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Abstract. Endurance Time (ET) method is a dynamic analysis procedure in which
increasing excitations are imposed on structures; these excitations are known as Endurance
Time Excitation Functions (ETEF). This study presents a method to determine an optimal
objective function for simulating ETEFs including unconstrained optimization problems.
In optimization problems, equations are de�ned in terms of an objective function. In the
problem of simulating ETEFs, the objective function can be de�ned in many di�erent ways
regarding the considered intensity measures and respective weighting factors. In addition,
the type of calculating residuals (absolute way or relative way) diversi�es the objective
function de�nitions. The proposed method for determining the optimal objective function
includes quantifying the accuracy of ETEFs in a scalar quantity regardless of their objective
functions and introducing an approach to attenuate the dependence of results on the initial
points of optimizations. The proposed method is applied, and results are then presented. It
is observed that considering only acceleration spectra and calculating residuals in a relative
way lead to more accurate ETEFs.
© 2020 Sharif University of Technology. All rights reserved.

1. Introduction

Endurance Time (ET) method is a dynamic analysis in
which structures are subjected to intensifying accelera-
tion time histories [1]. The ET method provides seismic
demand prediction in terms of the correlation between
Engineering Demand Parameter (EDP) and Intensity
Measure (IM). EDP describes structural responses such
as inter-story drift ratio, while IM represents seismic
intensity levels such as acceleration spectra in the
�rst structural mode. The ET method illustrates the
performance of a structure at di�erent seismic intensity
levels.
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Several other procedures can be employed for the
EDP prediction, e.g., Incremental Dynamic Analysis
(IDA) and Nonlinear Static Procedure (NSP). NSP is
a static procedure that does not consider the dynamic
nature of building responses during earthquakes [2].
NSP is a simple approach presented by several rehabili-
tation provisions such as FEMA 356 [3] and FEMA273
[4]. In contrast, IDA is a time history dynamic-based
procedure for the seismic assessment that subjects
structures to a suite of multiple-scaled Ground Motion
(GM) records [5]. Each scale factor creates a speci�c
seismic intensity level. Thus, IDA gives an insight into
the structural performance at di�erent intensity levels,
ranging from frequent events to rare earthquakes.

The ET method, as an EDP prediction tool, lies
between NSP and IDA in terms of its simplicity and
accuracy. This method is more accurate than NSP as
a result of considering the dynamic nature of building
responses. In addition, the ET method is simpler than
the IDA analysis. In contrast to the IDA analysis
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that requires a set of dynamic analyses for each seismic
intensity level, the ET method expresses overall struc-
tural performance using a single time-history analysis.
Therefore, the ET method shortens the computational
time of analysis. In addition, employing a suite of GM
records for all intensity levels in the IDA analysis is a
controversial issue [6].

The ET method is used in di�erent areas of
earthquake engineering such as seismic assessment,
performance-based design, probabilistic-based earth-
quake engineering, etc. Riahi et al. [7] investigated
the potentials and limits of the ET method for per-
forming nonlinear seismic analysis of Single Degree Of
Freedom (SDOF) structures. Riahi et al. [8] applied
the ET method for performing the seismic assessment
of steel frames with di�erent stories and di�erent bays.
Mirzaee and Estekanchi [9] developed an ET-based
methodology for performance-based retro�tting of typ-
ical steel frames. Rahimi and Estekanchi [10] applied
the ET method to the collapse assessment of buildings.
Basim and Estekanchi [11] investigated the application
of the ET method to the performance-based design of
structures and proposed a practical optimum design
procedure. Tafakori et al. [12] presented an ET-based
methodology to estimate probabilistic loss for which
the ET method was used as a demand propagation
prediction tool. Chiniforush et al. [13] applied the ET
method for performing the seismic evaluation of unre-
inforced masonry monuments. Vaezi et al. [14] investi-
gated the seismic response of anchored cylindrical steel
tanks with various dimensional parameters considering
uid-structure interaction by the ET method.

