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Abstract. Shop Floor Control (SFC) is one of the main concepts in Manufacturing
Resource Planning (MRPII), and production scheduling is a key element in SFC. This
paper studies the hybrid ow shop scheduling problem, where jobs are multiprocessors.
The objective is to minimize total completion time. Although there are several papers
considering the hybrid ow-shop scheduling problem with multiprocessor tasks, none has
proposed a mathematical model for this problem. At �rst, the two problems (�xed
and selective cases) are mathematically formulated by mixed integer linear programming
models. By using commercial software, the model is used to solve the small instances of the
problems. Moreover, an elephant herding optimization is developed to solve large instances
of the problems. To numerically evaluate the proposed algorithm, it is compared with three
available algorithms in the literature.
© 2020 Sharif University of Technology. All rights reserved.

1. Introduction

Production is one of the most basic and important
functions of human activities in modern industrial
societies, and production planning is the selection of
the future course of production actions. Manufactur-
ing Resource Planning (MRPII) is a method for the
e�ective planning of all resources of a manufacturing
company. It is made up of a variety of interlinked
functions. One of the main concepts in MRPII is Shop
Floor Control (SFC). The execution of the manufac-
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turing portion of the planning order release schedule
whereby factory orders are released, monitored, and
reported is called SFC. The SFC consists of Factory
Coordination (FC) and Production Activity Control
(PAC). In PAC, more detailed planning is performed.
At this point, the top-level plans of the company
have been broken down into speci�c tasks. In �rms
using MRPII systems, the execution of the detailed
material and capacity plans involves the scheduling
of machines and other work centers. Scheduling is
a PAC function that is aimed at ensuring the right
tasks are conducted at the right time to produce the
output. In scheduling, we are looking to specify the
start and �nish times of the activities [1]. Scheduling
is a decision-making process that is used on a regular
basis in many manufacturing and services industries.
It deals with the allocation of resources to tasks over
given time periods, and its goal is to optimize one or
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more objectives; in addition, it plays an important role
in the MRPII system [2]. Flow Shop (FS) is one of the
important problems in scheduling. For nearly several
years, FS scheduling problems have been studied as
an important subject in manufacturing research pieces.
Some novel useful de�nitions and properties about the
FS scheduling problem were established by Aminnayeri
and Naderi [3]. In the classical ow-shop problem,
there are m stages in series with only one machine at
each one [4]. In addition, there are n jobs, each of
which must be processed by a single machine at all the
m stages, starting from Stage 1 and Stage 2 until stage
m [5].

There are some gaps between academic and prac-
tical aspects of this problem. One of these gaps in
the FS is the assumption of one machine existing at
each stage, while companies likely employ more than
one machine at stages with more workload. In this
case, they can reduce the impact of bottleneck stages
or even more balance their production capacity. This
generalized version of the problem is called Hybrid
Flow Shops (HFS). The HFS has been well studied in
the literature [6{8].

The HFS classically assumes that each job re-
quires only one machine for each operation. Hence,
it is assigned to only one machine among machines
at each stage, while another extension inspired by the
realistic applications is assuming multiprocessor tasks.
That is, the operation of a job may simultaneously need
more than one machine for its process. A subset of
machines among the machines available at that stage is
required. In scheduling problems with multiprocessor
tasks, the subset of machines required for processing a
job at a stage can be either �xed or selective. If the
subset is �xed, the machines have already been already
determined due to technical limitations or machine
eligibilities. The process of a job at a stage begins as
soon as all the necessary machines are available. If the
subset is selective, the machines are not predetermined
and the selection is a decision to make. As soon as the
required number of machines for the processing of a job
at a stage becomes idle, the process of that job can be
started.

The applications of scheduling problems with
multiprocessor tasks can be seen in some systems.
For example, in semiconductor circuit design workforce
planning [9], a design project is to be processed by
m persons (a team of people). Other applications
can be found in (i) the berth allocation problems,
where a large vessel may occupy several berths for
loading and/or unloading, (ii) diagnosable micropro-
cessor systems, where a job must be performed on
parallel processors in order to detect faults, (iii) man-
ufacturing, where a job may need machines, tools, and
people simultaneously, and (iv) scheduling a sequence
of meetings, where each meeting requires a certain

group of people. In all of the above examples, one
job may need to be processed by several machines
simultaneously [10{12].

