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Abstract. The Fractional-order Di�erential Equations (FDEs) have the ability to model
the real-life phenomena better in a variety of applied mathematics, engineering disciplines
including di�usive transport, electrical networks, electromagnetic theory, probability, and
so forth. In most cases, there are no analytical solutions; therefore, a variety of numerical
methods have been developed for obtaining solutions to the FDEs. In this paper, we derive
numerical solutions to various fractional-order Riccati-type di�erential equations using the
Euler Wavelet Method (EWM). The Euler wavelet operational matrix method converts the
fractional di�erential equations to a system of algebraic equations. Illustrative examples
are included to demonstrate validity and e�ciency of the technique.
© 2019 Sharif University of Technology. All rights reserved.

1. Introduction

Fractional Di�erential Equations (FDEs) have di�er-
entiator operators of non-integer orders. There has
been an increasing interest in modeling using FDEs,
since they have the ability to model the real-world
phenomena more accurately in a variety of disciplines
such as visco-elasticity [1], solid mechanics [2], bioengi-
neering [3,4], economics [5], continuum mechanics [6],
signal processing [7], system analysis [8], optimal
control [9,10], and numerical solutions to integral
and di�erential equations [11-13]. Since most of the
fractional-order di�erential equations do not have ana-
lytical solutions, there have been numerous numerical
methods developed to attain solutions to them, includ-
ing Adomian Decomposition Method (ADM) [14,15],
Variational Iteration Method (VIM) [16], Fourier trans-
forms [17], Laplace transforms [18], eigenvector expan-
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sion [19], Homotopy Perturbation Transform Method
(HPTM) [20,21], and various wavelet methods [22-25].

In many areas of engineering and applied sci-
ence, such as transmission-line phenomena, optimal
�ltering, network synthesis, robust stabilization, image
processing, control theory, etc., Riccati di�erential
equations are utilized. Recently, various numerical
methods [26-29] have been developed to solve Riccati
di�erential equations. As for the numerical methods for
fractional Riccati di�erential equations, Yuzbasi [30]
developed a numerical method using the Bernstein
polynomial; Mabood et al. [31] used the Optimal
Homotopy Asymptotic Method (OHAM); Li et al. [32]
applied a Reproducing Kernel Method (RKM); Odi-
bat and Momani [33] used the Modi�ed Homotopy
Perturbation Method (MHPM); Khader [34] used the
fractional Chebyshev �nite di�erence method; and
Sakar et al. [35] applied an Iterative Reproducing
Kernel Hilbert Space Method (IRKHSM) to get the
solutions to fractional Riccati di�erential equations.

In this paper, we consider the following Riccati
di�erential equations of the form:

D�y(t) = u(t) + v(t)y(t) + w(t)[y(t)]2;
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t > 0; n < � � n+ 1; (1)

which is subject to the initial conditions yk(0) = gk and
k = 1; 2; � � � ; n�1, where � is the fractional derivative-
order parameter; n is an integer; u(t), v(t), and w(t)
are given functions; and gk is a constant.

When � is a positive integer, the fractional equa-
tion becomes a classical Riccati di�erential equation.

The wavelet theory is one of the popular areas
in applied science and engineering, such as segmenta-
tion, data compression, and time-frequency analysis.
Wavelets generally provide accurate modeling in both
time and frequency domains. Moreover, it is possible to
develop fast numerical algorithms using wavelets [36].
The main advantage of using wavelet methods is that,
after the discretization process, the obtained coe�cient
matrix of the algebraic equations is a sparse matrix,
which decreases the computational load and expedites
the simulation.

The focus of this paper is on solving the fractional
Riccati di�erential equations by using Euler wavelets.
The Euler wavelets are constructed by Euler polyno-
mials. The method consists in reducing the fractional
di�erential equation to a system of algebraic equations
with unknown coe�cients by using Euler wavelets.
Even though the Euler polynomials are not based on
orthogonal functions, they have the operational matrix
of integration. In addition, numerical examples have
demonstrated that the Euler wavelet performs better in
approximating an arbitrary function than the Legendre
and the Chebyshev wavelets do [37].

The structure of the paper is as follows: In
Section 2, we present some basic de�nitions and
properties of the fractional calculus. In Section 3,
the Euler wavelets are constructed and the Euler
Wavelets Operational Matrix of the Fractional In-
tegration (EWOMFI) is derived. In Section 4, we
apply EWM to the solution to the fractional Riccati
di�erential equations through numerical examples; and
the conclusion is presented in Section 5.