The ET Excitation Functions (ETEF), which are
used as time-history analysis input motions, are the
central part of the ET method. ETEFs represent syn-
thetic records and are generated mathematically. Dy-
namic characteristics of the ETEFs are supposed to be
compatible with recorded GMs and also increase with
time. Given that ETEF intensity increases in time, a
wide range of IMs are covered in a single ETEF. Inten-
si�cation is a key feature of ETEFs. Besides, the EDP
calculated by the ET method must be compatible with
the EDP obtained from the IDA analysis at each IM.

These two foregoing requirements include the sim-
ulation basis of ETEFs. ETEF-generating equations
are de�ned as discrepancies between ETEFs dynamic
characteristics and GMs. Since the variable numbers
are quite smaller than the number of equations, the
optimization procedure must be used to minimize
equations. In the optimization context, equations are
presented by objective functions.

There are several options when it comes to de�n-
ing the objective function. Di�erent objective function
de�nitions vary in considered dynamic characteristics,
residual calculation type, and residual weighting associ-
ated with di�erent dynamic characteristics. Residuals

are the di�erences between the ETEF dynamic charac-
teristics and corresponding GMs. There are two types
of residual calculation, i.e., absolute calculation and
relative calculation.

Several studies have intended to simulate ETEFs,
neither of which has focused on investigating the
inuence of objective function de�nition on the results.
For example, Nozari and Estekanchi [15] applied an
optimization procedure for generating ETEFs. In
their study, residuals of absolute acceleration spectra
were considered in the objective function. Kaveh
and Mahdavi [16] presented a process for generating
ETEFs based on discrete wavelet transform, which
solely included acceleration spectra consistency. In
their work, residuals were computed in an absolute
manner. Heuristic optimization algorithms were also
adopted by Kaveh et al. [17] for generating ETEFs.
To simulate new ETEFs, it is essential to de�ne an
optimal objective function that creates better ETEFs.

Several studies have investigated the dynamic
parameters so that they can be included in the ET
method so as to either simulate ETEFs or apply the ET
method. For example, Mashayekhi and Estekanchi [18]
investigated the e�ect of strong motion duration in the
ET analysis. Mashayekhi and Estekanchi [19] consid-
ered nonlinear cycle consistency of ETEFs with GMs in
the existing ETEFs. Mashayekhi and Estekanchi [20]
also investigated the number of cycles in which ETEFs
show consistency with GMs.

The problem of simulating ETEFs relies heavily
on optimization. Diverse optimization algorithms have
been introduced in the literature; these algorithms have
been widely used to solve many optimization problems
in various scienti�c �elds. In the problem of simu-
lating ETEFs, several studies have applied di�erent
optimization algorithms. The performance of those
algorithms has been compared with each other. Nozari
and Estekanchi [15] applied Trust-Region reective
method to simulate ETEFs. Kaveh and Mahdavi [16]
and Kaveh et al. [17] applied nonlinear Quasi-Newton
algorithm and Covariance Matrix Adaption (CMA)
evolutionary strategy approach to generate ETEFs,
respectively. It was shown that the Trust-Region
reective method could produce better results than
other considered algorithms. It is worth mentioning
that even though those algorithms are characterized
by some advantages that speed up their convergence,
they cannot compete with the accuracy of the trust-
region reective algorithm. Since accuracy is the most
important issue in the problem of simulating ETEFs,
Trust-Region reective algorithm is used in this study.

This study focuses on simulating new ETEFs.
Although optimization algorithm a�ects results, this
study concentrates only on the objective function de�-
nition. A novel method is proposed to �nd the optimal
objective function de�nition. The method is employed
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to �nd the optimal ETEFs simulation scenario, where
acceleration, displacement, and velocity spectra are
included in the process. The accuracy of ETEFs
simulated by the optimal objective function is com-
pared with that of ETEFs simulated by conventional
objective functions.