By looking into the literature of multiprocessor
tasks, the following papers can be found: Chen and
Lee [10] considered the problem of parallel machines
with multiprocessor tasks, where the subset of ma-
chines is selective. They proposed a pseudo polyno-
mial algorithm for two- and three-machine problems.
Jansen and Porkolab [13] studied the same problem;
however, the processing time of a job was a function of
the subset selected. They proposed a fully polynomial
time approximation scheme for a preemptive version
of the problem and a polynomial time approximation
scheme for its non-preemptive one.

Many studies have applied heuristic and meta-
heuristic algorithms to solve scheduling problems [14].
Since the problem of Hybrid Flow Shops (HFSs) with
Multiprocessor Tasks (HFS-MT) is strongly NP-hard,
the most e�ective algorithms of this problem include
metaheuristics. Serifo�glu and Ulusoy [15] proposed a
genetic algorithm for the problem. O�guz et al. [16]
and O�guz and Ercan [17] investigated HFS-MT, where
the subset of machines required for processing a job
at a stage is selective, and developed a tabu search
and a genetic algorithm. Later, Ying and Lin [18]
proposed an ant colony optimization algorithm. They
compared the proposed algorithm with two avail-
able algorithms of genetic algorithm [17] and tabu
search [16]. Next, Tseng and Liao [19] developed a
particle swarm optimization and compared it with ant
colony optimization, used in the referenced study [18]
for performance. Kahraman et al. [20] proposed a
parallel greedy algorithm, and showed that this algo-
rithm outperformed genetic algorithm [17] and tabu
search [16]. Engin et al. [21] proposed another genetic
algorithm shown to be better than the parallel greedy
algorithm used in [20]. Wang et al. [22] proposed
a Simulated Annealing (SA) that shows high perfor-
mance in the numerical experiments. Recently, Xu et
al. [23] developed a Shu�ed Frog-Leaping Algorithm
(SFLA) and compared it with genetic algorithm used
in [15], ant colony optimization in [18], particle swarm
optimization in [19], and SA in [22]. Lahimer et
al. [24] developed a Limited Discrepancy Search (LDS)
heuristic to solve the problem and lower bound for
the problem. An enhanced invasive weed optimization
meta-heuristic algorithm was presented to solve the
exible FS scheduling problem with probable rework
times, transportation times with a conveyor between
two subsequent stages, di�erent ready times, and an-
ticipatory sequence-dependent setup times [25]. Very
recently, Hidri et al. [26] developed another lower
bound for HFS-MT.

Although there are several papers on the HFS
scheduling problem with multiprocessor tasks, none
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of them has proposed a mathematical model for this
particular problem. The HFS was already formu-
lated by Ziaeifar et al. [27] by a non-linear model
and linearly by Behnamian and Fatemi Ghomi [28].
However, they both failed to consider multiprocessor
tasks. This paper studies the HFS scheduling problem
with multiprocessor tasks. Both cases of �xed and
selective subsets of machines are considered. At �rst,
the two problems are mathematically formulated by
mixed integer linear programming models. By using
commercial software, the model is used to solve the
small instances of the problems. Moreover, an e�ective
Elephant Herding Optimization (EHO) is developed
to solve large instances of the problems. EHO is
a population-based algorithm for continuous search
space [29]. To numerically evaluate the proposed algo-
rithm, it is compared with three available algorithms
in the literature, SA in [22], SFLA in [23], and LDS
in [24].

The rest of the paper is arranged as follows:
Section 2 presents the mathematical models of the
problems under consideration. Section 3 develops an
EHO. Section 4 numerically evaluates the proposed
model and algorithms. Section 5 concludes the paper
and introduces some future research directions.