2. Preliminary concepts

In this section, we present de�nitions for the prelimi-
nary fractional calculus used in the paper.

De�nition 1. The Riemann-Liouville fractional in-
tegral operator of order � is given as:

(I�f)(t) =

8><>: 1
�(�)

tR
0

f(�)
(t��)1�� d� � > 0; t > 0;

f(t) � = 0

9>=>; :
(2)

For � � 0, � � 0, a � 0, and � � �1, we have the
following properties of the Riemann-Liouville fractional

integral:

i) I�I� = I�I�; (3)

ii) I�(I�f(t)) = I�(I�f(t)) = I�+�f(t); (4)

iii) I�(t� a)� =
�(� + 1)

�(�+ � + 1)
(t� a)�+�: (5)

The Riemann-Liouville fractional derivative is de�ned
by:

(D�f)(t) =
�
d
dt

�n
(In��f)(t);

0 � n� 1 < � � n; (6)

where n is an integer and t > 0. However, the
derivative of the Riemann-Liouville operator has cer-
tain shortcomings in modeling real-world phenomena.
Therefore, in this paper, we use the modi�ed version
of the fractional di�erential operator D� proposed by
Caputo, which is given in the following de�nition.

De�nition 2. The Caputo de�nition of the fractional
derivative operator is given by the following expression:

(D�f)(t)

=

8>>><>>>:
dnf(t)
dtn � = n 2 R

1
�(n��)

tR
0

f(n)(�)
(t��)1�n+� d� 0�n�1<��n

9>>>=>>>; :
(7)

The relation between Riemann-Liouville operator and
Caputo operator can be expressed by the following two
common equations:

(D�I�f)(t) = f(t); (8)

and:

(I�D�f)(t) = f(t)�
n�1X
k=0

f (k)(0+)
tk

k!
: (9)

The reader is referred to [18] for more details about
fractional di�erentiation and integration.

3. Derivation of the operational matrix of
fractional integration for Euler wavelets

3.1. Wavelets and Euler wavelets
Wavelet analysis uses localized wavelike functions
called `wavelets.' A family of wavelets consists of a
mother wavelet and dilated and translated versions of
the mother wavelet. By making the dilation parameter
a and the translation parameter b vary continuously, we
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can obtain the following family of continuous wavelets
as [24]:

 a;b(t) = jaj�1=2 
�
t� b
a

�
; a; b 2 R; a 6= 0:

(10)

If the translation and dilation parameters are chosen
to have discrete values, a = a�k0 , b = nb0a�k0 , a0 > 1,
b0 > 0, where n and k are positive integers, the family
of discrete wavelets is obtained as:

 kn(t) = ja0jk=2 (ak0t� nb0): (11)

Euler wavelets  nm =  (k; ~n;m; t) have 4 arguments:
~n = n�1, n = 1; 2; 3; � � � ; 2k�1; k can take any positive
integer value; m is the order for Euler polynomials; and
t is the normalized time. Euler wavelets de�ned on the
interval [0, 1) yield:

 nm(t)

=

(
2
k�1

2 ~Em(2k�1t�n+1); n�1
2k�1 � t< n

2k�1

0; otherwise

)
;
(12)

and:

~Em(t) =

8>>><>>>:
1; m = 0

1r
2(�1)m�1(m!)2

(2m)! E2m+1(0)
; m > 0

9>>>=>>>; ; (13)

where m = 0; 1; 2; � � � ;M � 1 and n = 1; 2; 3; � � � ; 2k�1.
The coe�cient 1r

2(�1)m�1(m!)2
(2m)! E2m+1(0)

is for normality,

the dilation parameter is a = 2�(k�1), and the trans-
lation parameter is b = ~n2�(k�1). Em(t) represents
the Euler polynomials of the order m and given as
follows [38]:

mX
k=0

�
m
k

�
Ek(t) + Em(t) = 2tm; (14)

where
�
m
k

�
is the binomial coe�cient. The �rst few

Euler polynomials yield:

E0(t) = 1; E1(t) = t� 1
2
; E2(t) = t2 � t;

E3(t) = t3 � 2
3
t2 +

1
4
; � � � : (15)

3.2. Function approximation
A function f(t) de�ned over [0,1) may be expanded by

Euler wavelets as:

f(t) =
2k�1X
n=1

M�1X
m=0

cnm	nm(t) = CT (t); (16)

where superscript T indicates transposition, and C and
 (t) are 2k�1 � 1 vectors given as:

C = [c10; c11; � � � ; c1(M�1); c20; c21; � � � ; c2(M�1);

; � � � ; c2k�10; c2k�11; � � � ; c2k�1(M�1)]T ;
(17)

	 = [	10;	11; � � � ;	1(M�1);	20;	21; � � � ;	2(M�1);

; � � � ;	2k�10;	2k�11; � � � ;	2k�1(M�1)]T :
(18)

Now, let us de�ne m0 = 2k�1M . The Euler wavelet
matrix is de�ned as:
�m0�m0 =

�
	(t1);	(t2);	(t3); � � � ;	(tm0)

�
; (19)

where ti represents collocation points. If the colloca-
tion points are chosen as ti = i�0:5

m0 , i = 1; 2; 3; � � � ;m0,
the Euler wavelet matrix for k = 2, M = 3, and � = 0:5
becomes:

�m0�m0(t) =

26666664
1:4142 1:4142 1:4142
�0:2357 0 0:2357
�0:0802 �0:1443 �0:0802

0 0 0
0 0 0
0 0 0

0 0 0
0 0 0
0 0 0

1:4142 1:4142 1:4142
�0:2357 0 0:2357
�0:0802 �0:1443 �0:0802

37777775 : (20)

3.3. Euler wavelet operational matrix of
fractional integration

3.3.1. Block pulse functions
An m0 set of Block Pulse Functions (BPFs) is de�ned
as:

bi(t) =

(
1 (i� 1)=m0 � t < i=m0
0 otherwise

)
; (21)

where i = 1; 2; 3; � � � ;m0. The function bi(t) is disjoint
and orthogonal. For t 2 [0; 1):

bi(t)bj(t) =

(
0 i 6= j
bi(t) i = j

)
; (22)

1Z
0

bi(�)bj(�)d� =

(
0 i 6= j
1=m0 i = j

)
: (23)

It is known that any square integral function f(t)
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de�ned in [0,1) can be expanded into an m0 set of BPFs
as:

f(t) =
m0X
i=1

fibi(t) = fTBm0(t); (24)

where:

f = [f1; f2; � � � ; fm0 ]T ;
Bm0(t) = [b1(t); b2(t); � � � ; bm0(t)]T ;

and fi is given as:

fi =
1
m0

i=m0Z
(i�1)=m0

f(t)bi(t)dt: (25)

The Euler wavelet matrix can also be expanded to an
m0 set of BPFs as:

 (t) = �m0�m0Bm0(t): (26)

The block pulse operational matrix for fractional inte-
gration F� is de�ned as [39]:

(I�Bm0) (t) � F�Bm0(t); (27)

where:

F�=
1
m�

1
�(�+2)

266666664
1 �1 �2 �3 � � � �m0�1
0 1 �1 �2 � � � �m0�2
0 0 1 �1 � � � �m0�3
...

...
. . . . . .

...
...

0 0 � � � 0 1 �1
0 0 � � � 0 0 1

377777775 ;(28)

with �k = (k + 1)�+1 � 2k�+1 + (k � 1)�+1.
Now, let us derive the Euler Wavelet Operational

Matrix of Fractional Integration (EWOMFI):

(I� )(t) � P�m0�m0 (t); (29)

where matrix P�m0�m0 is called the EWOMFI.
Using Eqs. (26) and (27), we obtain:

(I�	)(t) � (I��m0�m0Bm0)(t)

= �m0�m0(I�Bm0)(t) � �m0�m0F�Bm0(t):
(30)

Furthermore, using Eqs. (26), (29), and (30) yields:

P�m0�m0	(t) � (I�	)(t) � �m0�m0F�Bm0(t)
= �m0�m0F���1

m0�m0	(t):

The resulting EWOMFI P�m0�m0 becomes:

P�m0�m0 � �m0�m0F���1
m0�m0 : (31)

As an example, the EWOMFI for k = 2, M = 3, and
� = 0:5 yields:

P�m0�m0 =

26666664
0:4616 1:2601 �0:9787
0:0219 0:2243 0:6305
�0:0217 �0:1061 0:2354

0 0 0
0 0 0
0 0 0

0:5012 �0:6034 0:8425
0:0179 �0:0449 0:0940
�0:0352 0:0410 �0:0545
0:4616 1:2601 �0:9787
0:0219 0:2243 0:6305
�0:0217 �0:1061 0:2354

37777775 : (32)

We use A
B = (aij � bij)m0�m0 for the multiplication
of two matrices of size m0 �m0.