2. Generating procedure

The concept of Response Spectra is used in ETEFs
generation. It is expected that ETEFs response spectra
increase with time whilst they remain compatible with
the recorded GMs. This requirement for acceleration
spectra is shown in Eq. (1):

SaC(t; T ) = t=ttarget � STARGET
a (T ); (1)

where SaC(t; T ) denotes the acceleration spectra pro-
duced by window [0; t] of ETEFs in time period
T . STARGET

a (T ) denotes the average recorded GMs
acceleration spectra. In this study, FEMAP695 [21]
far-�eld record set is used. These GMs acceleration
spectra are shown in Figure 1.

The ETEFs requirement for displacement and
velocity spectra are shown in Eqs. (2) and (3), respec-
tively:

SuC(t; T ) = t=ttarget � STARGET
u (T ); (2)

SvC(t; T ) = t=ttarget � STARGET
v (T ); (3)

where SuC(t; T ) is the target displacement spectra pro-

Figure 1. Acceleration spectra of FEMAp695 record set.

duced by window [0, t] of ETEFs at time t and in period
T , STARGET

d (T ) represents the average recorded GMs
displacement response spectra in period T , Svc(t; T ) is
the velocity spectra produced by the ETEF at time t
and in period T , and STARGET

v (T ) is recorded GMs
average velocity spectra in period T .

The ETEFs response spectra must conform to
Eqs. (1), (2), and (3). These equations are the ETEFs
simulating targets. The ETEFs response spectra are
evaluated through Eqs. (4a), (4b), and (4c):

Sa(t; T ) = max(j�x(�) + ag(�)j) 0 � � � t; (4a)

Su(t; T ) = max(jx(�)j) 0 � � � t; (4b)

Sv(t; T ) = max(j _x(�)j) 0 � � � t; (4c)

where �x(�), x(�), and _x(�) are the relative accelera-
tions, displacement, and velocity response of a SDOF
system in period T and at a damping ratio of 5% under
the ETEF, and ag(�) is the acceleration time history
of the ETEF.

To solve the above-mentioned equations, uncon-
strained nonlinear optimization is utilized. The objec-
tive function of this optimization problem is de�ned
as in Eq. (5) shown in Box I. It should be noted
that this objective function intends to minimize the
residuals de�ned as the di�erences between the ETEFs
response spectra and targets. This objective func-
tion integrates absolute residuals over all times and
all periods. The �rst three terms in the objective
function compute residuals in an absolute manner,
while the other three terms compute residuals in a
relative manner. In Eq. 2(5) tmax is the ETEF
duration, and Tmax is the maximum period considered
in generating. � is the weight vector, that is � =
[�a; �u; �v; �Ra; �Ru; �Rv]. Di�erent weight
vectors produce di�erent optimization scenarios. �
determines residual weight factors of each component
in the objective function. For example, when all
components of the weight vector are zero except �a,
it can be found that residuals of absolute acceleration
spectra are considered in the objective function. In
this study, optimization scenarios are de�ned based
on the values of weight vectors. �a is the factor of

FETEF(ag; �) =
TmaxZ
0

tmaxZ
0

�
�a[Sa(T; t)� SaC(T; t)]2+�u[Su(T; t)� SuC(T; t)]2+�v[Sv(T; t)� SvC(T; t)]2

+ �Ra
�
Sa(T; t)� SaC(T; t)

SaC(T; t)

�2

+�Ru
�
Su(T; t)�SuC(T; t)

SuC(T; t)

�2

+�Rv
�
Sv(T; t)�SvC(T; t)

SvC(T; t)

�2�
dtdT:

(5)

Box I
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acceleration spectra residuals and is computed in an
absolute manner. This factor is always valued at one.
�Ra, �Ru, �Rv represent the factors of acceleration,
displacement, and velocity spectra computed in a
relative manner and are either zero or one. This implies
that the relative error of these quantities is either
considered or not. It should be mentioned that velocity
spectra consistency is not considered, solely because it
is less important than displacement spectra. �u, �v
are the displacement and residuals of velocity spectra,
which are computed in an absolute manner. These
factors are assigned either zero or one in the literature.
This study introduces a new method for assigning these
factors in which the importance of displacement spectra
and velocity spectra residuals in the objective function
is the same. These factors are measured according to
the following equations:

�u =

TmaxR
Tmin

STARGET
a (T ) dT

TmaxR
Tmin

STARGET
u (T ) dT

; (6)

�v =

TmaxR
Tmin

STARGET
a (T ) dT

TmaxR
Tmin

STARGET
v (T ) dT

: (7)

It should be noted that the above-mentioned objective
functions should be discretized so that they can be
minimized. The discretization type can impact the
results. Suppose that time is sampled at n points
(tj ; j = 1 : n) and periods are sampled at m points
(Ti; i = 1 : m); then, this discretization converts the
double integral into a double summation. The objec-
tive function in Eq. (5) changes into Eq. (8) as shown
in Box II, after discretization. In this study, the aim is
to generate 20-sec acceleration time histories of ETEFs
that are sampled at a time step of 0.01 sec. Thus, this
sampling method de�nes 2000 variables, which must be

speci�ed during the optimization process. Period T is
discretized at 120 points with logarithmic distribution
at interval [0.02 sec, 5 sec]. The logarithmic distri-
bution generates more data points in the lower period
region, where the uctuation of acceleration spectra is
considerably high.

Nonlinear unconstrained optimization was used to
determine the variables. This study used the trust-
region reective method as an optimization algorithm,
which is a simple yet powerful concept in the �eld
of optimization. The basic idea is to approximate f
with a simpler function q, which reasonably reects
the behavior of function f in the neighborhood of N{a
spherical space with a radius of �{around the point x.
This neighborhood is called the trust region [22]. In
the standard trust region, q is de�ned by the �rst two
terms in the Taylor expansion of f around x. The basic
equation of the trust region method is a constrained
optimization problem, which is given in Eq. (9) [22]:

minimize
�

1
2
sTHs+ sT g

�
such that ksk � �: (9)

The gradient of f at x is represented by g, while H
is the Hessian matrix (the symmetric matrix of the
second derivatives) of f at x, and s is the step size to
be determined in each iteration. When s is determined,
the point of the next iteration is calculated by adding
the step size to the current point. This procedure is
repeated until convergence is reached. The ETEF-
generating algorithm is depicted in Figure 2. It can
be seen that the optimization run terminates as soon
as one of the convergence criteria is satis�ed. The
convergence criteria used in this study include the
following:

� Iteration number reaches a speci�ed value. In this
study, maximum iteration number 200 is considered;

� The number of function evaluations reaches a spec-
i�ed value. In this study, the maximum number of
function evaluations is considered 400000;

FETEF (ag; �) =
mX
i=1

nX
j=1

�
�a[Sa (Ti; tj)� SaC (Ti; tj)]

2+�u[Su (Ti; tj)�SuC (Ti; tj)]
2

+�v
�
Sv (Ti; tj)�SvC (Ti; tj)

�2

+�Ra
�
Sa (Ti; tj)�SaC (Ti; tj)

SaC (Ti; tj)

�2

+�Ru
�
Su (Ti; tj)� SuC (Ti; tj)

SuC (Ti; tj)

�2

+ �Rv
�
Sv (Ti; tj)� SvC (Ti; tj)

SvC (Ti; tj)

��
:

(8)

Box II
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Figure 2. Generating Endurance Time Excitation
Functions (ETEFs) algorithm.

� Size of the calculated step, which is the norm
of xk+1 � xk, is less than a speci�ed value
(jxk � xk+1j < 10�8 (1 + jxkj));

� Changes in the objective function value dur-
ing a step are less than a speci�ed value.
jf(x)k � f (xk+1)j < 10�8.

3. Proposed method

The proposed method is a procedure employed for �nd-
ing the optimal ETEFs simulating objective function.
The objective function parameters must be speci�ed
�rst.

