-makers with more options.

8. Conclusion and future scope of work

This study de�ned the concept of the interval trape-
zoidal neutrosophic set and its score and accuracy
functions. Then, aggregating operators, ITNNWAA
and ITNNWGA, along with the score and accuracy
functions based on interval trapezoidal neutrosophic
information were introduced, and a multi-attribute
decision-making method was developed based on the
operators ITNNWAA and ITNNWGA and the score
and accuracy functions based on an interval trape-
zoidal neutrosophic information. The ITNNWAA and
ITNNWGA operators were used to aggregate interval
trapezoidal neutrosophic information corresponding to
each of the alternatives to obtain the overall informa-
tion of each alternative and, then, rank the alternatives
of the values of the score and accuracy function to
choose the most desirable one. Finally, an illustrative
example was given to demonstrate the implementation
process of the proposed method. The main advantage
of this method is that it is a useful method for solving
a multi-attribute decision-making problem with an in-
terval trapezoidal neutrosophic environment including
indeterminate and inconsistent information. All in all,
the proposed method can be a useful tool to solve some
other practical problems for aggregating information
such as supply chain management system, software
system selection problems, and water resource schedule
problems.
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