2. Problem de�nition and formulation

The problem of scheduling hybrid ow shops with
multiprocessor tasks can be described in the following.
There is a set of n jobs in the form of multiprocessor
tasks. Each job needs m operations for completion. For
each operation, there is one work stage and, at each
stage i, there is a set of mi machines. The process of
a job at a stage requires dj;i machines simultaneously.
The dj;i machines can be either �xed (say Case 1) or
selective (say Case 2). The objective is to schedule
jobs at each stage so as to minimize makespan, the
maximum completion time of jobs.

For each of the two cases, one mixed integer linear
programming model is developed. Before presenting
the models, the following parameters and indexes are
established.

Parameters and indices
n The number of jobs
m The number of stages
j; k Indices for jobs where f1; 2; :::; ng
i Indices for stages where f1; 2; :::;mg
mi The number of machines at stage i
l Indices for machines at stage i where

f1; 2; :::;mig
pj;i Processing time of job j at stage i

Dj;i The subset of machines required to
process job j at stage i(jDj;ij = dj;i)

M A large positive number

Case 1. Multiprocessor tasks with a �xed
subset of machines

Variables:
Yj;i;k Binary variable taking value 1 if

job k proceeds job j at stage i,
and 0 otherwise where k > j and
Dj;i \Dk;i 6= �)

Fj;i Continuous variable for the completion
time of job j at stage i.

The problem can be formulated as follows:

Min
Pn
j=1 Fj;m

Subject to:

Fj;1 � pj;1 8j ; (1)

Fj;i � Fj;i�1 + pj;i 8j;i>1; (2)

Fj;i � Fk;i +M:(1� Yj;i;k) � pj;i
8i;(j;k)jDj;i\Dk;i 6=�; (3)

Fk;i � Fj;i +M:(Yj;i;k) � pk;i
8i;(j;k)jDj;i\Dk;i 6=�; (4)

Fj;i � 0 8j;i; (5)

Yj;i;k 2 f0; 1g 8i;(j;k)jDj;i\Dk;i 6=�: (6)

Constraint set (1) assures the least possible completion
time for each job at the �rst stage. Constraint set (2)
speci�es that each job can be processed at most at one
stage at a time. Constraint sets (3) and (4) are a pair
of constraints to ensure that each machine processes at
most one job at a time. Finally, Constraint sets (5)
and (6) de�ne the decision variables.

Case 2. Multiprocessor tasks with a selective
subset of machines

The following decision variables are de�ned for the
model:

Continuous variables:
Yj;i;k Binary variable taking value 1 if job

k proceeds job j at stage i, and 0
otherwise where k > j),
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Zj;i;l Binary variable taking value 1 if job j
is processed by machine l at stage i,
and 0 otherwise.

The problem can be formulated as follows:

Min
Pn
j=1 Fj;m

Subject to:

Constraint sets (1), (2), and (5):
miX
l=1

Zj;i;l = dj;i 8j;i; (7)

Fj;i � Fk;i + pj;i �M:(3� Yj;i;k � Zj;i;l � Zk;i;l)
8j<k;i;l; (8)

Fk;i � Fj;i + pk;i �M:(2� Yj;i;k � Zj;i;l � Zk;i;l)
8j<k;i;l; (9)

Yj;i;k 2 f0; 1g 8j<k;i; (10)

Zj;i;l 2 f0; 1g 8j;i;l: (11)

Constraint set (7) is to select machines to process each
operation. Constraint sets (8) and (9) assure that
the machine carries out at most one operation at a
time. Constraint sets (10) and (11) de�ne the decision
variables.

3. Hybrid elephant herding optimization
(EHO)

Elephant Herding Optimization (EHO) is a novel
swarm-based meta-heuristic algorithm that was in-
spired by the herding behavior of an elephant group.
This algorithm was proposed by Wang et al. [29] for
solving continuous non-linear problems. In nature,
elephants are social animals and live in several clans
under the leadership of a matriarch, often the oldest
cow, and the male elephants will leave their family
group when they grow up. These two behaviors in
EHO modeled into two phases: clan updating phase
and separating phase.