Weight factor vector (�) is considered as the
objective function parameter of ETEFs. Di�erent
weight factor values de�ne di�erent simulating scenar-
ios. It is necessary to determine the best value for
this parameter, which is of concern in generating new
ETEFs.

In this regard, a criterion must be de�ned to
compare the accuracy of ETEFs shown in di�erent
scenarios. In this section, the desired criterion is

developed. However, the developed criteria might vary
for di�erent applications.

The Normalized Relative Residual (NRR) for each
response spectra quantity is separately computed ac-
cording to Eqs. (10), (11), (12):

NRRSa =
1

tmax

Z tmax

0 R Tmax

Tmin
j(Sa (T; t)� SaC (T; t))j dTR Tmax

Tmin
SaC (T; t) dT

!
dt;
(10)

NRRSu =
1

tmax

Z tmax

0 R Tmax

Tmin
j(Su (T; t)� SuC (T; t))j dTR Tmax

Tmin
SuC (T; t) dT

!
dt;
(11)

NRRSv =
1

tmax

Z tmax

0 R Tmax

Tmin
j(Sv (T; t)� SvC (T; t))j dTR Tmax

Tmin
SvC (T; t) dT

!
dt:
(12)

NRR integrates residuals in all time periods. The
residuals in each time period are integrated in all
periods and, then, are normalized. This normalization
method avoids the domination of residuals, where the
values of response spectra are lower and, thus, they can
be divided by lower numbers. Total Relative Residual
(TRR) is a vector, components of which are NRRs asso-
ciated with Sa, Su, and Sv. The concept of normalized
residuals was �rst introduced by Mashayekhi et al. [23].
This quantity is a vector and, thus, cannot be used
as a comparison tool. Total Relative Cost (TRC) is
a comparison criterion that is derived from the inner
product of TRR and importance vector (I). Importance
vector is a unit vector, components of which signify the
accuracy importance of each response spectra quantity
in simulated ETEFs. Schematic computation of TRC is
shown in Figure 3. TRC is computed through Eq. (13):

TRC = TRR:I = [TRRSa ;TRRSu ;TRRSv ] :I; (13)

where \:" denotes the inner product operator of two
vectors.

The optimal � can be speci�ed by minimizing
TRC. The following steps must be taken:

1. Consider a number of optimal possible scenarios; n
scenarios are numbered as SCi; i = 1 : n and each
scenario has its own �i. It should be noted that the
optimal scenario is selected among these considered
scenarios. Therefore, all possible scenarios should
be considered. All possible scenarios have been
discussed in the previous section;
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Figure 3. Computing total relative cost procedure.

2. Specify an importance vector;

3. Create a number of initial random solutions. m
initial random solution is numbered as Xj , j = 1:
m;

4. Simulate ETEFs(i; j) using the ith scenario and the
jth initial random solution. This step is done by
optimizing Eq. (8);

5. Compute TRC matrix; each entry of this matrix is
the TRC associated with a scenario and a random
initial motion TRC (i; j) associated with ETEFs
(i; j);

6. Normalize the TRC matrix; entries of each column
are divided by the maximum entry of that column.
In fact, the TRC of di�erent scenarios associated
with the same input motion is normalized with
respect to each other;

7. Calculate the average TRC of each scenario by
averaging rows of the normalized TRC matrix. In
fact, the TRC of each scenario equals the average of
the normalized TRC of that scenario with di�erent
random initial motions;

8. Sort di�erent scenarios from the lowest to highest.
The optimal scenario is the one with the minimum
normalized TRC.

4. Application

In this section, the proposed method is applied to �nd
the optimum � vector. Nine scenarios are considered;
the corresponding � vectors are summarized in Ta-
ble 1. For example, in the �rst scenario, the residual
of absolute acceleration spectra is considered in the
objective function, while, in the second scenario, the
residual of relative acceleration spectra is considered
in the objective function. In the third scenario, the
summation of the residuals of absolute acceleration
and displacement spectra is included in the objective
function.