The reader is referred to [37] for the convergence
analysis of the Euler wavelet basis.

4. Numerical examples

In this section, we provide three numerical examples
to demonstrate the accuracy of the Euler Wavelet
Method (EWM). Matlab R2017a has been used for
the simulations. We have also calculated the order of
convergence, which is expressed as [40,41]:

converg. rate =
log
�

solution(i�1)�solution(i�2)
solution(i�2)�solution(i�3)

�
log(2)

: (33)

4.1. Example 1

D�y(t) + y(t)� y2(t) = 0; (34)

with initial condition y(0) = 1=2, where the parameter
� denotes the fractional time derivative with 0 < � � 1.
The exact solution for � = 1 is given as y(t) = e�t

1+e�t .
Let:

D�y(t) � CT (t): (35)

Then, with the initial conditions, we have:

y(t) � (I�D�y)(t) � CTP�m0�m0 (t) + y(0): (36)

Substituting Eq. (26) into Eq. (36) the following is
obtained:

y(t) �CTP�m0�m0�m0�m0Bm0(t)

+
�

1
2
;

1
2
; � � � ; 1

2

�
Bm0(t): (37)

Let:
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CTP�m0�m0�m0�m0 = [a1; a2; � � � ; am0 ]; (38)

using Eq. (26), we have:

[y(t)]2 =[a2
1; a

2
2; � � � ; a2

m0 ]Bm0(t) + 2KBm0(t)

+
�

1
4
;

1
4
; � � � 1

4

�
Bm0(t); (39)

where:

K = CTP�m0�m0�m0�m0 

�

1
2
;

1
2
; � � � ; 1

2

�
: (40)

Substituting Eqs. (39), (37), and (35) into Eq. (34), we
get:

CT�m0�m0 + CTP�m0�m0�m0�m0 +
�

1
2
;

1
2
; � � � ; 1

2

�
� [a2

1; a
2
2; � � � ; a2

m0 ]� 2K �
�

1
4
;

1
4
; � � � ; 1

4

�
= 0:

(41)

This nonlinear system of equations can be solved using
Newton iteration method and the vector of unknown
coe�cients C can be computed. After calculating
the vector C, we can obtain the numerical solution
for y(t) using Eq. (36). Figure 1 shows the EWM
solution for m0 = 80 and the exact solution for � =
1. The comparison between the exact solution and
EWM solution for various values of m0 is presented
in Table 1. As can be seen in the table, even fairly
small values of k = 3 and M = 3 (m0 = 12) produce
a good approximation. As m0 increases, the absolute
error decreases to the order of E-9. EWM solution
for m0 = 80 with various fractional values of � is
given in Figure 2. As � approaches 1, the solution
to the fractional-order di�erential equation approaches
the solution to integer-order di�erential equation. The
order of convergence is given in Table 2. As it is
shown [41,42], this rate tends to 2.

Figure 1. The solution of EWM for � = 1 and the exact
solution for Example 1.

Figure 2. The solution of EWM for various values of �
for Example 1.

4.2. Example 2
Consider the following Riccati di�erential equation:

D�y(t)� 2y(t) + y2(t)� 1 = 0:

y(0) = 0; (42)

where 0 < � � 1. The exact solution for � = 1 is given
as:

Table 1. Comparison of the exact solution and EWM with � = 1 and various values of m0 for Example 1.

t Exact solution m0 = 12 m0 = 24 m0 = 48 m0 = 96 m0 = 192 m0 = 384

0.0 0.5000000 0.5000223 0.5000028 0.5000004 0.5000000 0.5000000 0.5000000
0.1 0.4750208 0.4750248 0.4750229 0.4750213 0.4750209 0.4750208 0.4750208
0.2 0.4501660 0.4501822 0.4501699 0.4501669 0.4501662 0.4501661 0.4501660
0.3 0.4255575 0.4255764 0.4255623 0.4255588 0.4255578 0.4255576 0.4255575
0.4 0.4013123 0.4013419 0.4013188 0.4013140 0.4013128 0.4013124 0.4013124
0.5 0.3775407 0.3775881 0.3775507 0.3775429 0.3775412 0.3775408 0.3775407
0.6 0.3543437 0.3543778 0.3543529 0.3543460 0.3543443 0.3543438 0.3543437
0.7 0.3318122 0.3318532 0.3318224 0.3318147 0.3318128 0.3318124 0.3318123
0.8 0.3100255 0.3100667 0.3100358 0.3100282 0.3100262 0.3100257 0.3100256
0.9 0.2890505 0.2890953 0.2890613 0.2890532 0.2890512 0.2890507 0.2890505