As mentioned earlier, EHO is developed to solve
the continuous function. However, HFS-MT is a
combinatorial problem whose solution space is discrete.
Therefore, this paper develops a discrete variant of
EHO algorithm. This is done by de�ning a proper
encoding scheme, crossing operators, and a moving
operator in updating and separating phases. To
further enhance EHO, a local search, based on SA, is
applied. The stopping criterion is the computational
time of n (the number of jobs). In this case, a longer

Figure 1. The general outline of hybrid Elephant
Herding Optimization (EHO).

computational time is given to the algorithm to solve
larger sizes. Figure 1 shows the general outline of the
proposed hybrid EHO.

3.1. Encoding scheme and initialization
The �rst step in meta-heuristics is to determine the
encoding scheme to make a solution recognizable for
algorithms. The commonly used encoding scheme for
HFS problems is job permutation representation [23].
In this representation, the permutation of job numbers
shows the processing order of all jobs at the �rst
stage. Assume a problem with 10 jobs. One possible
permutation is f5, 2, 10, 4, 1, 9, 7, 3, 8, 6g.

We need a decoding method to obtain a complete
schedule represented by an encoded solution. The
following approach is used. The job sequence for the
subsequent stages is based on \the earliest completion
time of jobs at the previous stage". That is, the jobs are
sorted according to the ascending order of completion
times at the previous stage. The machine assignment
depends on the problem case. In the case of a �xed
subset of machines, the job at each stage starts as soon
as all its corresponding machines are available. In the
case of the selective subset of machines, the job starts as
soon as a necessary number of machines are available.
Note that EHO starts with initial population that is
generated randomly.

3.2. Simulated Annealing (SA)
Enhancing meta-heuristics with the local search is an
e�ective idea to have better performance [30]. This
study uses SA as a local search. SA is a local-search-
based meta-heuristic algorithm with the capability to
leave the local optimum with conditional acceptance
of worse solutions. SA is inspired by the mechanism in
the annealing of solids. It has been successfully applied
to many combinatorial optimization problems.

This method operates over one incumbent solu-
tion, x. Then, a new solution s is generated using a
moving operator and its objective function is evaluated.
If the new solution functions better, then it is accepted
as the incumbent one; otherwise, it is accepted with
probability given by exp(�=T ), where � is the di�er-
ence between objective values of the two solutions and
T is a control parameter referred to as temperature. SA
iterates until no improvement is found in 50 consecutive
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Figure 2. The general outline of Simulated Annealing
(SA).

Figure 3. The numerical example for the swapping
operator.

Figure 4. The numerical example for the insertion
operator.

Figure 5. The numerical example for the inversion
operator.

moves over the best solution found. Figure 2 shows the
procedure of SA.

As for the moving operator, one of the four
following mechanisms is randomly used:

1. Swap. Swapping operator is to swap the positions
of two randomly selected job numbers. Figure 3
shows a numerical example of a problem with 6 jobs.
Suppose that the selected positions are 3 and 5.
Then, the part numbers in these two positions are
swapped and a new elephant is generated;

2. Insertion. Insertion operation is to reallocate a job
number into the sequence. That is, a job number
of a randomly selected position is reinserted into
another randomly selected position. Figure 4 shows
a numerical example of the above problem. Suppose
that the randomly selected position is position 1,
and the randomly selected position for reinsertion
is position 4. Then, job number 1 is moved to
position 4;

3. Inversion. The inversion operator is to inverse
the job numbers between two randomly selected
positions. Figure 5 shows an example of the above
problem. Suppose that the two randomly selected
positions are 2 and 5. Then, the part numbers
between these two positions are inversed;

4. Or-opt. The Or-opt operator is as follows: One po-

Figure 6. The numerical example for the Or-opt
operator.

Figure 7. The numerical example for the one-point
crossover.

sition is randomly selected. Then, the job number
in that position and the next position are moved to
another pair of two consecutive randomly selected
positions. Figure 6 shows the numerical example
for this operator over the above problem. Suppose
that the two selected neighboring job numbers are
3 and 2 at positions 2 and 3. They are both moved
to positions 5 and 6.