Three initial points are investigated. The �rst
initial point (Xj ; j = 1) is shown in Figure 4. It should

Table 1. Characteristics of de�ned scenarios.

Scenarios �

SC1
h
1 0 0 0 0 0

i
SC2

h
0 0 0 1 0 0

i
SC3

h
1 1 0 0 0 0

i
SC4

h
1 13 0 0 0 0

i
SC5

h
0 0 0 1 1 0

i
SC6

h
1 1 0 1 1 0

i
SC7

h
1 1 1 0 0 0

i
SC8

h
1 13 4 0 0 0

i
SC9

h
1 13 4 1 1 1

i

Figure 4. Initial point of optimization.

be mentioned that the units of acceleration, velocity,
and displacement are g, g.sec, and g.sec2, respectively.
The non-zero �u and �v values in the objective function
are set to either 1 or the value computed by Eqs. (6)
and (7). These equations are used as normalization
factors.

Two importance vectors are considered in order
to investigate the sensitivity of the optimal scenario
to this quantity, i.e., I1 =

h
1p
3

1p
3

1p
3

i
and I2 =h

1p
2

1p
2

0
i
. TRC associated with I1 and I2 is

denoted by TRC1 and TRC2, respectively. Table 2
shows the NRR and TRC associated with these sce-
narios for the �rst initial point (X1).

It can be concluded that the �fth scenario that
considers the relative residual of acceleration and the
displacement spectra creates better TRC1 and TRC2.
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Table 2. NRR and TRC of optimizations scenarios.

Scenarios TRRSa TRRSd TRRSv TRC1 TRC2

SC1 0.14 0.16 0.18 0.277 0.210
SC2 0.13 0.14 0.15 0.244 0.192
SC3 0.15 0.16 0.19 0.288 0.219
SC4 0.15 0.16 0.17 0.275 0.218
SC5 0.12 0.14 0.15 0.239 0.185
SC6 0.13 0.15 0.15 0.245 0.191
SC7 0.17 0.19 0.21 0.324 0.251
SC8 0.15 0.16 0.17 0.278 0.219
SC9 0.13 0.15 0.14 0.242 0.198

Table 3. Total relative cost for three di�erent initial motions.

Scenarios x(0)
1 x(0)

2 x(0)
3

TRC1 TRC2 TRC1 TRC2 TRC1 TRC2

SC1 0.28 0.21 0.28 0.22 0.34 0.27
SC2 0.24 0.19 0.24 0.18 0.25 0.19
SC3 0.29 0.22 0.28 0.23 0.37 0.29
SC4 0.28 0.22 0.29 0.21 0.27 0.21
SC5 0.24 0.18 0.39 0.32 0.26 0.20
SC6 0.24 0.19 0.30 0.24 0.27 0.21
SC7 0.32 0.25 0.35 0.30 0.36 0.30
SC8 0.28 0.22 0.26 0.22 0.31 0.25
SC9 0.24 0.20 0.25 0.21 0.25 0.21

This scenario creates minimum TRC1 and TRC2 in
comparison to other scenarios. TRC1 of SC5 is 0.239
and is better than other scenarios. It should be noted
that although SC5 is the best scenario, the di�erence
between TRC of SC9, SC2, and SC6 and that of SC5
is not signi�cant. It is interesting that although SC1
and SC2 consider only acceleration spectra, the TRRSa
associated with SC5 is better than SC1 and SC2.

TRC1 and TRC2 results associated with three
initial points are reported in Table 3. Unlike the
�rst motion in which the �fth scenario produced the
best results, in the second and third motions, the
second scenario is the best one. Therefore, it can be
concluded that the best scenario is dependent on the
initial motion.

In order to �nd the best scenario regardless of the
e�ect of initial points, average TRC is computed in
line with Step 7 of the proposed method. Figure 5
shows the average TRC of di�erent scenarios. The
simulation scenarios are sorted based on average TRC1
and TRC2. The sorted results are shown in Figure 6.