A.T. Dincel/Scientia Iranica, Transactions D: Computer Science & ... 26 (2019) 1608{1616 1613

Table 2. The solution and convergence rate at point
t = 0:5 for Example 1.

i m0 Solution (i) Convergence rate

1 12 0.3775881 |
2 24 0.3775507 |
3 48 0.3775429 2.2615
4 96 0.3775412 2.1979
5 192 0.3775408 2.0874
6 384 0.3775407 2.0000

y(t) = 1 +
p

2 tanh

 p
2t+

1
2

log

 p
2� 1p
2 + 1

!!
:

Using the same approximation as that given for Ex-
ample 1 in detail, we obtain the following nonlinear
equation, the solution to which produces C coe�cients:

CT�m0�m0 � 2CTP�m0�m0�m0�m0

+
�
a2

1; a
2
2; � � � ; a2

m0
�� [1; 1; � � � ; 1] = 0: (43)

where [a1; a2; � � � ; am0 ] = CTP�m0�m0�m0�m0 . After
�nding the coe�cient vector C, we can again obtain
the numerical solution for y(t) using Eq. (36). Figure 3
shows the solution of EWM for m0 = 80 and the exact
solution for � = 1. The comparison between absolute
errors of the EWM solution and some other solution
methods for the fractional di�erential equation with
various values of m0 is presented in Table 3. The
results indicate two important features; �rstly, unlike
in the other methods, the absolute error does not
increase in the EWM as t increases and secondly, for the
m0 values greater than 96, the EWM provides better
approximation. Another comparison for � = 0:75 is
given with various values of m0 in Table 4. Euler
wavelet solution for m0 = 80 with various fractional
values of � is given in Figure 4. Again, it can
be stated that the solution to the fractional-order
di�erential equation approaches the solution to integer-
order di�erential equation as � approaches 1.

Figure 3. The solution of EWM for � = 1 and the exact
solution for Example 2.

Figure 4. The solution of EWM for various values of �
for Example 2.

4.3. Example 3
Consider the following Riccati di�erential equation:

D�y(t) + y2(t)� 1 = 0;

y(0) = 0; (44)

where 0 < � � 1. The exact solution for � = 1 is given
as y(t) = e2t�1

e2t+1 .

Table 3. The absolute errors of EWM and some other solution methods for the fractional-order di�erential equation with
� = 1 and various values of m0 for Example 2.
t m0 = 24 m0 = 48 m0 = 96 m0 = 192 m0 = 384 MHPM [33] IRKHSM [27] OHAM [31]

0.1 5.52E-04 1.38E-04 3.43E-05 8.57E-06 2.14E-06 1.00E-06 3.58E-05 3.20E-05
0.2 6.47E-04 1.63E-04 4.06E-05 1.01E-05 2.54E-06 1.20E-05 7.58E-05 2.90E-05
0.3 7.27E-04 1.78E-04 4.46E-05 1.12E-05 2.80E-06 1.00E-06 1.20E-04 1.10E-03
0.4 7.44E-04 1.85E-04 4.56E-05 1.14E-05 2.86E-06 3.03E-04 1.66E-04 2.50E-03
0.5 5.20E-04 1.52E-04 4.07E-05 1.05E-05 2.66E-06 1.55E-03 2.12E-04 4.40E-03
0.6 5.84E-04 1.47E-04 3.78E-05 9.44E-06 2.34E-06 4.69E-03 2.52E-04 5.50E-03
0.7 4.56E-04 1.22E-04 3.05E-05 7.49E-06 1.87E-06 1.05E-02 2.87E-04 5.50E-03
0.8 3.79E-04 8.82E-05 2.22E-05 5.64E-06 1.41E-06 1.89E-02 3.40E-04 3.80E-03
0.9 2.66E-04 6.63E-05 1.60E-05 4.02E-06 1.01E-06 2.80E-02 4.90E-04 3.40E-03
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Table 4. Comparison of the EWM and some other solution methods for the fractional-order di�erential equation with
� = 0:75 for Example 2.