3.3. Clan updating phase
In this phase, the matriarch of clan Ci inuences each
elephant in clan Ci; in other words, the matriarch at-
tempts to improve the elephants in its clan. Matriarch
Ci is the �ttest elephant in clan Ci. The new elephants
in each clan are generated by a one-point crossover
operator of each elephant and its matriarch. Note that
the matriarch at each clan cannot be updated by this
operator. In this case, it can be updated by the two-
point crossover operator over the best elephant of all
the clans. nCi is the number of elephants in clan Ci.
The one- and two-point crossovers are as follows:

1. One-point crossover: In this operator, the part
numbers before a randomly selected position from
the matriarch are copied into the new elephant. The
remaining part numbers from the other elephant
are copied into the new elephant according to their
relative order in the other elephant. Figure 7 shows
a numerical example of the above problem for this
operator. Suppose that the selected cut point is
position 4. The part numbers from the beginning
to this position are copied. Then, the copied part
numbers are removed from the other elephant from
left to right. The remaining part numbers (3-2) are
copied into the empty positions in the new elephant.

2. Two-point crossover: In this operator, two ran-
domly selected cut positions from the best elephant
are copied into the new elephant. Then, the
remaining part numbers from the matriarch are
copied into the new elephant according to their
relative order in the matriarch. Figure 8 shows a
numerical example of the above problem for this



H.R. Gholami et al./Scientia Iranica, Transactions E: Industrial Engineering 27 (2020) 1562{1571 1567

Figure 8. The numerical example for the two-point
crossover.

operator. Suppose that the selected cut points are
positions 3 and 5. The part numbers from position
3 to position 5 are copied. Then, the copied part
numbers are removed from the matriarch from left
to right. The remaining part numbers (1-3-1) are
copied into the empty positions in the new elephant.

3.4. Separating phase
To further diversify EHO, it requires an operator like
mutation in genetic algorithm. In this phase, the worst
elephant in each clan is replaced with a new elephant
using the insertion operator.

4. Numerical evaluation

This section evaluates the proposed models and algo-
rithms in both cases. Let us remind that, in Case 1,
the subsets of machines required by each job at each
stage are �xed; yet, in Case 2, the subset is selective
from all available machines at each stage. To this end,
in each case, three experiments are conducted, one for
parameter tuning, one for model evaluation, and one
for algorithm evaluation.

To compare the algorithms, the Relative Percent-
age Deviation (RPD) is used. That is, the objective
function of the solution obtained by the algorithm is
normalized as follows:
TC �Min

Min
� 100;

where TC and Min are the total completion time of
the solution of the algorithm for a given instance and
the minimum makespan obtained for that instance,
respectively. Note that this study also adds two
e�ective algorithms to experiments to better position
EHO in the literature. These three algorithms include
SFLA in [23], SA in [22], and LDS in [24]. The stopping
criterion is set to 3 nm seconds for all of the algorithms.

4.1. Parameter tuning
Di�erent levels of the control factors are shown in
Table 1. nclan is the number of all clans, nCi is

the number of elephants in clan Ci, PMIE is the
probability to execute the multi-type individual en-
hancement scheme on each elephant in clan Ci, betta
is the temperature reduction factor, Tf is the �nal
temperature, prob is the probability of executing the
swapping, insertion, inversion, and Or-opt movement
scheme, respectively.

EHO algorithm has 6 factors and, for each one,
3 di�erent levels are considered. The required number
of tests for a full factorial experiment is 36; however,
the Taguchi method uses orthogonal array L27 that
includes only 27 tests. To implement the experiments,
a set of 10 instances with di�erent combinations of the
number of orders, parts, and machines is considered.
The results are evaluated using Minitab 16. According
to the results, the parameters for the EHO algorithm
are set as follows:

nclan = 10; nci = 10 pMIE = 0:3; betta = 0:75;

tf = 0:3; prob = [0:1 0:1 0:4 0:4]:

4.2. Evaluation in Case 1
In this section, at �rst, the algorithm is tuned. Then,
the model and algorithm are evaluated over small-sized
instances. Finally, the algorithm is compared with two
state-of-the-art algorithms (SFLA and SA) over large-
sized instances.