It is shown that di�erent scenarios are sorted
based on average TRC1 and TRC2. The sorted
scenarios are shown in Figure 6. It can be seen that
the order of scenarios based on TRC1 and TRC2 is
identical. Although the importance vector is necessary
to quantify ETEFs accuracy, it does not a�ect the

Figure 5. Total relative cost of di�erent optimization
scenarios.

optimal scenario and the order of scenarios from the
lowest to highest. This can be justi�ed based on the
�nding that the information concerning the accelera-
tion, displacement, and velocity spectra is considered
similar and that each can be converted into another
by multiplication by angular frequency, as shown in
Eq. (14):

Su(T ) = Sa(T )�
�
T
2�

�2

; (14)

where Su(T ) and Sa(T ) are displacement and accel-
eration spectra of motions in structural period T ,
respectively.
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Figure 6. Sort of di�erent simulation scenarios based on (a) TRC1 and (b) TRC2.

Because the ETEF-generating process is an
optimization-based procedure, the objective function
de�nition inuences the process of �nding optimum
directions towards the best solution.

It can be seen that the second scenario is the
optimal objective function de�nition. The residuals of
relative acceleration spectra in the objective function
result in more accurate ETEFs. An interesting point
is that de�ning an objective function by the residuals
of absolute acceleration spectra is susceptible to lower
accuracy of 20% than when the residuals of relative
acceleration spectra are considered. This highlights the
importance of de�ning the optimal objective function
in the accuracy of ETEFs.

5. Results

This section aims to investigate the e�ect of the
objective function de�nition on the accuracy of sim-
ulated ETEFs. The accuracy of ETA20SC1X2 is
compared with that of ETA20SC2X2. In the ETEF
names, the number after \SC" denotes the scenario
number (according to Table 1), and the number after
\X" denotes the initial motion number. In fact,
ETA20S1CX2 is generated by the second simulation
scenario using X2 as the initial optimization point.
ETA20SC1X2 and ETA20SC2X2 are generated from a
similar initial point, except di�erent generating scenar-
ios. Therefore, the di�erence between ETA20SC1X2
and ETA20SC2X2 accuracy is derived from those
objective functions. The �rst and second scenarios
are selected because the former is the current practice
for generating ETEFs and the latter is the optimal
simulation scenario, determined in the previous section.
Targets of these ETEFs are based on FEMAP695 [21]
far-�eld record set.

ETA20SC1X2 and ETA20SC2X2 acceleration
time histories are shown in Figures 7 and 8.

ETA20SC1X2 and ETA20SC2X2 acceleration

Figure 7. ETA20SC1X2 acceleration time history.

Figure 8. ETA20SC2X2 acceleration time history.

spectra are compared with targets at four time inter-
vals, i.e., t = 5 sec, 10 sec, 15 sec, and 20 sec, as
shown in Figure 9. It can be seen that the discrepancies
between ETA20SC1X2 and targets are obviously more
than those of ETA20SC2X2.

ETA20SC1X2 and ETA20SC2X2 displacement
spectra are compared with targets at four time inter-
vals, i.e., t = 5 sec, 10 sec, 15 sec, and 20 sec, as shown
in Figure 10. It can be seen that both of these ETEFs
enjoy acceptable and similar accuracy.

ETA20SC1X2 and ETA20SC2X2 velocity spectra
are compared with targets at four time intervals, i.e.,
t = 5 sec, 10 sec, 15 sec, and 20 sec, as shown in



1736 M. Mashayekhi et al./Scientia Iranica, Transactions A: Civil Engineering 27 (2020) 1728{1739

Figure 9. ETA20SC1X2 and ETA20SC2X2 acceleration spectra versus targets at times: (a) t = 5 sec, (b) t = 10 sec, (c)
t = 15 sec, and (d) t = 20 sec.

Figure 10. ETA20SC1X2 and ETA20SC2X2 displacement spectra versus targets at times: (a) t = 5 sec, (b) t = 10 sec,
(c) t = 15 sec, and (d) t = 20 sec.