t m0 = 24 m0 = 48 m0 = 96 m0 = 192 m0 = 384 RKM [32] MHPM [33] IRKHSM [35]
0.2 0.476341 0.475422 0.475178 0.475117 0.475117 0.4695 0.4288 0.4730
0.4 0.939340 0.938740 0.938586 0.938548 0.938548 0.9335 0.8914 0.9368
0.5 1.149579 1.149198 1.149097 1.149070 1.149070 1.1448 1.1327 1.1475
0.6 1.334765 1.334444 1.334360 1.334339 1.334339 1.3309 1.3702 1.3330
0.8 1.623300 1.623073 1.623011 1.622995 1.622995 1.6215 1.7948 1.6220

The nonlinear equation used to obtain the coe�-
cient vector C becomes:

CT�m0�m0 � [1; 1; � � � ; 1] + [a2
1; a

2
2; � � � ; a2

m0 ] = 0;
(45)

where [a1; a2; � � � ; am0 ] = CTP�m0�m0�m0�m0 . As in the
other two examples, the coe�cient vector C is used to
obtain the numerical solution for y(t) using Eq. (36).
Figure 5 presents the solution of EWM for m0 = 80
and the exact solution for � = 1. The comparison
between absolute errors of the Euler wavelet solution
and some other solution methods for the fractional
di�erential equation with m0 = 384 is provided in
Table 5. As can be seen in the table, EWM provides
better approximation. Another comparison of the
numerical results with � = 0:75 is given for various
values of m0 in Table 6.

Euler wavelet solution with m0 = 80 for various
fractional values of � is given in Figure 6. Again, the
results show that the solution to the fractional-order

Table 5. The absolute errors of EWM and some other
solution methods for the fractional-order di�erential
equation with � = 1 for Example 3.

t EWM VIM
[28]

MHPM
[33]

IRKHSM
[27]

0.1 1.117589E-07 5.00E-11 0 9.05E-06
0.2 2.100616E-07 4.39E-09 0 1.72E-05
0.3 2.822560E-07 1.56E-07 1.00E-06 2.38E-05
0.4 3.281852E-07 1.97E-06 5.00E-06 2.85E-05
0.5 3.464860E-07 1.38E-05 3.90E-05 3.11E-05
0.6 3.307795E-07 6.61E-05 1.93E-04 3.17E-05
0.7 2.962782E-07 2.43E-04 7.37E-04 3.07E-05
0.8 2.480617E-07 7.35E-04 2.33E-03 2.81E-05
0.9 1.922805E-07 1.91E-03 6.37E-03 2.32E-05

di�erential equation approaches the solution to integer-
order di�erential equation as � approaches 1.

5. Conclusion

In this paper, numerical solutions to various fractional-
order Riccati-type di�erential equations were obtained
using the Euler Wavelet Method (EWM). The opera-
tional matrix of fractional integration was obtained for
Euler wavelets and applied for obtaining the solution to
several fractional-order Riccati di�erential equations.
It has been shown elsewhere that the Euler wavelets
perform better than other wavelet methods [37].

The Euler Wavelet Method (EWM) results in
sparse coe�cient matrices; therefore, it has shorter
simulation duration and lower memory requirements.
The numerical solutions given in detail in Section 4
proved that the EWM was a better approximation
to the exact solution than other numerical solution
methods when larger values of m0 were used for integer
orders (corresponding to taking more samples for dis-

Figure 5. The solution of EWM for � = 1 and the exact
solution for Example 3.

Table 6. Comparison of the EWM and some other solution methods for the fractional-order di�erential equation with
� = 0:75 for Example 3.

t m0 = 24 m0 = 48 m0 = 96 m0 = 192 m0 = 384 RKM
[32]

Method in
[30]

MHPM
[33]

IRKHSM
[35]

0.2 0.309815 0.309924 0.309962 0.309972 0.309972 0.3073 0.3099 0.3138 0.3100
0.4 0.481539 0.481609 0.488162 0.481630 0.481630 0.4803 0.4816 0.4929 0.4816
0.6 0.5977565 0.597762 0.597780 0.597782 0.597782 0.5975 0.5977 0.5974 0.5978
0.8 0.6788444 0.678850 0.6788495 0.678850 0.678850 0.6796 0.6788 0.6604 0.6788
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Figure 6. The solution of EWM for various values of �
for Example 3.

cretization). Moreover, the numerical solutions for the
fractional orders showed that as � approached 1, they
approached those for the integer orders. The results
proved that the method could be applicable to various
other fractional di�erential equations.

The approach used here can be applied to the
related di�erential equations in [43].
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