Now, a set of 16 instances is generated with the
following sizes (two instances for each size):

n=f6; 8; 10; 12g; m=f3; 5g; and mi=fU [2; 5]g:
The processing times are randomly distributed over (1,
99). The model is implemented in a maximum of 1000
seconds of the computational time.

Table 2 shows the results obtained by the pro-
posed model and algorithm. As is clear, the model
of Case 1 cannot optimally solve instances containing
more than 12 jobs and 3 stages. All the instances with 8
jobs or less can be solved to achieve optimality in less
than one second. Instances with 10 jobs can also be
optimally solved in about 100 seconds. The proposed
algorithm solves 10 instances out of 14 to optimality.

Now, the proposed algorithm is evaluated against
SFLA and SA over large sizes. A set of 60 instances, 5
instances for each of the following 12 sizes, is given:

n=f20; 50; 100g; m=f3; 6g; and mi=f2; U [1; 3]g:

Table 1. Factors and their levels for Elephant Herding Optimization (EHO).

Level nclan nCi PMIE betta Tf prob

1 5 5 0.1 0.55 0.1 [0.1 0.1 0.4 0.4]
2 10 10 0.3 0.75 0.2 [0.2 0.2 0.3 0.3]
3 15 20 0.5 0.9 0.3 [0.4 0.4 0.1 0.1]
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Table 2. Model and algorithm results (computational time in seconds) in Case 2.

Model Algorithm (EHO)
n�m TC Time Optimality gap Cmax Time
6 � 3 154 0.05 0 154� 54
6 � 3 290 0.06 0 290� 54
6 � 5 228 0.08 0 228� 90
6 � 5 360 0.09 0 364 90
8 � 3 270 0.36 0 270� 72
8 � 3 748 0.31 0 774 72
8 � 5 780 0.48 0 780� 120
8 � 5 1740 0.51 0 1754 120
10 � 3 858 143.83 0 858� 90
10 � 3 1422 26.86 0 1422� 90
10 � 5 1160 119.56 0 1160� 150
10 � 5 1814 74.08 0 1820 150
12 � 3 1540 178.92 0 1540� 108
12 � 3 1430 132.05 0 1430� 108
12 � 5 1306 1000 13.14% 1458 180
12 � 5 1458 1000 8.5% 1500 180
�: The optimal makespan.

Table 3. The average RPD of the algorithms over large
instances for Case 1.

Algorithms
n�m SA SFLA EHO LDS

20 � 3 1.43 0.51 0.00 0.12
20 � 6 1.53 0.70 0.00 0.24
50 � 3 1.05 0.65 0.32 0.45
50 � 6 1.33 1.02 0.16 0.53
100 � 3 1.82 1.32 0.09 0.95
100 � 6 1.57 1.16 0.00 0.88

Average 1.46 0.89 0.09 0.53

Table 3 shows the results over large instances. As
can be seen, EHO outperforms the SFLA, SA, and LDS
with the average RPF of 0.09%. The second best is
LDS with an average RPD of 0.53%.

In this part, we also show the performance of
the algorithms versus the problem sizes. In Figure 9,
the average RPDs of these four tested algorithms are
shown versus the number of jobs. As shown in this
�gure, in all three problem sizes, the proposed EHO
keeps its better performance, especially for instances
of larger size. Figure 10 shows the average RPDs of
the algorithms versus the number of stages.

4.3. Evaluation for Case 2
In this section, like Case 1, at �rst, the algorithm is
tuned. Then, the model and algorithm are evaluated
over small-sized instances. Finally, the algorithm is

Figure 9. The average RPD and 95% con�dence level of
the tested algorithms in Case 1.

Figure 10. The average RPD of the tested algorithms
versus the number of jobs in Case 1.
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Table 4. Model and algorithm results (computational time in seconds) in Case 2.