Figure 11. It can be seen that both of these ETEFs
enjoy acceptable and similar accuracy.

ETA20SC1X2 and ETA20SC2X2 acceleration
spectra are compared with targets at four time inter-
vals, T = 0:06 sec, 0.5 sec, 1 sec, and 3 sec, as shown in
Figure 12. This comparison shows that ETA20SC2X2
enjoys higher accuracy.

It can be seen that the objective function de�-
nition can appreciably inuence the accuracy of sim-
ulated ETEFs. The results show higher accuracy

associated with the optimal objective function than the
conventional objective function de�nition.

6. Conclusion

The Endurance Time (ET) method, which is a novel
time history analysis, facilitates the estimation of struc-
tural responses at di�erent seismic intensity levels with
appreciable computational time saving. The central
part of the ET method is Endurance Time Excitation
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Figure 11. ETA20SC1X2 and ETA20SC2X2 velocity spectra versus targets at times: (a) t = 5 sec, (b) t = 10 sec, (c)
t = 15 sec, and (d) t = 20 sec.

Figure 12. Comparison ETA20SC1X2 and ETA20SC2X2 acceleration spectra with targets at periods: (a) T = 0:06 sec,
(b) T = 0:5 sec, (c) T = 1 sec, and (d) T = 3 sec.

Functions (ETEFs), which are intensifying acceleration
time histories imposed on structures. The concept
of response spectra was used to generate ETEFs;
ETEFs response spectra increase with time and must
be proportional to the target response spectra at each
time interval. Target response spectra could be a
design code spectrum or the average response spectrum
of a suite of ground motions. Unconstrained nonlinear
optimization was used to solve these equations. In
the context of optimization, equations must be pre-

sented by objective functions. Objective functions were
de�ned to minimize the di�erences between ETEFs
response spectra and targets. Objective functions can
be de�ned in several forms and have obvious e�ects on
the results. This study presents a method to �nd the
optimal objective function de�nition. In the proposed
method, a criterion for ranking simulated ETEFs was
introduced. Apart from introducing a criterion, the
method includes ranking di�erent ETEFs generated
by di�erent initial optimization points. In fact, the
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method removes the dependence of the results on the
initial optimization points. The proposed method was
applied to �nd the optimal simulating scenario, where
acceleration, displacement, and velocity spectra can be
included in the process. The results are listed below:

1. It was shown that the best simulation scenario
for an initial optimization point might di�er from
another initial point. This issue implies that �nding
an optimal scenario requires considering the initial
optimization point variability. Otherwise, one must
determine the optimal objective function for the
desired initial point, which is not practical;

2. Applicability of the proposed method for removing
the e�ect of the initial point on determining the
optimal objective function was shown. The optimal
objective function can be determined by considering
the initial point variability using the proposed
method;

3. It was shown that the objective function, which
considers the residuals of relative acceleration spec-
tra, produced more accurate ETEFs in the linear
domain of ETEFs simulation. Current practices in
simulating linear ETEFs include acceleration and
the residuals of absolute displacement spectra in the
objective function;

4. It was found that the optimal objective func-
tion result was not dependent on the considered
importance vector. Importance vector quanti�es
the importance of each dynamic characteristic in
evaluating the accuracy of ETEFs. This can be
attributed to the fact that information concerning
di�erent linear response spectra is closely related
together;

5. It was made clear that the objective function
de�nition could a�ect the simulated ETEFs results
by 35%. This e�ect can be attributed to the fact
that the objective function de�nition changes the
directions of �nding the optimum point and, thus,
the optimal de�nition provides more intelligent
directions toward the optimum point;

6. Response spectra of the ETEF generated by the
optimal objective function were compared with
the results obtained from the conventional objec-
tive function de�nition. The results showed an
improvement in the response spectra accuracy of
the newly generated ETEFs. This fact highlights
the importance of objective function de�nition in
generating ETEFs.
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