Model Algorithm (EHO)

n�m TC Time Optimality gap Cmax Time

6 � 3 130 1.25 0 130� 54

6 � 3 148 0.23 0 148� 54

6 � 5 200 231.08 0 204 90

6 � 5 250 413.87 0 250� 90

8 � 3 336 5.32 0 340 72

8 � 3 448 99.73 0 448� 72

8 � 5 636 1005.47 5.33% 636� 120

8 � 5 1156 1005.80 11.25% 1158 120

10 � 3 1186 1122.27 19.83% 1186 90

10 � 3 1214 1021.60 15.82% 1214 90

10 � 5 1568 1026.83 28.34% 1552 150

10 � 5 1394 1017.03 6.03% 1402 150

compared with two algorithms (SFLA and SA) in
literature over large-sized instances.

Now, the MILP model and algorithm of Case 2 are
evaluated to solve the problem. A set of 12 instances
is generated as follows (2 instances for each size).

n = f6; 8; 10g; m = f3; 5g; and mi = fU [2; 5]g):
The processing times are randomly distributed over (1,
99). Table 4 shows the results obtained by the model
(within 1000s of the computational time) and EHO. As
can be seen, the model of Case 2 cannot optimally solve
those instances with more than 8 jobs and 3 stages. It
gives the average optimal gap of 14.43%. Concerning
EHO for Case 2, it optimally solves 4 instances out of
6 ones, which have already been solved by the model.

The proposed algorithm is now compared with the
three other algorithms from the literature (i.e., SFLA,
SA, and LDS) over large sizes. A set of 60 instances, 5
instances for each of the following 12 sizes, is considered
as follows:

n=f20; 50; 100g; m=f3; 6g; and mi=f2; U [1; 3]g:
Table 5 shows the results over large instances. As

can be seen, EHO outperforms SFLA and SA with
average RPF of 0.16%. The second best is LDS with
the average RPD of 0.67%.

In this part, we also show the performance of the
algorithms versus the problem sizes. In Figure 11,
the average RPDs and 95% con�dence level of these
four tested algorithms are shown. Moreover, Figure 12
shows the average RPDs of the algorithms versus the
number of jobs. As shown earlier, in all three problem
sizes, the proposed EHO keeps its better performance,
especially for larger size instances.

Table 5. The average RPD of the algorithms over large
instances for Case 2.

Algorithms
n�m SA SFLA EHO LDS

20 � 3 1.82 0.55 0.21 0.19
20 � 6 1.66 0.79 0.04 0.39
50 � 3 1.95 0.66 0.07 0.46
50 � 6 2.75 1.03 0.62 0.88
100 � 3 2.67 1.16 0.02 1.16
100 � 6 2.14 1.56 0.01 0.92

Average 2.17 0.96 0.16 0.67

Figure 11. The average RPD and 95% con�dence level of
the tested algorithms in Case 2.

5. Conclusion and future research

The hybrid ow shop scheduling problem with mul-
tiprocessor tasks in the MRPII system was studied.
Two cases of �xed and selective subsets of machines
were considered. At �rst, the two problems were
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Figure 12. The average RPD of the tested algorithms
versus the number of jobs in Case 2.

mathematically formulated by mixed integer linear
programming models, one for each case. Then, by
applying commercial software, the models were used to
solve the small instances of the problems to optimality.
The model of Case 1 solved instances with about 12
jobs, while the model of Case 2 solved instances with
at most 10 jobs in 1000 seconds.

Moreover, a novel algorithm, called elephant
herding optimization, was proposed to solve large
instances of the problems. The proposed algorithm was
compared with two available algorithms (simulated an-
nealing and shu�ed frog-leaping algorithm) presented
in the literature for performance. In both cases, the
proposed algorithm outperformed the other algorithms.

One interesting future research direction is to
include backorder possibility as in [31], where the au-
thor predicts backorder aging and un�lled backorders.
Another future research is to incorporate setup times
into the model.
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